

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs502t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

28-Pin SOIC

MCLR	1	\bigcirc	28	AVdd
RA0	2		27	AVss
RA1	3		26	RA3
RA2	4	٩	25	RA4
RB0	5	sPI	24	RB14
RB9	6	ទួ	23	RB13
RB10	7	Ř	22	RB12
Vss	8	X	21	RB11
RB1	9	GS	20	VCAP
RB2	10	502	19	Vss
RB3	11		18	RB7
RB4	12		17	RB6
Vdd	13		16	RB5
RB8	14		15	RB15

Pin	Pin Function	Pin	Pin Function
1	MCLR	15	PGEC3/SCL2/ RP47 /RB15
2	AN0/PGA1P1/CMP1A/RA0	16	TDO/AN19/PGA2N2/ RP37 /RB5
3	AN1/PGA1P2/PGA2P1/CMP1B/RA1	17	PGED1/TDI/AN20/SCL1/RP38/RB6
4	AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2	18	PGEC1/AN21/SDA1/RP39/RB7
5	AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0	19	Vss
6	AN4/CMP2C/CMP3A/ISRC4/RP41/RB9	20	VCAP
7	AN5/CMP2D/CMP3B/ISRC3/RP42/RB10	21	TMS/PWM3H/ RP43 /RB11
8	Vss	22	TCK/PWM3L/RP44/RB12
9	OSC1/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1	23	PWM2H/ RP45 /RB13
10	OSC2/CLKO/AN7/PGA1N2/CMP3D/CMP4B/RP34/RB2	24	PWM2L/ RP46 /RB14
11	PGED2/AN18/DACOUT1/INT0/ RP35 /RB3	25	PWM1H/RA4
12	PGEC2/ADTRG31/EXTREF1/RP36/RB4	26	PWM1L/RA3
13	VDD	27	AVss
14	PGED3/SDA2/FLT31/RP40/RB8	28	AVDD

Legend: Shaded pins are up to 5 VDC tolerant. RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

TABLE 4-7: PWM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0C02													_	PCLKDIV<2:0>			
PTPER	0C04							PWMx Pri	mary Master 1	lime Base Pe	eriod Register	(PTPER<15:0	>)					FFF8
SEVTCMP	0C06					PW	/Mx Spec	ial Event Cor	npare Registe	er (SEVTCMF	P12:0>)				_	_	_	0000
MDC	0C0A							Р	WMx Master	Duty Cycle R	egister (MDC·	<15:0>)						0000
STCON	0C0E	_	-	_	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
STCON2	0C10	_	-	_	_	-	_	_	_	_	_	_	_	_	F	PCLKDIV<2:0)>	0000
STPER	0C12							PWMx Seco	ondary Master	Time Base F	Period Registe	er (STPER<15	:0>)					FFF8
SSEVTCMP	0C14				P	WMx Se	condary S	Special Event	Compare Re	gister (SSEV	TCMP<12:0>))			_	_	_	0000
CHOP	0C1A	CHPCLKEN	_	_	_	-	_	CHOPCLK6	CHOPCLK5	CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	_	_	_	0000
PWMKEY	0C1E							PWMx P	rotection Loc	k/Unlock Key	Register (PW	/MKEY<15:0>)					0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: PWM GENERATOR 1 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	_	_	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON1	0C24	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC1	0C26							PWM1 Ger	nerator Duty C	cle Registe	er (PDC1<15	5:0>)						0000
PHASE1	0C28					F	PWM1 Primary	Phase-Shift o	r Independent	Time Base	Period Reg	ister (PHASE	1<15:0>)					0000
DTR1	0C2A	—	_						PWM1 D	ead-Time R	egister (DTF	R1<13:0>)						0000
ALTDTR1	0C2C	—	—					P	WM1 Alternate	e Dead-Tim	e Register (A	ALTDTR1<13	:0>)					0000
SDC1	0C2E							PWM1 Sec	ondary Duty C	ycle Registe	er (SDC1<1	5:0>)						0000
SPHASE1	0C30							PWM1 Second	dary Phase-Sh	ift Register	(SPHASE1	<15:0>)						0000
TRIG1	0C32					PWM1 Pr	imary Trigger	Compare Value	e Register (TR	GCMP<12:	0>)				—	—	_	0000
TRGCON1	0C34	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	-	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG1	0C36					PWM1 Seco	ondary Trigger	Compare Valu	ie Register (S	FRGCMP<1	2:0>)				_	_	—	0000
PWMCAP1	0C38					PWM1 F	Primary Time E	Base Capture I	Register (PWN	1CAP<12:0	>)				_	_	—	0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	—	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	0C3C	_	PWM1 Leading-Edge Blanking Delay Register (LEB<8:0>) 000								0000							
AUXCON1	0C3E	HRPDIS	HRDDIS	—	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	PWMMD	-	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	-	ADCMD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	_	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	—	_	_	0000
PMD6	076A	_	_	_	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
PMD7	076C	_	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_	PGA1MD	_	0000
PMD8	076E	_	_	_	_	_	PGA2MD	ABGMD	_	_	_	_	_	_	_	CCSMD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: CONSTANT-CURRENT SOURCE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ISRCCON	0500	ISRCEN	—	_	_		OUTSEL2	OUTSEL1	OUTSEL0		_	ISRCCAL5	ISRCCAL4	ISRCCAL3	ISRCCAL2	ISRCCAL1	ISRCCAL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: PROGRAMMABLE GAIN AMPLIFIER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PGA1CON	0504	PGAEN	PGAOEN	SELPI2	SELPI1	SELPI0	SELNI2	SELNI1	SELNI0	—	—	—	—		GAIN2	GAIN1	GAIN0	0000
PGA1CAL	0506	_	—	_	_	_	_	_	_	_	_			PGACA	L<5:0>			0000
PGA2CON	0508	PGAEN	PGAOEN	SELPI2	SELPI1	SELPI0	SELNI2	SELNI1	SELNI0	_	_	_	_	_	GAIN2	GAIN1	GAIN0	0000
PGA2CAL	050A	_	_	_	_	_	_	_	_	_	_			PGACA	L<5:0>			0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

When a PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses the PSV page
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSRPAG register is incremented and the EA<15> bit is set to keep the base address within the PSV window. When an underflow is detected, the DSRPAG register is decremented and the EA<15> bit is set to keep the base

address within the PSV window. This creates a linear PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0 and PSV spaces. Table 4-37 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSRPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- Bit-Reversed Addressing

TABLE 4-37:	OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0 AND
	PSV SPACE BOUNDARIES ^(2,3,4)

0/11			Before			After	
0/0, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read	[++\Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page
O, Read	[Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1
U, Read	5	DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1
U, Read		DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last lsw page

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x7FFF).

2: An EDS access, with DSRPAG = 0x000, will generate an address error trap.

3: Only reads from PS are supported using DSRPAG.

4: Pseudolinear Addressing is not supported for large offsets.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device has been in Idle mode0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 10-24: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
bit 7						•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	RP41R<5:0> (see Table 10	Peripheral Ou -2 for periphera	Itput Function al function nur	is Assigned to nbers)	RP41 Output F	Pin bits	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-25: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-14	Unimplemen	ted: Read as '	n'				

bit 13-8 **RP43R<5:0>:** Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP42R<5:0>:** Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 12-2: 1	VCON: (TIMER3 A	ND TIMER5)	CONTROL	REGISTER
		-	- /		

R/W-0) U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹) _	TSIDL ⁽²⁾	—	—	—	—	
bit 15						· · ·	bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—	—	TCS ^(1,3)	—
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkne	own
bit 15	TON: Timery	On bit ⁽¹⁾					
	1 = Starts 16-	bit Timery					
	0 = Stops 16-	bit Timery					
bit 14	Unimplemen	ted: Read as ')' ())				
bit 13	TSIDL: Timer	ry Stop in Idle M	lode bit ⁽²⁾				
	1 = Discontin 0 = Continues	ues module op s module opera	eration when a tion in Idle mo	device enters ode	Idle mode		
bit 12-7	Unimplemen	ted: Read as '	כ'				
bit 6	TGATE: Time	ery Gated Time	Accumulation	Enable bit ⁽¹⁾			
	When TCS =	<u>1:</u>					
	I his bit is ign	ored.					
	$\frac{\text{vvnen } 1\text{ CS} =}{1 = \text{Gated tim}}$	<u>0:</u> he accumulation	n is enabled				
	0 = Gated tim	ne accumulation	is disabled				
bit 5-4	TCKPS<1:0>	Timery Input	Clock Prescal	e Select bits ⁽¹)		
	11 = 1:256						
	10 = 1:64						
	01 = 1:8 00 = 1:1						
hit 3-2	Unimplemen	ted: Read as '	ר י				
bit 0 2	TCS: Timery	Clock Source S	Select hit(1,3)				
bit i	1 = External o	clock is from pir	TVCK (on th	e risina edae)			
	0 = Internal c	lock (FP)		e nonig eage)			
bit 0	Unimplemen	ted: Read as '	כי				
Note 1:	When 32-bit opera	tion is enabled	(TxCON<3> =	1), these bits	have no effect	on Timery opera	tion; all timer
0.	tunctions are set th	nrough TXCON	ablad (T22 – 1	1) in the Times			

2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all devices. See the "Pin Diagrams" section for the available pins.

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV				OC32
bit 15						•	bit 8
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIC	G TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0
Legend:		HS = Hardwa	re Settable bit				
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	FLTMD: Fault	t Mode Select b	oit				
	1 = Fault mo	de is maintain	ed until the Fa	ault source is r	emoved; the c	orresponding (OCFLTA bit is
	cleared in	n software and	a new PWMx p	period starts	oved and a new	W DW/My perio	d etarte
bit 1/	EL TOLIT: Fau	lt Out bit					
511 14	1 = PWMx or	itout is driven h	high on a Fault				
	0 = PWMx or	utput is driven l	ow on a Fault				
bit 13	FLTTRIEN: F	ault Output Sta	te Select bit				
	1 = OCx pin	is tri-stated on	a Fault condition	on			
	0 = OCx pin	I/O state is defi	ned by the FLT	OUT bit on a F	ault condition		
bit 12	OCINV: Outp	ut Compare x I	nvert bit				
	1 = OCx output	out is inverted	od				
bit 11_0		tod: Pead as '	eu o'				
bit 9			u Iodulos Enablo	hit (32 hit opor	ation)		
DILO	1 = Cascade	module operat	tion is enabled		ation)		
	0 = Cascade	module operat	tion is disabled				
bit 7	OCTRIG: Out	tput Compare x	Trigger/Sync	Select bit			
	1 = Triggers	OCx from the s	ource designation	ted by the SYN	CSELx bits		
	0 = Synchror	nizes OCx with	the source des	signated by the	SYNCSELx bit	S	
bit 6	TRIGSTAT: ⊺	imer Trigger St	atus bit				
	1 = Timer so 0 = Timer so	urce has been urce has not be	triggered and is een triggered a	s running nd is being held	d clear		
bit 5	OCTRIS: Out	put Compare x	Output Pin Dir	rection Select b	it		
	1 = OCx is tr	i-stated					
	0 = OCx mod	dule drives the	OCx pin				
Note 1:	Do not use the O	Cx module as i	ts own synchro	nization or trig	ger source.		

When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

NOTES:

REGISTER 15-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 3-0 SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits⁽¹⁾ 1111 = 1:16 Postscaler generates a Special Event Trigger on every sixteenth compare match event . . 0001 = 1:2 Postscaler generates a Special Event Trigger on every second compare match event 0000 = 1:1 Postscaler generates a Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 15-2: PTCON2: PWMx CLOCK DIVIDER SELECT REGISTER 2

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide-by-64, maximum PWM timing resolution
 - 101 = Divide-by-32, maximum PWM timing resolution
 - 100 = Divide-by-16, maximum PWM timing resolution
 - 011 = Divide-by-8, maximum PWM timing resolution
 - 010 = Divide-by-4, maximum PWM timing resolution
 - 001 = Divide-by-2, maximum PWM timing resolution
 - 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 15-13: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER (x = 1 to 5)^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	Cx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit	t	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-0 **PDCx<15:0>:** PWMx Generator Duty Cycle Value bits

Note 1: In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In the Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL.

2: The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

3: As the duty cycle gets closer to 0% or 100% of the PWMx period (0 to 40 ns, depending on the mode of operation), PWMx duty cycle resolution will increase from 1 to 3 LSBs.

REGISTER 15-14: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER (x = 1 to 5)^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDCx	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC>	<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 SDCx<15:0>: PWMx Secondary Duty Cycle for PWMxL Output Pin bits

Note 1: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.

- **2:** The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period 0x0008.
- **3:** As the duty cycle gets closer to 0% or 100% of the PWMx period (0 to 40 ns, depending on the mode of operation), PWMx duty cycle resolution will increase from 1 to 3 LSBs.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70005185) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripherals or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

The dsPIC33EPXXGS50X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical.

Note:	In this section, the SPI modules are
	referred to together as SPIx, or separately
	as SPI1 and SPI2. Special Function
	Registers follow a similar notation. For
	example, SPIxCON refers to the control
	register for the SPI1 and SPI2 modules.

The SPIx module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration.

The SPIx serial interface consists of four pins, as follows:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-Pin mode, SSx is not used. In 2-Pin mode, neither SDOx nor SSx is used.

Figure 16-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

FIGURE 16-1: SPIX MODULE BLOCK DIAGRAM

17.2 I²C Control Registers

REGISTER 17-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	I2CEN: I2Cx Enable bit
	1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module; all I ² C pins are controlled by port functions
bit 14	Unimplemented: Read as '0'
bit 13	I2CSIDL: I2Cx Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C slave)
	 1 = Releases SCLx clock 0 = Holds SCLx clock low (clock stretch)
	If STREN = 1: Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware is clear at the beginning of every slave data byte transmission. Hardware is clear at the end of every slave address byte reception. Hardware is clear at the end of every slave data byte reception.
	If STREN = 0: Bit is R/S (i.e., software can only write '1' to release clock). Hardware is clear at the beginning of every slave data byte transmission. Hardware is clear at the end of every slave address byte reception.
bit 11	STRICT: Strict I2Cx Reserved Address Enable bit
	 1 = <u>Strict Reserved Addressing is Enabled:</u> In Slave mode, the device will NACK any reserved address. In Master mode, the device is allowed to generate addresses within the reserved address space.
	 0 = <u>Reserved Addressing is Acknowledged:</u> In Slave mode, the device will ACK any reserved address. In Master mode, the device should not address a slave device with a reserved address.
bit 10	A10M: 10-Bit Slave Address bit
	 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Disable Slew Rate Control bit
	1 = Slew rate control is disabled0 = Slew rate control is enabled
bit 8	SMEN: SMBus Input Levels bit
	 1 = Enables I/O pin thresholds compliant with SMBus specification 0 = Disables SMBus input thresholds
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave)
	 1 = Enables interrupt when a general call address is received in I2CxRSR (module is enabled for reception) 0 = General call address is disabled

REGISTER 19-10: ADCON5H: ADC CONTROL REGISTER 5 HIGH

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	—	—	WARMTIME3	WARMTIME2	WARMTIME1	WARMTIME0				
bit 15							bit 8				
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
SHRCIE	—	—	—	C3CIE	C2CIE	C1CIE	COCIE				
bit 7											
Legend:											
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read		as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
DIT 15-12	Unimplemen	ted: Read as									
DIT 11-8		<3:0>: ADC De		x Power-up Del	ay Dits	an Cleak Daria					
	for all ADC co	res	wer-up delay		i the Core Sour	Ce Clock Perio	us (ICORESRC)				
	1111 = 3276	8 Source Cloc	<pre>< Periods</pre>								
	1110 = 1638	4 Source Clock	<pre>< Periods</pre>								
	1101 = 8192	Source Clock	Periods								
	1100 = 4096	1100 = 4096 Source Clock Periods									
	1011 = 2048	Source Clock	Periods								
	1010 = 1024 1001 = 512 S	Source Clock F	Periods								
	1000 = 256 \$	Source Clock F	Periods								
	0111 = 128 \$	Source Clock F	eriods								
	0110 = 64 Sc	ource Clock Pe	eriods								
	0101 = 32 So	ource Clock Pe	eriods								
	0100 = 16 Source Clock Periods 00xx = 16 Source Clock Periods										
bit 7	SHRCIE: Shared ADC Core Ready Common Interrupt Enable bit										
	1 = Common	Common interrupt will be generated when ADC core is powered and ready for operation									
	0 = Common	= Common interrupt is disabled for an ADC core ready event									
bit 6-4	Unimplemen	ted: Read as	ʻ0'								
bit 3	C3CIE: Dedicated ADC Core 3 Ready Common Interrupt Enable bit										
	1 = Common interrupt will be generated when ADC Core 3 is powered and ready for operation										
0 = Common interrupt is disabled for an ADC Core 3 ready event											
DIL 2	1 = Common interrupt will be depended when ADC Core 2 is powered and ready for operation										
	1 = Common 0 = Common	interrupt will b	abled for an A	DC Core 2 rea	dv event	nu ready for op	eration				
bit 1	C1CIE: Dedic	cated ADC Cor	e 1 Ready Co	mmon Interrupt	Enable bit						
	1 = Common	interrupt will b	e generated w	hen ADC Core	1 is powered a	nd ready for on	eration				
	0 = Common	interrupt is dis	abled for an A	DC Core 1 read	dy event	, - -					
bit 0	COCIE: Dedic	cated ADC Cor	e 0 Ready Co	mmon Interrupt	Enable bit						
	1 = Common	interrupt will b	e generated w	hen ADC Core	0 is powered a	nd ready for op	eration				
	0 = Common	interrupt is dis	abled for an A	DC Core 0 read	dv event						

REGISTER 19-31: ADCMPxCON: ADC DIGITAL COMPARATOR x CONTROL REGISTER (x = 0 or 1)

11_0	11_0	11_0	R-0 HOC	R-0 HSC	R-U HOC	R-0 HSC	R-U Hec			
			CHNI 4	CHNL3	CHNI 2	CHNI 1	CHNI 0			
 bit 15				OTINES	OTTALL		bit 8			
R/W-0	R/W-0	R-0, HC, HS	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CMPEN	IE	STAT	BTWN	HIHI	HILO	LOHI	LOLO			
bit 7		· ·				•	bit 0			
Legend:		HC = Hardware	e Clearable bit	bit U = Unimplemented bit, read as '0'						
R = Readable	e bit	W = Writable b	it	HSC = Hardware Settable/Clearable bit						
-n = Value at I	POR	'1' = Bit is set '0' = Bit is cleared HS =				HS = Hardwar	e Settable bit			
bit 15-13	Unimplemented: Read as '0'									
bit 12-8	CHNL<4:0>:	Input Channel N	lumber bits	a abannal thi		oor is written to	those bits			
	111111 = Res	erved	u an event ior	a channel, this	s channel num		these bits.			
	•									
	•	anuad								
	10110 = Res10101 = AN2	erveu 1								
	10100 = AN2	0								
	•									
	00001 = AN1									
	00000 = AN0)								
bit 7	CMPEN: Com	nparator Enable	bit							
	1 = Comparat 0 = Comparat	tor is enabled tor is disabled a	nd the STAT s	tatus bit is clea	ared					
bit 6	IE: Comparate	or Common AD	C Interrupt En	able bit						
	 1 = Common ADC interrupt will be generated if the comparator detects a comparison event 0 = Common ADC interrupt will not be generated for the comparator 									
bit 5	STAT: Comparator Event Status bit This bit is cleared by hardware when the channel number is read from the CHNL<4:0> bits. 1 = A comparison event has been detected since the last read of the CHNL<4:0> bits 0 = A comparison event has not been detected since the last read of the CHNL<4:0> bits 0 = A comparison event has not been detected since the last read of the CHNL<4:0> bits									
bit 4										
DIL 4	bit 4 BTWN: Between Low/High Comparator Event bit 1 = Generates a comparator event when ADCMPxLO ≤ ADCBUFx < ADCMPxHI 0 = Does not generate a digital comparator event when ADCMPxLO ≤ ADCBUFx < ADCM									
bit 3	HIHI: High/Hig	gh Comparator I	Event bit							
	1 = Generates 0 = Does not	s a digital compa generate a digita	arator event w al comparator	hen ADCBUF	ADCMPxHI CBUFx ≥ ADC	CMPxHI				
bit 2	HILO: High/Lo	ow Comparator	Event bit							
	1 = Generates 0 = Does not	s a digital compa generate a digit	arator event w al comparator	hen ADCBUFx event when Al	< ADCMPxHI DCBUFx < AD	CMPxHI				
bit 1	LOHI: Low/Hi	gh Comparator	Event bit							
	1 = Generates 0 = Does not	s a digital compa generate a digita	arator event w al comparator	hen ADCBUF	ADCMPxLC CBUFx ≥ ADC) CMPxLO				
bit 0	LOLO: Low/L	ow Comparator	Event bit							
	1 = Generates 0 = Does not	s a digital compa generate a digita	arator event w al comparator	hen ADCBUFx event when Al	< ADCMPxLC DCBUFx < AD) CMPxLO				

REGISTER 20-2: CMPxDAC: COMPARATOR x DAC CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_		_	CMREF<11:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CMRE	F<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
							,	
bit 15-12	Unimplemen	ted: Read as 'o)'					
bit 11-0	CMREF<11:0>: Comparator Reference Voltage Select bits							
	11111111111							
	•							
	•							
• = ([CMREF<11:0>] * (AVDD)/4096) volts (EXTREF = 0)								
	 or ([CMREF<11:0>] * (EXTREF)/4096) volts (EXTREF = 1) 							
	•							
	•							
	0000000000	00						

24.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

Table 24-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 24-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Тур.	Max.	Units	Conditions			
Operating Cur	rent (IDD) ⁽¹⁾			•			
DC20d	7	12	mA	-40°C			
DC20a	7	12	mA	+25°C	2 2)/		
DC20b	7	12	mA	+85°C	3.3V	10 MIFS	
DC20c	7	12	mA	+125°C			
DC22d	11	19	mA	-40°C		20 MIPS	
DC22a	11	19	mA	+25°C	2.2)/		
DC22b	11	19	mA	+85°C	3.3V		
DC22c	11	19	mA	+125°C			
DC24d	19	30	mA	-40°C			
DC24a	19	30	mA	+25°C	2 2)/	40 MIPS	
DC24b	19	30	mA	+85°C	3.3V		
DC24c	19	30	mA	+125°C			
DC25d	26	41	mA	-40°C		60 MIPS	
DC25a	26	41	mA	+25°C	2.2)/		
DC25b	26	41	mA	+85°C	3.3V		
DC25c	26	41	mA	+125°C			
DC26d	30	46	mA	-40°C			
DC26a	30	46	mA	+25°C	3.3V	70 MIPS	
DC26b	30	46	mA	+85°C			
DC27d	51	81	mA	-40°C			
DC27a	51	81	mA	+25°C	3.3V	70 MIPS	
DC27b	52	82	mA	+85°C	7		

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- · CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- CPU is executing while(1) statement
- JTAG is disabled
- **2:** For this specification, the following test conditions apply:
 - · APLL clock is enabled
 - All 5 PWMs enabled and operating at maximum speed (PTCON2<2:0> = 000), PTPER = 1000h, 50% duty cycle
 - All other peripherals are disabled (corresponding PMDx bits are set)

NOTES: