

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs502t-i-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

3.6.1 KEY RESOURCES

- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

TABLE 4	4-4:	TIME	R1 THR	OUGH .	TIMER5	REGIST	FER MA	Р										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								xxxx
PR1	0102								Period R	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_		TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								xxxx
TMR3HLD	0108						Timer	3 Holding F	Register (for	32-bit time	r operations	only)						xxxx
TMR3	010A								Timer3	Register								xxxx
PR2	010C		Period Register 2 FFF						FFFF									
PR3	010E								Period R	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	—	0000
TMR4	0114								Timer4	Register								xxxx
TMR5HLD	0116						Tir	ner5 Holdin	g Register ((for 32-bit o	perations or	ıly)						xxxx
TMR5	0118								Timer5	Register								xxxx
PR4	011A								Period R	Register 4								FFFF
PR5	011C								Period R	Register 5								FFFF
T4CON	011E	TON	_	TSIDL	—	_	—	_	_	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_		TGATE	TCKPS1	TCKPS0		_	TCS	_	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXGS50X FAMILY

TABLE 4-11: PWM GENERATOR 4 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON4	0C80	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	_		MTBS	CAM	XPRES	IUE	0000
IOCON4	0C82	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON4	0C84	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC4	0C86		PWM4 Generator Duty Cycle Register (PDC4<15:0>) 0000						0000									
PHASE4	0C88		PWM4 Primary Phase-Shift or Independent Time Base Period Register (PHASE4<15:0>) 0000						0000									
DTR4	0C8A	-	_						PWM4 D	ead-Time R	legister (DTI	R4<13:0>)						0000
ALTDTR4	0C8C	-	_					Р	WM4 Alternate	e Dead-Time	e Register (/	ALTDTR4<13:	0>)					0000
SDC4	0C8E							PWM4 Sec	ondary Duty C	ycle Registe	er (SDC4<18	5:0>)						0000
SPHASE4	0C90							PWM4 Second	dary Phase-Sh	ift Register	(SPHASE4	<15:0>)						0000
TRIG4	0C92					PWM4 Pri	mary Trigger (Compare Value	e Register (TR	GCMP<12:0	D>)				_	_	_	0000
TRGCON4	0C94	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	-	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG4	0C96					PWM4 Seco	ndary Trigger	Compare Valu	e Register (S1	rrgcmp<1	2:0>)				_	_	_	0000
PWMCAP4	0C98					PWM4 P	rimary Time E	Base Capture F	Register (PWN	1CAP<12:0>	·)				_	_	_	0000
LEBCON4	0C9A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY4	0C9C	_	_	_	_			PWM4 Lea	ding-Edge Bla	nking Delay	Register (L	EB<8:0>)			_	—	_	0000
AUXCON4	0C9E	HRPDIS	HRDDIS	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: PWM GENERATOR 5 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON5	0CA0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	_	_	MTBS	CAM	XPRES	IUE	0000
IOCON5	0CA2	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON5	0CA4	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC5	0CA6							PWM5 Ger	nerator Duty C	ycle Registe	er (PDC5<1	5:0>)						0000
PHASE5	0CA8					F	WM5 Primary	Phase-Shift o	or Independent	t Time Base	Period Reg	ister (PHASE	5<15:0>)					0000
DTR5	0CAA	_	—						PWM5 D	ead-Time F	Register (DT	R5<13:0>)						0000
ALTDTR5	0CAC		—					Р	WM5 Alternate	e Dead-Tim	e Register (ALTDTR5<13	:0>)					0000
SDC5	0CAE							PWM5 Sec	ondary Duty C	ycle Registe	er (SDC5<1	5:0>)						0000
SPHASE5	0CB0							PWM5 Secon	dary Phase-Sł	nift Register	(SPHASE5	<15:0>)						0000
TRIG5	0CB2					PWM5 Pri	mary Trigger (Compare Value	e Register (TR	GCMP<12:	0>)				—	_	_	0000
TRGCON5	0CB4	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	-	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG5	0CB6					PWM5 Seco	ndary Trigger	Compare Valu	ue Register (S	rrgcmp<1	2:0>)				_	_	_	0000
PWMCAP5	0CB8					PWM5 F	rimary Time B	Base Capture I	Register (PWN	1CAP<12:0>	>)				_	—	_	0000
LEBCON5	0CBA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—	_	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY5	0CBC	—	—	_	_			PWM5 Lea	ding-Edge Bla	nking Delay	Register (L	.EB<8:0>)			—	—	_	0000
AUXCON5	0CBE	HRPDIS	HRDDIS	_	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0		_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15			·				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U1RXR7	U1RXR6	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0
<u> </u>							
Legend:							
R = Readable bit		W = Writable		U = Unimplen			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 7-0	10110100 = • • 00000001 = 00000000 =	Input tied to RF Input tied to RF Input tied to RF Input tied to Vs : Assign UART	2180 21 35	1RX) to the Co	rresponding RF	n Pin bits	

REGISTER 10-10: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

R/W-0							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT8R7	FLT8R6	FLT8R5	FLT8R4	FLT8R3	FLT8R2	FLT8R1	FLT8R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT7R7	FLT7R6	FLT7R5	FLT7R4	FLT7R3	FLT7R2	FLT7R1	FLT7R0
bit 7							bit C
Legend:							
R = Readable bit		W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8		Assign PWM	· · ·	to the Corresp	onding RPn Pi	n bits	

REGISTER 10-19: RPINR43: PERIPHERAL PIN SELECT INPUT REGISTER 43

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output is set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output is set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

-	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	_	—	_	—	_
bit 15	÷						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	_	—		—	FRMDLY	SPIBEN
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable b	oit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown
bit 15	FRMEN: Fran	med SPIx Suppo	ort bit				
			•	pin is used as	the frame syn	c pulse input/out	tput)
	0 = Framed S	SPIx support is d	licablod				
		••					
bit 14	SPIFSD: Fran	me Sync Pulse [Direction Co	ntrol bit			
bit 14	SPIFSD: Fran 1 = Frame sy	••	Direction Co slave)	ntrol bit			
bit 14 bit 13	SPIFSD: Fran 1 = Frame sy 0 = Frame sy	me Sync Pulse I nc pulse input (s	Direction Co slave) (master)	ntrol bit			
	SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fra 1 = Frame sy	me Sync Pulse I nc pulse input (s nc pulse output	Direction Co slave) (master) Polarity bit e-high	ntrol bit			
	SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fra 1 = Frame sy 0 = Frame sy	me Sync Pulse I nc pulse input (s nc pulse output ame Sync Pulse nc pulse is activ	Direction Col slave) (master) Polarity bit e-high e-low	ntrol bit			
bit 13	SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fran 1 = Frame sy 0 = Frame sy Unimplemen	me Sync Pulse I nc pulse input (s nc pulse output ame Sync Pulse nc pulse is activ nc pulse is activ	Direction Col slave) (master) Polarity bit e-high e-low				
bit 13 bit 12-2	SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fra 1 = Frame sy 0 = Frame sy Unimplemen FRMDLY: Fra 1 = Frame sy	me Sync Pulse I nc pulse input (s nc pulse output ame Sync Pulse nc pulse is activ nc pulse is activ ted: Read as '0	Direction Col slave) (master) Polarity bit e-high e-low , Edge Select les with the f	t bit îrst bit clock			
bit 13 bit 12-2 bit 1	SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fra 1 = Frame sy 0 = Frame sy Unimplement FRMDLY: Fra 1 = Frame sy 0 = Frame sy	me Sync Pulse I nc pulse input (s nc pulse output ame Sync Pulse nc pulse is activ nc pulse is activ ted: Read as '0 ame Sync Pulse nc pulse coincid	Direction Col slave) (master) Polarity bit e-high e-low , Edge Select les with the f es the first b	t bit îrst bit clock			
bit 13 bit 12-2	SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fra 1 = Frame sy 0 = Frame sy Unimplement FRMDLY: Fra 1 = Frame sy 0 = Frame sy SPIBEN: Ent	me Sync Pulse I nc pulse input (s nc pulse output ame Sync Pulse nc pulse is activ nc pulse is activ ted: Read as '0 ame Sync Pulse nc pulse coincid nc pulse preced	Direction Con slave) (master) Polarity bit e-high e-low , Edge Select les with the f es the first b nable bit	t bit îrst bit clock			

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

NOTES:

REGISTER 17-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave)
	Used in conjunction with the SCLREL bit.
	 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
54 C	C C
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge
	0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit
	(when operating as I ² C master, applicable during master receive)
	1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; hardware is clear at the end of the master Acknowledge sequence
	0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	1 = Enables Receive mode for I ² C; hardware is clear at the end of the eighth bit of the master receive data byte
	0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiates Stop condition on SDAx and SCLx pins; hardware is clear at the end of the master Stop sequence
	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Repeated Start sequence
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Start sequence

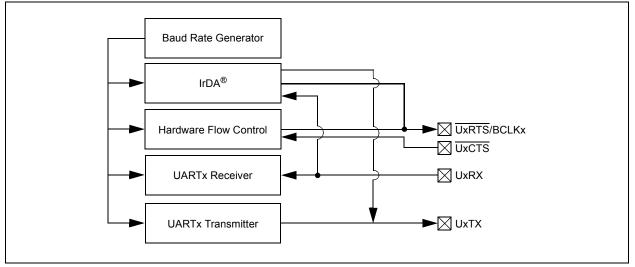
0 = Start condition is not in progress

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXGS50X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.


The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps in 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps in 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit Mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 18-1. The UARTx module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UARTX SIMPLIFIED BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLKSEL1	CLKSEL0	CLKDIV5	CLKDIV4	CLKDIV3	CLKDIV2	CLKDIV1	CLKDIV0
bit 15							bit
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
SHREN			_	C3EN	C2EN	C1EN	COEN
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	11 = APLL 10 = FRC	D>: ADC Module system Clock x 3 ystem Clock)		Selection bits			
	module clock TCORESRC cld register or the 111111 = 64	orms a TCORESR source selecte ock to get a col e SHRADCS<6 Source Clock P Source Clock P Source Clock P Source Clock P Source Clock P Source Clock P	d by the CLKS re-specific TAD :0> bits in the / Periods eriods eriods eriods	EL<2:0> bits. T	hen, each AD ng the ADCS<	C core individua	ally divides th
bit 7	1 = Shared A	red ADC Core I DC core is ena DC core is disa	bled				
bit 6-4	Unimplemen	ted: Read as ')'				
bit 3	1 = Dedicated	ated ADC Core d ADC Core 3 is d ADC Core 3 is	s enabled				
bit 2	1 = Dedicated	ated ADC Core d ADC Core 2 is d ADC Core 2 is	s enabled				
bit 1	1 = Dedicated	ated ADC Core d ADC Core 1 is d ADC Core 1 is	s enabled				
bit 0	COEN: Dedic	ated ADC Core	0 Enable bits				

REGISTER 19-27: ADTRIGXH: ADC CHANNEL TRIGGER x SELECTION REGISTER HIGH (x = 0 to 5)

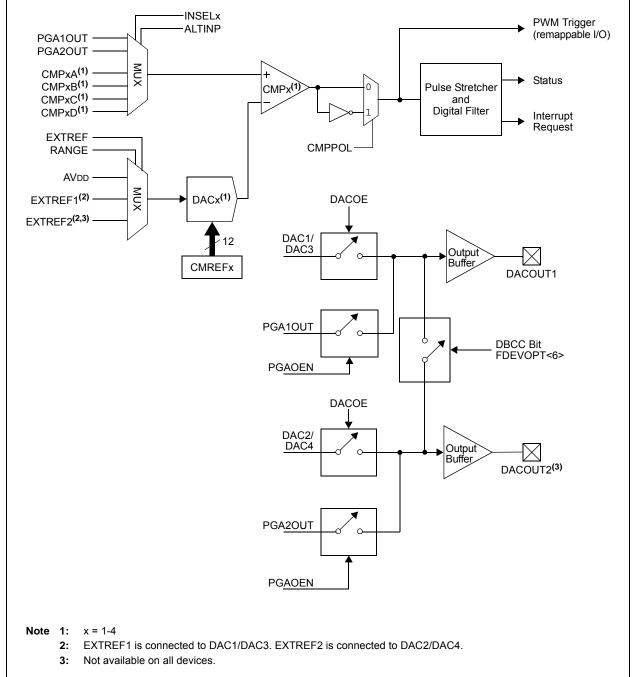
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_		TF	RGSRC(4x+3)<4:	0>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_		TR	GSRC(4x+2)<4	:0>	
bit 7							bit 0

Legend:

•				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 TRGSRC(4x+3)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits


TRGSRC(4x+3)<4:0>: Ingger Source Selection T
11111 = ADTRG31
11110 = Reserved
11101 = Reserved
11100 = PWM Generator 5 current-limit trigger
11011 = PWM Generator 4 current-limit trigger
11010 = PWM Generator 3 current-limit trigger
11001 = PWM Generator 2 current-limit trigger
11000 = PWM Generator 1 current-limit trigger
10111 = Output Compare 2 trigger
10110 = Output Compare 1 trigger
10101 = Reserved
10100 = Reserved
10011 = PWM Generator 5 secondary trigger
10010 = PWM Generator 4 secondary trigger
10001 = PWM Generator 3 secondary trigger
10000 = PWM Generator 2 secondary trigger
01111 = PWM Generator 1 secondary trigger
01110 = PWM secondary Special Event Trigger
01101 = Timer2 period match
01100 = Timer1 period match
01011 = Reserved
01010 = Reserved
01001 = PWM Generator 5 primary trigger
01000 = PWM Generator 4 primary trigger
00111 = PWM Generator 3 primary trigger
00110 = PWM Generator 2 primary trigger
00101 = PWM Generator 1 primary trigger
00100 = PWM Special Event Trigger
00011 = Reserved
00010 = Level software trigger
00001 = Common software trigger
00000 = No trigger is enabled
Unimplemented: Read as '0'

bit 7-5

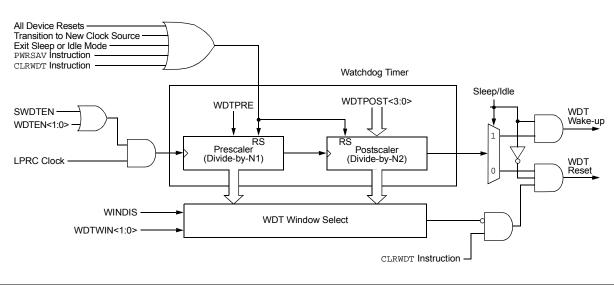
20.2 Module Description

Figure 20-1 shows a functional block diagram of one analog comparator from the high-speed analog comparator module. The analog comparator provides high-speed operation with a typical delay of 15 ns. The negative input of the comparator is always connected to the DACx circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin. The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

23.6 Watchdog Timer (WDT)

For dsPIC33EPXXGS50X family devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

23.6.1 PRESCALER/POSTSCALER


The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Time-out Period (TWDT), as shown in Parameter SY12 in Table 26-23.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods, ranges from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 23-2: WDT BLOCK DIAGRAM

23.6.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3:2>) needs to be cleared in software after the device wakes up.

23.6.3 ENABLING WDT

The WDT is enabled or disabled by the WDTEN<1:0> Configuration bits in the FWDT Configuration register. When the WDTEN<1:0> Configuration bits have been programmed to '0b11', the WDT is always enabled.

The WDT can be optionally controlled in software when the WDTEN<1:0> Configuration bits have been programmed to '0b10'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disables the WDT during non-critical segments for maximum power savings.

The WDT Time-out flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

23.6.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode, enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<7>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window select bits (WDTWIN<1:0>).

Base Instr # Assembly Mnemonic		Assembly Syntax		Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
48	MOV	MOV	f,Wn	Move f to Wn	1 1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
19	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
50	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None
51	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAE SA,SB,SAE
52	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
53	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAE SA,SB,SAE
54	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33EPXXGS50X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXGS50X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 3.0V^{(3)}$	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(3)}$	-0.3V to +3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sunk/sourced by any 4x I/O pin	15 mA
Maximum current sunk/sourced by any 8x I/O pin	
Maximum current sunk by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No. Symbol Characteristic		Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
	lı∟	Input Leakage Current ^(2,3)						
DI50		I/O Pins 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance	
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ pin \text{ at high-impedance}, \\ -40^\circ C \leq TA \leq +85^\circ C \end{array}$	
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$	
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance, -40°C \le TA ≤ +125°C	
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$	
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	-5	—	+5	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$	

TABLE 26-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

5: VIL Source < (Vss – 0.3). Characterized but not tested.

6: VIH Source > (VDD + 0.3) for pins that are not 5V tolerant only.

7: Digital 5V tolerant pins do not have internal high-side diodes to VDD and cannot tolerate any "positive" input injection current.

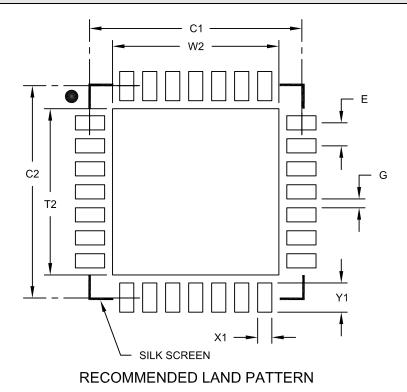
8: Injection Currents > | 0 | can affect the ADC results by approximately 4-6 counts.

9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

AC/DC CHARACTERISTICS ⁽¹⁾				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic		Min.	Min. Typ.		Units	Comments		
PA01	PA01 VIN Input Voltage Range		AVss - 0.3	_	AVDD + 0.3	V				
PA02	Vсм	Common-Mode Input Voltage Range		AVss	—	AVDD - 1.6	V			
PA03	Vos	Input Offset Voltage	;	-10	_	10	mV			
PA04	Vos	Input Offset Voltage with Temperature	e Drift	—	±15	—	µV/∘C			
PA05	Rin+	Input Impedance of Positive Input		_	>1M 7 pF	—	Ω pF			
PA06	Rin-	Input Impedance of Negative Input		—	10K 7 pF	—	Ω pF			
PA07	Gerr	Gain Error		-2	_	2	%	Gain = 4x, 8x		
				-3	—	3	%	Gain = 16x		
				-4		4	%	Gain = 32x, 64x		
PA08	Lerr	Gain Nonlinearity E	—	—	0.5	%	% of full scale, Gain = 16x			
PA09	IDD	Current Consumption		_	2.0	—	mA	Module is enabled with a 2-volt P-P output voltage swing		
PA10a	BW	Small Signal	G = 4x	_	10	—	MHz			
PA10b		Bandwidth (-3 dB)	G = 8x	_	5	—	MHz			
PA10c			G = 16x	—	2.5	—	MHz			
PA10d			G = 32x	_	1.25	—	MHz			
PA10e			G = 64x		0.625	_	MHz			
PA11	OST	Output Settling Time to 1% of Final Value		_	0.4	—	μs	Gain = 16x, 100 mV input step change		
PA12	SR	Output Slew Rate		_	40	—	V/µs	Gain = 16x		
PA13	TGSEL	Gain Selection Time	e		1	_	μs			
PA14	TON	Module Turn On/Set	ting Time	_	_	10	μs			

TABLE 26-48: PGAx MODULE SPECIFICATIONS

Note 1: The PGAx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.


TABLE 26-49: CONSTANT-CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS ⁽¹⁾				$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$			
Param No.	Symbol	ool Characteristic		Тур.	Max.	Units	Conditions
CC01	Idd	Current Consumption	—	30	—	μA	
CC02	IREG	Regulation of Current with Voltage On	—	±3	—	%	
CC03	Ιουτ	Current Output at Terminal	—	10	—	μA	

Note 1: The constant-current source module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Contact Pitch E		0.65 BSC			
Optional Center Pad Width	W2			4.70	
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support