

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

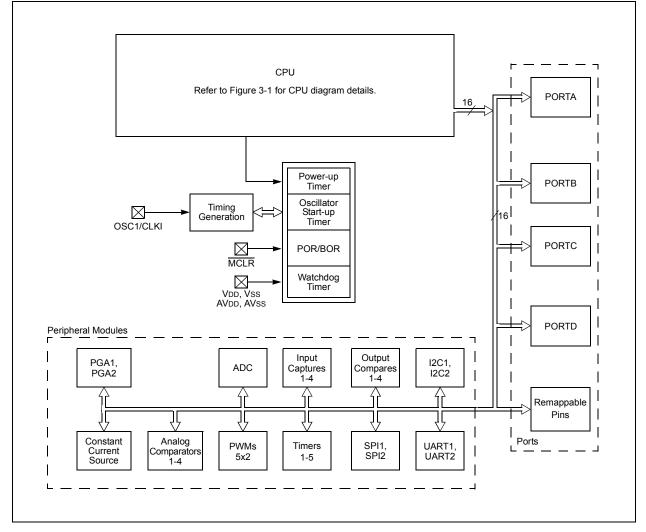
E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs502t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXGS50X Digital Signal Controller (DSC) devices.

dsPIC33EPXXGS50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXGS50X FAMILY BLOCK DIAGRAM

Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2.
TMS	I	ST	No	JTAG Test mode select pin.
TCK	I	ST	No	JTAG test clock input pin.
TDI	I	ST	No	JTAG test data input pin.
TDO	0		No	JTAG test data output pin.
FLT1-FLT8	Ι	ST	Yes	PWM Fault Inputs 1 through 8.
FLT9-FLT12	I	ST	No	PWM Fault Inputs 9 through 12.
FLT31		ST	No	PWM Fault Input 31 (Class B Fault).
PWM1L-PWM3L	0	_	No	PWM Low Outputs 1 through 3.
PWM1H-PWM3H	0	_	No	PWM High Outputs 1 through 3.
PWM4L-PWM5L ⁽²⁾ PWM4H-PWM5H ⁽²⁾	0	_	Yes	PWM Low Outputs 4 and 5.
SYNCI1, SYNCI2	0	— ST	Yes Yes	PWM High Outputs 4 and 5.
SYNCO1, SYNCO2	0	51	Yes	PWM Synchronization Inputs 1 and 2. PWM Synchronization Outputs 1 and 2.
CMP1A-CMP4A		Analog	No	Comparator Channels 1 through 4 A input.
CMP1B-CMP4B		Analog	No	Comparator Channels 1 through 4 B input.
CMP1C-CMP4C	i	Analog	No	Comparator Channels 1 through 4 C input.
CMP1D-CMP4D	i	Analog	No	Comparator Channels 1 through 4 D input.
DACOUT1, DACOUT2	0		No	DAC Output Voltages 1 and 2.
EXTREF1, EXTREF2	Ι	Analog	No	External Voltage Reference Inputs 1 and 2 for the reference DACs.
ISRC1-ISRC4	0	Analog	No	Constant-Current Outputs 1 through 4.
PGA1P1-PGA1P4	Ι	Analog	No	PGA1 Positive Inputs 1 through 4.
PGA1N1-PGA1N3	I	Analog	No	PGA1 Negative Inputs 1 through 3.
PGA2P1-PGA2P4	I	Analog	No	PGA2 Positive Inputs 1 through 4.
PGA2N1-PGA2N3	I	Analog	No	PGA2 Negative Inputs 1 through 3.
ADTRG31	Ι	ST	No	External ADC trigger source.
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.
PGEC1	Ι	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.
PGEC2	Ι	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.
PGEC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 3.

TABLE 1-1:	PINOUT I/O DESCRIPTIONS (CONTINUED)
------------	-------------------------------------

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog inputP = PowerO = OutputI = InputTTL = TTL input buffer

1: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

2: These pins are dedicated on 64-pin devices.

2.5 ICSP Pins

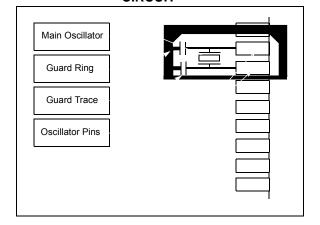
The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, MPLAB ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

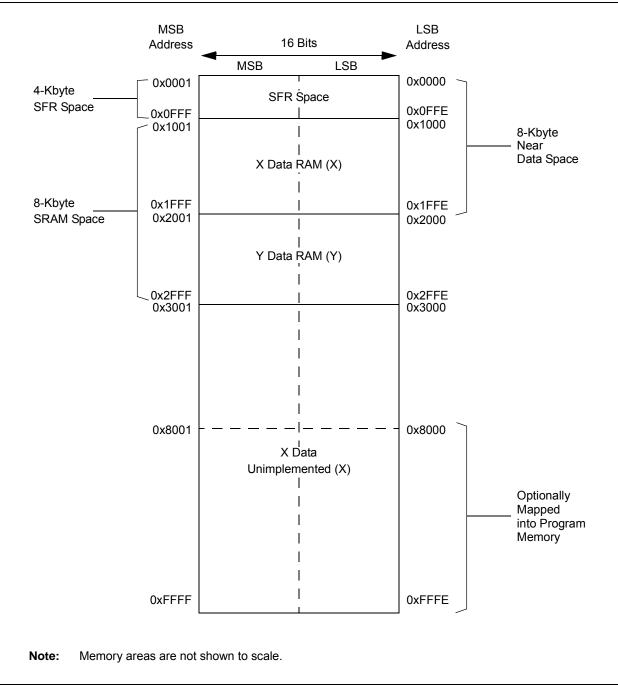
- "Using MPLAB[®] ICD 3" (poster) DS51765
- "Multi-Tool Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749


2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 8.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT



3.7 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0		
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC		
bit 15							bit 8		
R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
IPL2 ⁽¹⁾	IPL1 ⁽¹⁾	IPL0 ⁽¹⁾	RA	N	OV	Z	C		
bit 7						_	bit 0		
Legend:		C = Clearable	bit						
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown		
bit 15	1 = Accumula	ator A Overflow ator A has overf ator A has not o	lowed						
bit 14	OB: Accumulator B Overflow Status bit 1 = Accumulator B has overflowed 0 = Accumulator B has not overflowed								
bit 13	1 = Accumula	ator A Saturatio ator A is saturat ator A is not sat	ed or has bee		some time				

- 1 = Accumulator B is saturated or has been saturated at some time
 - 0 = Accumulator B is not saturated
- bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit
 - 1 = Accumulators A or B have overflowed
- 0 = Neither Accumulators A or B have overflowed
- bit 10 SAB: SA || SB Combined Accumulator 'Sticky' Status bit
 - 1 = Accumulators A or B are saturated or have been saturated at some time
 - 0 = Neither Accumulator A or B are saturated
- bit 9 DA: DO Loop Active bit
 - 1 = DO loop in progress
 - 0 = DO loop not in progress
- bit 8 DC: MCU ALU Half Carry/Borrow bit
 - 1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
 - 0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
- **Note 1:** The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **2:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33EP64GS50X DEVICES

TABLE 4-20: PERIPHERAL PIN SELECT INPUT REGISTER MAP

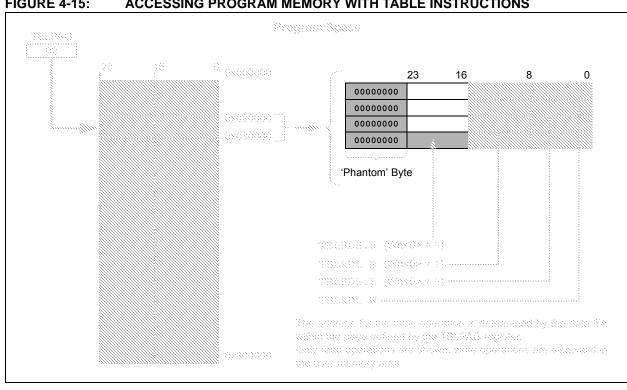
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	INT1R<7:0>						_	_	_	_	—	_			0000		
RPINR1	06A2	_	_	_	_	_	_	_	_				INT2	R<7:0>				0000
RPINR2	06A4				T1CKF	R<7:0>				_	_	_	_	_	_	—	_	0000
RPINR3	06A6	T3CKR7	T3CKR6	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	T2CKR7	T2CKR6	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	0000
RPINR7	06AE	IC2R7	IC2R6	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	IC1R7	IC1R6	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	0000
RPINR8	06B0	IC4R7	IC4R6	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	IC3R7	IC3R6	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	0000
RPINR11	06B6	_	_	_	_	_	_	_	_	OCFAR<7:0>					0000			
RPINR12	06B8	FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0	FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0	0000
RPINR13	06BA	FLT4R7	FLT4R6	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0	FLT3R7	FLT3R6	FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0	0000
RPINR18	06C4	U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTS0	U1RXR7	U1RXR6	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	0000
RPINR19	06C6	U2CTSR7	U2CTSR6	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0	U2RXR7	U2RXR6	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	0000
RPINR20	06C8	SCK1INR7	SCK1INR6	SCK1INR5	SCK1INR4	SCK1INR3	SCK1INR2	SCK1INR1	SCK1INR0	SDI1R7	SDI1R6	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	0000
RPINR21	06CA	_	_	_	_	_	_	_	_				SS1F	R<7:0>				0000
RPINR22	06CC	SCK2INR7	SCK2INR6	SCK2INR5	SCK2INR4	SCK2INR3	SCK2INR2	SCK2INR1	SCK2INR0	SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	0000
RPINR23	06CE	_	_	_	_	_	_	_	_				SS2F	R<7:0>				0000
RPINR37	06EA				SYNCI	R<7:0>				_	—	—	_	—	—	—	_	0000
RPINR38	06EC	_	—	—	_	—	—	_	—				SYNC	2R<7:0>				0000
RPINR42	06F4	FLT6R7	FLT6R6	FLT6R5	FLT6R4	FLT6R3	FLT6R2	FLT6R1	FLT6R0	FLT5R7	FLT5R6	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0	0000
RPINR43	06F6	FLT8R7	FLT8R6	FLT8R5	FLT8R4	FLT8R3	FLT8R2	FLT8R1	FLT8R0	FLT7R7	FLT7R6	FLT7R5	FLT7R4	FLT7R3	FLT7R2	FLT7R1	FLT7R0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DATA ACCESS FROM PROGRAM 4.9.1 MEMORY USING TABLE **INSTRUCTIONS**

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)
 - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-15: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	ILR3	ILR2	ILR1	ILR0
bit 15 bit 8							

| R-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| VECNUM7 | VECNUM6 | VECNUM5 | VECNUM4 | VECNUM3 | VECNUM2 | VECNUM1 | VECNUM0 |
| bit 7 | • | | | | | · | bit 0 |

Legend:										
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit	read as '0'						
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15-12	Unimple	mented: Read as '0'								
bit 11-8	ILR<3:0>	New CPU Interrupt Priority	Level bits							
		PU Interrupt Priority Level is								
	•									
	•									
	•	•								
	0001 = CPU Interrupt Priority Level is 1									
	0000 = CPU Interrupt Priority Level is 0									
bit 7-0	VECNUM<7:0>: Vector Number of Pending Interrupt bits									
	1111111	1 = 255, Reserved; do not u	se							
	•									
	•									
	•									
		1 = 9, IC1 – Input Capture 1 0 = 8, INT0 – External Interr	upt 0							
		10 = 8, in 10 – External inter- 1 = 7, Reserved; do not use	•							
		0 = 6, Generic soft error trap								
		1 = 5, Reserved; do not use								
		0 = 4, Math error trap								
	0000001	1 = 3, Stack error trap								
	0000001	0 = 2, Generic hard trap								
		1 = 1, Address error trap								
	0000000	0 = 0, Oscillator fail trap								

12.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare modules (Timer2 and Timer3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1. T3CON and T5CON are shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 12-2.

12.1 Timer Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

12.1.1 KEY RESOURCES

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

R-0, HSC		R-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT ⁽	¹⁾ CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽³⁾	MDCS ⁽³⁾
bit 15				•	•	•	bit 8
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
		0-0	0-0	1	CAM ^(2,3,4)	XPRES ⁽⁵⁾	
DTC1 bit 7	DTC0	_		MTBS	CAM ^{2,0,1}	XPRES ⁽⁰⁾	IUE bit (
							Dit (
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Reada	ble bit	W = Writable I	oit	U = Unimplei	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
			(4)				
bit 15		ult Interrupt Sta					
		rupt is pending					
		nterrupt is pend ared by setting					
bit 14		ent-Limit Interr)			
		nit interrupt is p	•				
		t-limit interrupt					
	This bit is clea	ared by setting	CLIEN = 0.				
bit 13	TRGSTAT: Tri	igger Interrupt S	Status bit				
		errupt is pendi					
		interrupt is per ared by setting					
bit 12	FLTIEN: Fault	t Interrupt Enab	ole bit				
		rupt is enabled rupt is disabled		STAT bit is clea	ired		
bit 11	CLIEN: Curre	nt-Limit Interru	pt Enable bit				
		nit interrupt is e nit interrupt is c		ne CLSTAT bit	is cleared		
bit 10	TRGIEN: Trig	ger Interrupt Er	nable bit				
		event generates			AT bit is cleared		
bit 9	ITB: Independ	lent Time Base	Mode bit ⁽³⁾				
				ne time base p	eriod for this PV	VMx generator	
	0 = PTPER re	gister provides	timing for this	PWMx genera	ator	·	
bit 8	MDCS: Maste	er Duty Cycle R	egister Select	bit ⁽³⁾			
	1 = MDC regis	ster provides du	uty cycle inforr	nation for this	PWMx generate	or	
	0 = PDCx and	I SDCx register	s provide duty	cycle informa	tion for this PW	Mx generator	
Note 1:	Software must cle	ar the interrupt	status here a	nd in the corre	sponding IFSx I	pit in the interru	pt controller.
	The Independent CAM bit is ignored		de (ITB = 1) m	ust be enabled	I to use Center-	Aligned mode.	If ITB = 0, the
3:	These bits should	not be change	d after the PW	/Mx is enabled	by setting PTE	N = 1 (PTCON	<15>).
	Center-Aligned m	-				-	-
	registers. The higl the fastest clock.						
	ine lastest clock.						

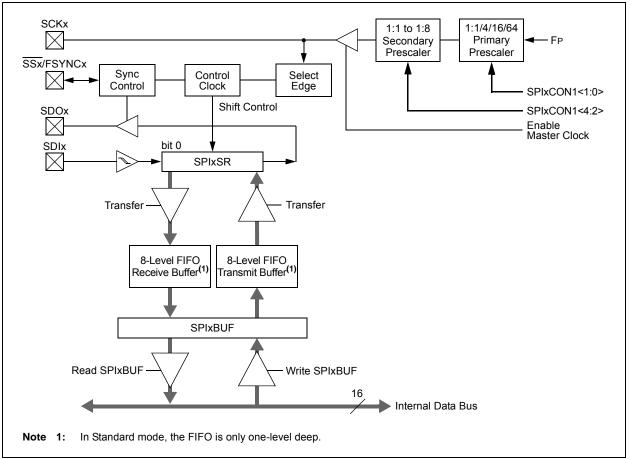
REGISTER 15-12: PWMCONX: PWMx CONTROL REGISTER (x = 1 to 5)

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70005185) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

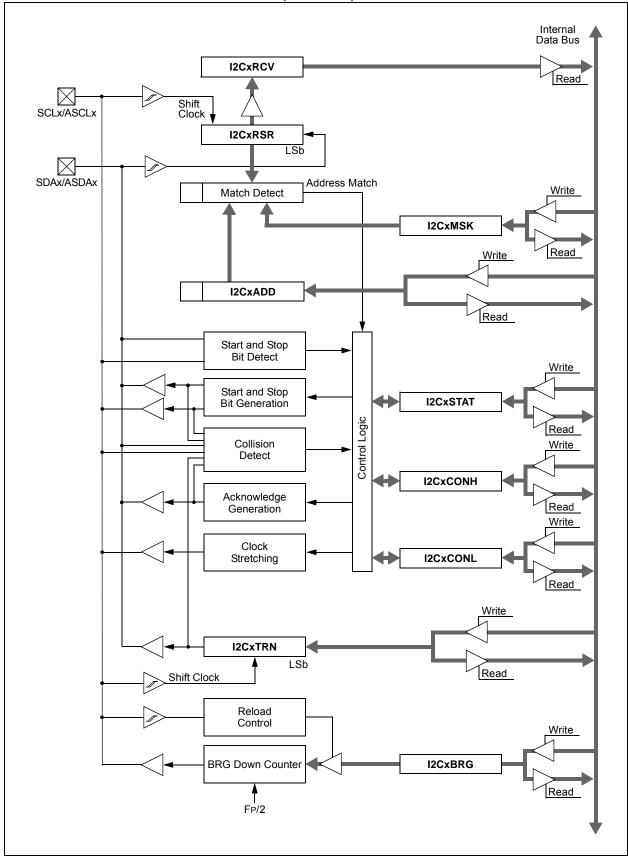
The SPI module is a synchronous serial interface, useful for communicating with other peripherals or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces. The dsPIC33EPXXGS50X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical.

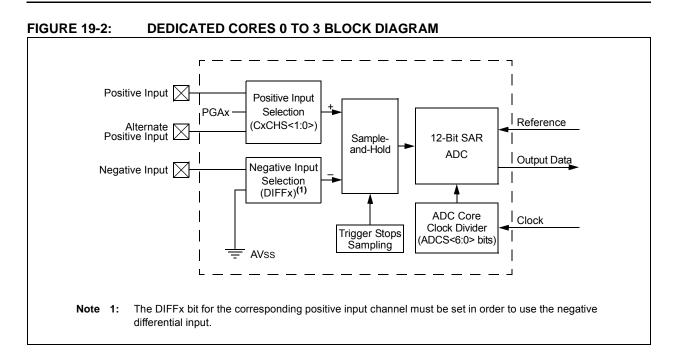
Note:	In this section, the SPI modules are
	referred to together as SPIx, or separately
	as SPI1 and SPI2. Special Function
	Registers follow a similar notation. For
	example, SPIxCON refers to the control
	register for the SPI1 and SPI2 modules.


The SPIx module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration.

The SPIx serial interface consists of four pins, as follows:

- · SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse


The SPIx module can be configured to operate with two, three or four pins. In 3-Pin mode, SSx is not used. In 2-Pin mode, neither SDOx nor SSx is used.


Figure 16-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

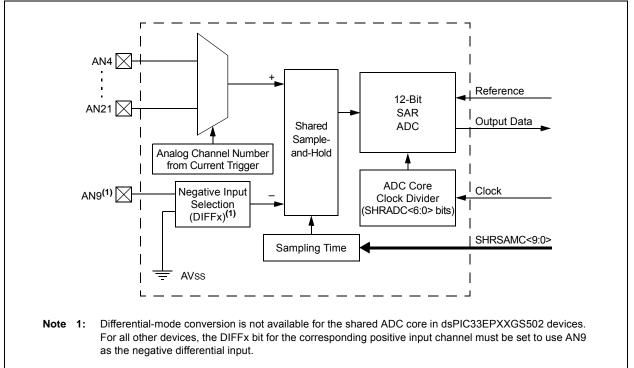

FIGURE 16-1: SPIX MODULE BLOCK DIAGRAM

FIGURE 17-1: I2Cx BLOCK DIAGRAM (x = 1 OR 2)

FIGURE 19-3: SHARED CORE BLOCK DIAGRAM

REGISTER 19-15: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN	<7:0>			
bit 7							bit 0
<u> </u>							
Legend:							

Logona.						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 EIEN<15:0>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 19-16: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		EIEN<21:16>						
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 EIEN<21:16>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

22.3 Current Source Control Register

REGISTER 22-1: ISRCCON: CONSTANT-CURRENT SOURCE CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
ISRCEN			—	—	OUTSEL2	OUTSEL1	OUTSEL0	
bit 15						• •	bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
0-0	0-0	ISRCCAL5	ISRCCAL4	ISRCCAL3	ISRCCAL2	ISRCCAL1	ISRCCAL0	
 bit 7								
							bit C	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
	•	led: Read as a local solution: Output Con		Select bits				
bit 14-11 bit 10-8	0 = Current s Unimplemen OUTSEL<2:0 111 = Reserv 110 = Reserv 101 = Reserv	ved ved	o' stant-Current	Select bits				
	011 = Input p 010 = Input p 001 = Input p	in, ISRC3 (AN in, ISRC2 (AN in, ISRC1 (AN put is selected	5) 6)					
bit 7-6	Unimplemen	ted: Read as '	0'					
bit 5-0	The calibratio module is ena	SRCCAL<5:0>: Constant-Current Source Calibration bits The calibration value must be copied from Flash address, 0x800E78, into these bits before the nodule is enabled. Refer to the calibration data address table (Table 23-3) in Section 23.0 "Special Features" for more information.						

Bit Field	Description
FNOSC<2:0>	Oscillator Selection bits
	111 = Fast RC Oscillator with Divide-by-N (FRCDIVN)
	110 = Fast RC Oscillator with Divide-by-16
	101 = Low-Power RC Oscillator (LPRC)
	100 = Reserved; do not use
	011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC)
	001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL)
	000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits
	1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
	01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
	00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit
	1 = Allows only one reconfiguration
	0 = Allows multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes)
	1 = OSC2 is the clock output 0 = OSC2 is a general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits
	11 = Primary Oscillator is disabled
	10 = HS Crystal Oscillator mode
	01 = XT Crystal Oscillator mode
	00 = EC (External Clock) mode
WDTEN<1:0>	Watchdog Timer Enable bits
	11 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the
	SWDTEN bit in the RCON register will have no effect)
	10 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
	01 = Watchdog Timer is enabled only while device is active and is disabled while in Sleep
	mode; software control is disabled in this mode
	00 = Watchdog Timer and SWDTEN bit are disabled
WINDIS	Watchdog Timer Window Enable bit
	1 = Watchdog Timer in Non-Window mode
	0 = Watchdog Timer in Window mode
PLLKEN	PLL Lock Enable bit
	1 = PLL lock is enabled
	0 = PLL lock is disabled
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128 0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1:32,768 1110 = 1:16,384
	•
	•
	•
	0001 = 1:2
	0000 = 1:1

TABLE 23-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

26.1 DC Characteristics

TABLE 26-1: OPERATING MIPS vs. VOLTAGE

Characteristic	VDD Range	Temperature Range	Maximum MIPS		
Gharacteristic	(in Volts)	(in °C)	dsPIC33EPXXGS50X Family		
—	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70		
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, PGAs and comparators) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 26-13 for the minimum and maximum BOR values.

TABLE 26-2: THERMAL OPERATING CONDITIONS

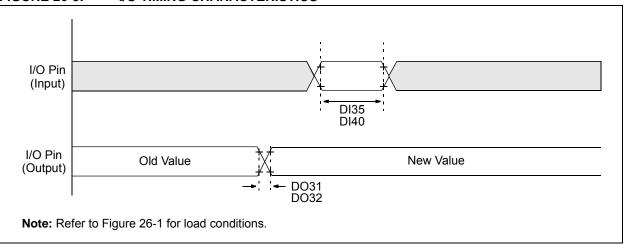

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	I	Pint + Pi/c)	W
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	Pdmax	(TJ — TA)/θJ	IA	W

TABLE 26-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin TQFP 10x10x1 mm	θJA	49.0		°C/W	1
Package Thermal Resistance, 48-Pin TQFP 7x7x1.0 mm	θJA	63.0	_	°C/W	1
Package Thermal Resistance, 44-Pin QFN 8x8 mm	θJA	29.0	-	°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10x1 mm	θJA	50.0	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S 6x6x0.9 mm	θJA	30.0	_	°C/W	1
Package Thermal Resistance, 28-Pin UQFN 6x6x0.5 mm	θJA	26.0	-	°C/W	1
Package Thermal Resistance, 28-Pin SOIC 7.50 mm	θJA	70.0		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

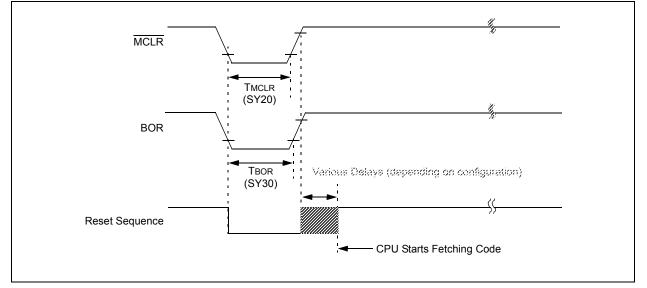


TABLE 26-22: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	nbol Characteristic		Тур. ⁽¹⁾	Max.	Units	Conditions
DO31	TioR	Port Output Rise Time	_	5	10	ns	
DO32	TIOF	Port Output Fall Time	_	5	10	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	_	_	ns	
DI40	Trbp	CNx High or Low Time (input)	2		_	Тсү	

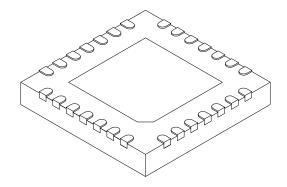

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

FIGURE 26-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S		
Dimensior	Dimension Limits			MAX		
Number of Pins	Ν		28	-		
Pitch	е		0.65 BSC			
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	Е		6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.70		
Overall Length	D		6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.70		
Terminal Width	b	0.23	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed Pad	К	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2

NOTES: