

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

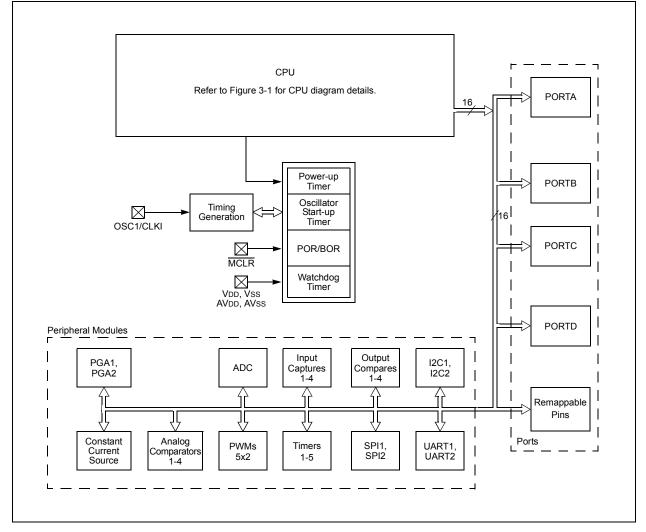
E·XFI

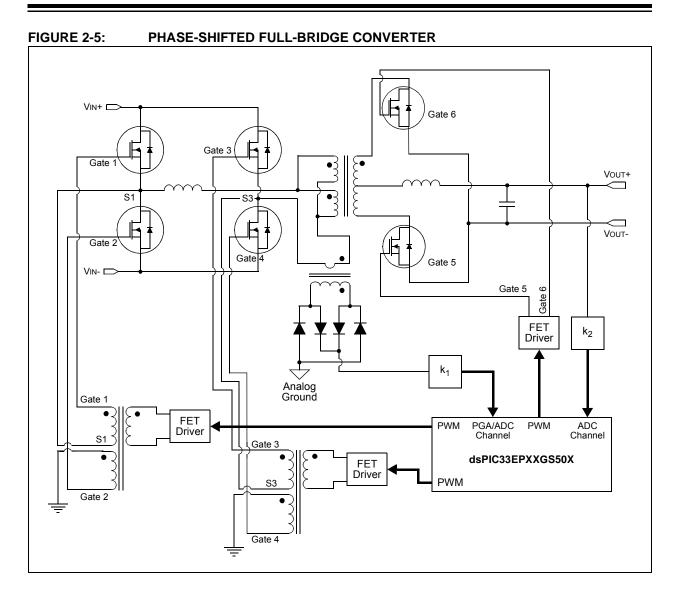
Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs502t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


This document contains device-specific information for the dsPIC33EPXXGS50X Digital Signal Controller (DSC) devices.

dsPIC33EPXXGS50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXGS50X FAMILY BLOCK DIAGRAM

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG 0 = Stack frame is not active; W14 and W15 address the base Data Space
bit 1	RND: Rounding Mode Select bit
	1 = Biased (conventional) rounding is enabled0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply
Note 1:	This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
—	—	—	—	—	CCTXI2	CCTXI1	CCTXI0
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
	—	—	_	—	MCTXI2	MCTXI1	MCTXI0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	-n = Value at POR (1' = Bit is set 0' = Bit is cleared x = Bit is unknown						

bit 15-11	Unimplemented: Read as '0'
bit 10-8	CCTXI<2:0>: Current (W Register) Context Identifier bits
	111 = Reserved
	•
	•
	•
	011 = Reserved
	010 = Alternate Working Register Set 2 is currently in use
	001 = Alternate Working Register Set 1 is currently in use
	000 = Default register set is currently in use
bit 7-3	Unimplemented: Read as '0'
bit 2-0	MCTXI<2:0>: Manual (W Register) Context Identifier bits
	111 = Reserved
	•
	•
	•
	011 = Reserved
	010 = Alternate Working Register Set 2 was most recently manually selected
	001 = Alternate Working Register Set 1 was most recently manually selected
	000 = Default register set was most recently manually selected

TABLE 4-26: ANALOG COMPARATOR REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMP1CON	0540	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP1DAC	0542	_	—	—			CMREF<11:0>						0000					
CMP2CON	0544	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP2DAC	0546	-	—	_	-						CMREF	<11:0>						0000
CMP3CON	0548	CMPON	_	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP3DAC	054A	-	_	_	_						CMREF	<11:0>						0000
CMP4CON	054C	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP4DAC	054E	—	—	_	_		CMREF<11:0>						0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: JTAG INTERFACE REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	_	_	—						JDATA	H<11:0>						xxxx
JDATAL	0FF2						JDATAL<15:0>							0000				

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

- 1 = Variable exception processing is enabled
- 0 = Fixed exception processing is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	_	—	—	NAE
bit 15							bit 8
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
—	—		DOOVR	—			APLL
bit 7							bit 0
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	x = Bit is unkr	nown	
bit 15-9	Unimplemer	nted: Read as	'0'				
bit 8	NAE: NVM A	ddress Error S	Soft Trap Status	s bit			
			trap has occur				
			trap has not o	ccurred			
bit 7-5	Unimplemer	nted: Read as	'0'				
bit 4	DOOVR: DO	Stack Overflov	v Soft Trap Sta	tus bit			
	1 = DO stack	overflow soft t	rap has occurre	ed			
	0 = DO stack	overflow soft t	rap has not oc	curred			
bit 3-1	Unimplemer	nted: Read as	'0'				
bit 0	APLL: Auxili	ary PLL Loss o	of Lock Soft Tra	ap Status bit			
	1 = APLL loc	k soft trap has	occurred				
		le a aft trans has	wet easy word				

0 = APLL lock soft trap has not occurred

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—	—	SGHT
bit 7		•				•	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-1	Unimplemen	ted: Read as	'0'				
bit 0	SGHT: Softwa	are Generated	Hard Trap Sta	tus bit			
	1 = Software	generated har	d trap has occ	urred			
	0 = Software	generated har	d trap has not	occurred			

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

bit 4-0

PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler) 11111 = Input divided by 33

•

00001 = Input divided by 3

00000 = Input divided by 2 (default)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - **2:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	_	—	—	—	_	PLLDIV8
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLDI	V<7:0>			
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-9	Unimplemen	ted: Read as ')'				
bit 8-0	PLLDIV<8:0>	-: PLL Feedbac	k Divisor bits (also denoted a	is 'M', PLL mul	tiplier)	
	111111111	= 513					
	•						
	•						
	•						
	000110000=	= 50 (default)					
	•						
	•						
	• 000000010 =	= 4					
	00000010-	– –					

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

000000001 = 3 000000000 = 2

REGISTER 8-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

					-		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x		x = Bit is unkr	x = Bit is unknown	
bit 15-6	Unimplemen	ted: Read as 'd)'				
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits				
		aximum frequen			7 MHz)		
	011110 = Ce	enter frequency	+ 1.41% (7.47	'4 MHz)			
	•						
	•						
		enter frequency	•	,			
000000 = Center frequency (7.37 MHz nominal) 111111 = Center frequency – 0.047% (7.367 MHz)							
	•	enter frequency	- 0.047% (7.3	o7 MHZ)			
	•						
	•						
		enter frequency	•	,	A 11 \		
	100000 = MII	nimum frequend	cy deviation of	-1.5% (7.259 N	/IHZ)		

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

Function	RPnR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U1RTS	000010	RPn tied to UART1 Request-to-Send
U2TX	000011	RPn tied to UART2 Transmit
U2RTS	000100	RPn tied to UART2 Request-to-Send
SDO1	000101	RPn tied to SPI1 Data Output
SCK1	000110	RPn tied to SPI1 Clock Output
SS1	000111	RPn tied to SPI1 Slave Select
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
ACMP1	011000	RPn tied to Analog Comparator 1 Output
ACMP2	011001	RPn tied to Analog Comparator 2 Output
ACMP3	011010	RPn tied to Analog Comparator 3 Output
SYNCO1	101101	RPn tied to PWM Primary Master Time Base Sync Output
SYNCO2	101110	RPn tied to PWM Secondary Master Time Base Sync Output
REFCLKO	110001	RPn tied to Reference Clock Output
ACMP4	110010	RPn tied to Analog Comparator 4 Output
PWM4H	110011	RPn tied to PWM Output Pins Associated with PWM Generator 4
PWM4L	110100	RPn tied to PWM Output Pins Associated with PWM Generator 4
PWM5H	110101	RPn tied to PWM Output Pins Associated with PWM Generator 5
PWM5L	110110	RPn tied to PWM Output Pins Associated with PWM Generator 5

TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

REGISTER 10-14: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SCK2INR7	SCK2INR6	SCK2INR5	SCK2INR4	SCK2INR3	SCK2INR2	SCK2INR1	SCK2INR0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	
bit 7							bit (
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at POR '1' = Bit is se		'1' = Bit is set		'0' = Bit is cleared x =		x = Bit is unkr	x = Bit is unknown	
	10110100 = • • 00000001 =	Input tied to Rf Input tied to Rf Input tied to Rf Input tied to Vs	2180 21					
bit 7-0	10110101 =	Input tied to RF Input tied to RF	2181 2180	12) to the Corre	esponding RPn	Pin bits		

REGISTER 10-20: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0
bit 7							bit 0
Legend:							
R = Readabl	R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8		: Peripheral Ou -2 for peripher	•	•	RP33 Output F	Pin bits	
bit 7-6	Unimplemen	ted: Read as '	0'				

bit 5-0 **RP32R<5:0>:** Peripheral Output Function is Assigned to RP32 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-21: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	
bit 15		•				•	bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	
bit 7		•				•	bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared		ared	x = Bit is unknown			
bit 15-14	Unimplemen	ted: Read as '	כ'					
bit 13-8	RP35R<5:0>:	Peripheral Ou	tput Function	is Assigned to	RP35 Output F	rin bits		

(see Table 10-2 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP34R<5:0>:** Peripheral Output Function is Assigned to RP34 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 15-24: LEBCONX: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER (x = 1 to 5)

	(X = 1	10 5)					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable b	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15		H Rising Edge T	riggor Epoble	2 bit			
bit 15	1 = Rising edg	ge of PWMxH v	vill trigger the	Leading-Edge E	•	PL	
bit 14	-		-				
	PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger the Leading-Edge Blanking counter						
	0 = Leading-Edge Blanking ignores the falling edge of PWMxH						
bit 13	PLR: PWMxL Rising Edge Trigger Enable bit						
	1 = Rising edge of PWMxL will trigger the Leading-Edge Blanking counter						
bit 12	0 = Leading-Edge Blanking ignores the rising edge of PWMxL						
	 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger the Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores the falling edge of PWMxL 						
bit 11	FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit						
	 1 = Leading-Edge Blanking is applied to the selected Fault input 0 = Leading-Edge Blanking is not applied to the selected Fault input 						
bit 10	CLLEBEN: C	urrent-Limit Lea	ading-Edge B	lanking Enable I	bit		
				ne selected curre to the selected o		ut	
bit 9-6	Unimplemen	ted: Read as '0	2				
bit 5	BCH: Blankin	g in Selected B	lanking Signa	al High Enable b	it ⁽¹⁾		
	 1 = State blanking (of current-limit and/or Fault input signals) when the selected blanking signal is high 0 = No blanking when the selected blanking signal is high 						
bit 4	BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾						
		 1 = State blanking (of current-limit and/or Fault input signals) when the selected blanking signal is low 0 = No blanking when the selected blanking signal is low 					
bit 3	BPHH: Blank	ing in PWMxH I	High Enable b	oit			
		nking (of currenting when the PV		Fault input signa is high	als) when the P	WMxH output i	s high
bit 2	BPHL: Blanki	ing in PWMxH L	ow Enable b	it			
		nking (of currenting when the PV		Fault input signa is low	als) when the P\	WMxH output i	s low

Note 1: The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.

16.3 SPI Control Registers

REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
SPIEN		SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0
bit 15				·			bit 8
R/W-0	R/C-0, HS	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R-0, HS, HC
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF
bit 7							bit (
Legend:		C = Clearabl	e bit	U = Unimpleme	ented bit read	as '0'	
R = Readable	bit	W = Writable		HS = Hardware		HC = Hardwar	e Clearable bi
-n = Value at I		'1' = Bit is se		'0' = Bit is clear		x = Bit is unkr	
bit 15	SPIEN: SPIX	Enable bit					
	1 = Enables 0 = Disables		d configures S	SCKx, SDOx, SD	Ix and \overline{SSx} as	serial port pins	
bit 14	Unimplemer	nted: Read as	'0'				
bit 13	SPISIDL: SP	Plx Stop in Idle	Mode bit				
		nues the modu s the module		hen device enter le mode	rs Idle mode		
bit 12-11	Unimplemer	nted: Read as	'0'				
bit 10-8	SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)						
	Master Mode Number of S	<u>e:</u> PIx transfers t	hat are pendir	ıg.			
	Slave Mode: Number of S	PIx transfers t	hat are unread	1.			
bit 7	SRMPT: SPI	x Shift Registe	er (SPIxSR) Er	mpty bit (valid in	Enhanced Buff	er mode)	
		ft register is er ft register is no		y to send or rece	ive the data		
bit 6	SPIROV: SP	Ix Receive Ov	erflow Flag bit	:			
	data in th	ne SPIxBUF re	gister	ed and discarded;	the user applic	ation has not rea	ad the previous
		low has occurr					
bit 5			FO Empty bit	(valid in Enhance	ed Buffer mode	e)	
	1 = RX FIFO 0 = RX FIFO						
bit 4-2			ntorrunt Modo	hite (valid in Enh	ancod Ruffor r	modo)	
DIL 4-2			-	bits (valid in Enh ouffer is full (SPIT		noue)	
	110 = Interru 101 = Interru 100 = Interru	upt when the la upt when the la	ast bit is shifte ast bit is shifte	d into SPIxSR, a d out of SPIxSR into the SPIxSR	nd as a result, and the transn	nit is complete	
	011 = Interru	upt when the Supt when the S	Plx receive b	uffer is full (SPIR uffer is 3/4 or mo	re full	is set)	

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit
Note 1:	Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the

"dsPIC33/PIC24 Family Reference Manual" for information on enabling the UARTx module for receive or transmit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

19.2 Analog-to-Digital Converter Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

19.2.1 KEY RESOURCES

- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 19-1: ADCON1L: ADC CONTROL REGISTER 1 LOW

ADON ⁽¹⁾ —					
ADON" —	ADSIDL	—	—	—	—
bit 15					bit 8

U-0	r-0	r-0	r-0	r-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADON: ADC Enable bit ⁽¹⁾
	1 = ADC module is enabled

0 = ADC module is off

bit 14 Unimplemented: Read as '0'

- bit 13 **ADSIDL:** ADC Stop in Idle Mode bit
 - 1 = Discontinues module operation when device enters Idle mode
 - 0 = Continues module operation in Idle mode
- bit 12-7 Unimplemented: Read as '0'

bit 6-3 Reserved: Maintain as '0'

bit 2-0 Unimplemented: Read as '0'

Note 1: Set the ADON bit only after the ADC module has been configured. Changing ADC Configuration bits when ADON = 1 will result in unpredictable behavior.

REGISTER 19-13: ADLVLTRGL: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER LOW

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
			LVLE	N<15:8>			
bit 15						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				EN<7:0>			
bit 7						bit 0	
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimpler	nented bit, rea	ıd as '0'		
-n = Value at POR '1' = Bit is s		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 LVLEN<15:0>: Level Trigger for Corresponding Analog Input Enable bits

1 = Input trigger is level-sensitive

0 = Input trigger is edge-sensitive

REGISTER 19-14: ADLVLTRGH: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER HIGH

<u>– – – – – – – –</u> bit 15 bit 8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit 8	—	_	—	—	—	—	—	—
	bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			LVLEN•	<21:16>		
bit 7							bit 0

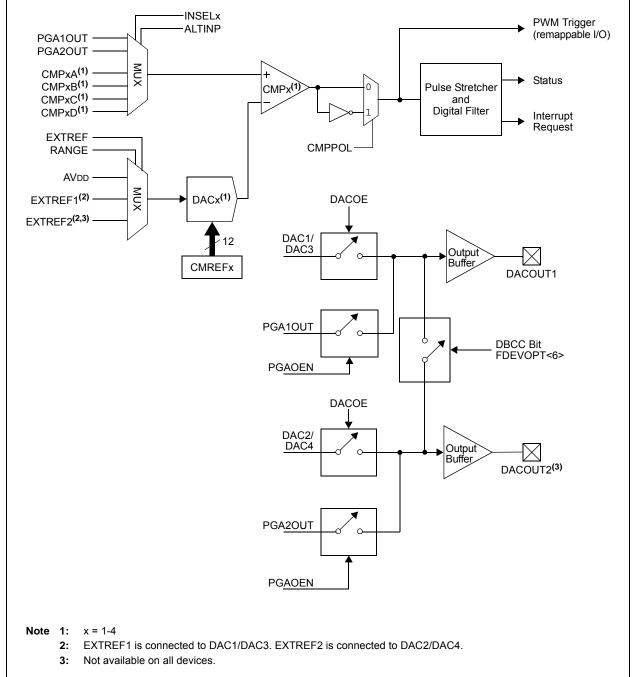
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 LVLEN<21:16>: Level Trigger for Corresponding Analog Input Enable bits

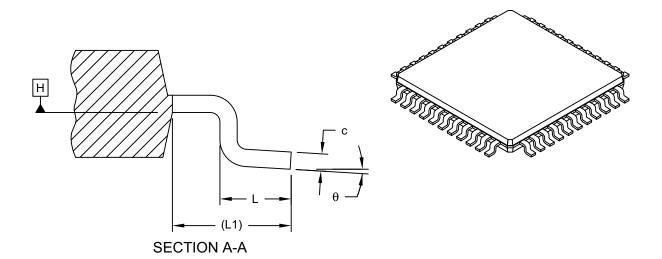
1 = Input trigger is level-sensitive

0 = Input trigger is edge-sensitive


REGISTER 19-31: ADCMPxCON: ADC DIGITAL COMPARATOR x CONTROL REGISTER (x = 0 or 1)

U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC		
—	—	—	CHNL4	CHNL3	CHNL2	CHNL1	CHNL0		
bit 15							bit 8		
R/W-0	R/W-0	R-0, HC, HS	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CMPEN	IE	STAT	BTWN	НІНІ	HILO	LOHI	LOLO		
bit 7		••••					bit 0		
Legend:		HC = Hardwar	e Clearable bit	U = Unimplerr	nented bit, read	as '0'			
R = Readable	e bit	W = Writable			are Settable/Cle				
-n = Value at	POR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared HS = Hardware Settable H						
		tada Daadaa (<u>,</u>						
bit 15-13 bit 12-8	-	ted: Read as '0 Input Channel I							
	If the compara 11111 = Res 10110 = Res 10101 = AN2 10100 = AN2 00001 = AN1 00000 = AN0	erved 11 10	ed an event for	a channel, thi	s channel numb	per is written to	these bits.		
bit 7		nparator Enable	e bit						
	 1 = Comparator is enabled 0 = Comparator is disabled and the STAT status bit is cleared 								
bit 6	IE: Comparat	or Common AE	C Interrupt En	able bit					
		ADC interrupt v ADC interrupt v	0			comparison ev	vent		
bit 5	STAT: Compa	arator Event Sta	itus bit						
	This bit is cleared by hardware when the channel number is read from the CHNL<4:0> bits. 1 = A comparison event has been detected since the last read of the CHNL<4:0> bits 0 = A comparison event has not been detected since the last read of the CHNL<4:0> bits								
bit 4	BTWN: Betwe	een Low/High (Comparator Ev	ent bit					
	1 = Generates a comparator event when ADCMPxLO \leq ADCBUFx $<$ ADCMPxHI 0 = Does not generate a digital comparator event when ADCMPxLO \leq ADCBUFx $<$ ADCMPxHI								
bit 3	HIHI: High/High Comparator Event bit								
		s a digital comp generate a digi				CMPxHI			
bit 2	HILO: High/Low Comparator Event bit								
		s a digital comp generate a digi							
bit 1	 0 = Does not generate a digital comparator event when ADCBUFx < ADCMPxHI LOHI: Low/High Comparator Event bit 1 = Generates a digital comparator event when ADCBUFx ≥ ADCMPxLO 0 = Does not generate a digital comparator event when ADCBUFx ≥ ADCMPxLO 								
bit 0	 0 = Does not generate a digital comparator event when ADCBUFx ≥ ADCMPxLO LOLO: Low/Low Comparator Event bit 1 = Generates a digital comparator event when ADCBUFx < ADCMPxLO 0 = Does not generate a digital comparator event when ADCBUFx < ADCMPxLO 								

20.2 Module Description


Figure 20-1 shows a functional block diagram of one analog comparator from the high-speed analog comparator module. The analog comparator provides high-speed operation with a typical delay of 15 ns. The negative input of the comparator is always connected to the DACx circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin. The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

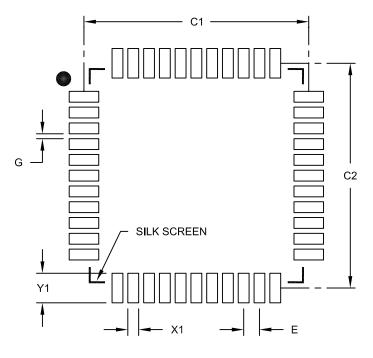
	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Leads	per of Leads N 44				
Lead Pitch	е	0.80 BSC			
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Overall Width	E	12.00 BSC			
Molded Package Width	ed Package Width E1 10.00 BSC				
Overall Length	D	12.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	θ	0°	3.5°	7°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

		-		
	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B