

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs504-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

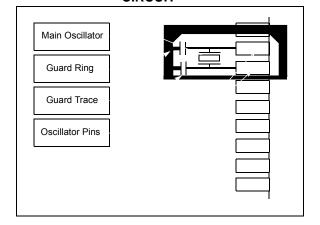
The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, MPLAB ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "Multi-Tool Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749


2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 8.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

CORCON: CORE CONTROL REGISTER

REGISTER 3-2:

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0				
VAR		US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0				
bit 15							bit				
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0				
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF				
bit 7	OAID	OAIDW	ACCOAL	11 2011	UIA	THE	bit				
Legend:		C = Clearable	- hit								
R = Readable	bit	W = Writable		U = Unimpler	mented bit, rea	d as '0'					
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown				
		1 - Dit 13 301	•		arcu		lowin				
bit 15		•	ocessing Later								
		• •	essing is enab sing is enabled								
bit 14	Unimplemen	ted: Read as '	0'								
bit 13-12	-		igned/Signed	Control bits							
	11 = Reserve		0 0								
	10 = DSP engine multiplies are mixed-sign										
		gine multiplies gine multiplies									
bit 11	EDT: Early DO Loop Termination Control bit ⁽¹⁾										
	1 = Terminate 0 = No effect	es executing Do	o loop at the e	nd of current lo	oop iteration						
bit 10-8	DL<2:0>: DO Loop Nesting Level Status bits										
	111 = 7 do lo	ops are active									
	•										
	•										
	001 = 1 DO lo	op is active ops are active									
bit 7		•									
	SATA: ACCA Saturation Enable bit 1 = Accumulator A saturation is enabled										
		itor A saturatio									
bit 6	SATB: ACCB	Saturation En	able bit								
		itor B saturatio									
bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturation	Enable bit						
	1 = Data Spac	ce write satura	tion is enabled	l							
bit 4	-		ration Mode S								
		ration (super s ration (normal									
L:1 0		•	Level Status b	_{oit 3} (2)							
bit 3		contraped monity									

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device has been in Idle mode0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

TABLE 7-1: INTERRUPT VECTOR DETAILS

	Vector	IRQ		Inte	errupt Bit Lo	cation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
	Hi	ghest Nat	ural Order Priority	•		
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>
IC1 – Input Capture 1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>
OC1 – Output Compare 1	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>
T1 – Timer1	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>
Reserved	12	4	0x00001C	_		_
IC2 – Input Capture 2	13	5	0x00001E	IFS0<5>	IEC0<5>	IPC1<6:4>
OC2 – Output Compare 2	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>
T2 – Timer2	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>
T3 – Timer3	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>
SPI1E – SPI1 Error	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>
ADC – ADC Global Convert Done	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>
Reserved	22	14	0x000030	_	_	_
NVM – NVM Write Complete	23	15	0x000032	IFS0<15>	IEC0<15>	IPC3<14:12>
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>
CMP1 – Analog Comparator 1 Interrupt	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>
Reserved	29-32	21-24	0x00003E-0x000044	_	_	_
OC3 – Output Compare 3	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>
OC4 – Output Compare 4	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>
T4 – Timer4	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12>
T5 – Timer5	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>
U2RX – UART2 Receiver	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>
U2TX – UART2 Transmitter	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12>
SPI2E – SPI2 Error	40	32	0x000054	IFS2<0>	IEC2<0>	IPC8<2:0>
SPI2 – SPI2 Transfer Done	41	33	0x000056	IFS2<1>	IEC2<1>	IPC8<6:4>
Reserved	42-44	34-36	0x000058-0x00005C	—	_	_
IC3 – Input Capture 3	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>
IC4 – Input Capture 4	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>
Reserved	47-56	39-48	0x000062-0x000074	_	_	_
SI2C2 – I2C2 Slave Event	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>
MI2C2 – I2C2 Master Event	58	50	0x000078	IFS3<2>	IEC3<2>	IPC12<10:8>
Reserved	59-61	51-53	0x00007A-0x00007E	_	_	_
INT4 – External Interrupt 4	62	54	0x000080	IFS3<6>	IEC3<6>	IPC13<10:8>
Reserved	63-64	55-54	0x000082-0x000084	—		_
PSEM – PWM Special Event Match	65	57	0x000086	IFS3<9>	IEC3<9>	IPC14<6:4>
Reserved	66-72	58-64	0x000088-0x000094	—		_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
Reserved	75-80	67-72	0x00009A-0x0000A4	—		_

REGISTER 8-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_	_	_		—	—	_			
bit 7							bit C			
Legend:										
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
bit 15	1 = Reference	ence Oscillator e oscillator outp e oscillator outp	ut is enabled of		2)					
bit 14	Unimplemen	ted: Read as '0	,							
bit 13	ROSSLP: Re	ference Oscillat	or Run in Slee	ep bit						
		e oscillator outp e oscillator outp								
bit 12	ROSEL: Refe	OSEL: Reference Oscillator Source Select bit								
		crystal is used ock is used as								
bit 11-8	•	Reference Osc								
	1110 = Refer 1101 = Refer 1100 = Refer 1011 = Refer 1010 = Refer 1000 = Refer 0111 = Refer 0110 = Refer 0101 = Refer 0100 = Refer 0101 = Refer 0011 = Refer 0011 = Refer	ence clock divic ence clock divic	led by 16,384 led by 8,192 led by 4,096 led by 2,048 led by 1,024 led by 512 led by 512 led by 256 led by 128 led by 64 led by 32 led by 16 led by 8 led by 4							
bit 7-0	Unimplemen	ted: Read as '0	,							
	•									

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control x register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the **"Pin Diagrams"** section for the available 5V tolerant pins and Table 26-11 for the maximum VIH specification for each pin.

10.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin, defined as a digital input (including the ANx pins), can cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP, as shown in Example 10-1.

10.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the ICN functionality of each I/O port. The CNENx registers contain the ICN interrupt enable control bits for each of the input pins. Setting any of these bits enables an ICN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source, or sink source, connected to the pin, and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: Pull-ups and pull-downs on Input Change Notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 10-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T1CKR7	T1CKR6	T1CKR5	T1CKR4	T1CKR3	T1CKR2	T1CKR1	T1CKR0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	-	—	—
bit 7						•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-8	10110101 = 10110100 = 00000001 =	: Assign Timer' Input tied to RF Input tied to RF Input tied to RF Input tied to Vs	2181 2180 21	ck (T1CK) to t	he Correspondi	ng RPn Pin bits	5

REGISTER 10-3: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

bit 7-0 Unimplemented: Read as '0'

REGISTER 10-7: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFAR7 | OCFAR6 | OCFAR5 | OCFAR4 | OCFAR3 | OCFAR2 | OCFAR1 | OCFAR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 OCFAR<7:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits 10110101 = Input tied to RP181 10110100 = Input tied to RP180

00000001 = Input tied to RP1 00000000 = Input tied to Vss

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15			·				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U1RXR7	U1RXR6	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0
<u> </u>							
Legend:							
R = Readable		W = Writable		•	nented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 7-0	10110100 = • • 00000001 = 00000000 =	Input tied to RF Input tied to RF Input tied to RF Input tied to Vs : Assign UART	2180 21 35	1RX) to the Co	rresponding RF	n Pin bits	

REGISTER 10-10: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

REGISTER 10-14: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SCK2INR7	SCK2INR6	SCK2INR5	SCK2INR4	SCK2INR3	SCK2INR2	SCK2INR1	SCK2INR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
	10110100 = • • 00000001 =	Input tied to Rf Input tied to Rf Input tied to Rf Input tied to Vs	2180 21				
bit 7-0	10110101 =	Input tied to RF Input tied to RF	2181 2180	12) to the Corre	esponding RPn	Pin bits	

REGISTER 10-36: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0
bit 15	- -					•	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 13-8	RP177R<5:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits
	(see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP176R<5:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits

(see Table 10-2 for peripheral function numbers)

REGISTER 10-37: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0		
bit 15							bit 8		
									
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable			bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1'		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
-n = Value at POR		Value at POR '1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP179R<5:0>:** Peripheral Output Function is Assigned to RP179 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 17-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave)
	Used in conjunction with the SCLREL bit.
	 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
54 C	C C
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge
	0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit
	(when operating as I ² C master, applicable during master receive)
	1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; hardware is clear at the end of the master Acknowledge sequence
	0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	1 = Enables Receive mode for I ² C; hardware is clear at the end of the eighth bit of the master receive data byte
	0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiates Stop condition on SDAx and SCLx pins; hardware is clear at the end of the master Stop sequence
	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Repeated Start sequence
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Start sequence

0 = Start condition is not in progress

REGISTER 20-1: CMPxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

bit 5	EXTREF: Enable External Reference bit
	 1 = External source provides reference to DACx (maximum DAC voltage is determined by the external voltage source)
	0 = AVDD provides reference to DACx (maximum DAC voltage is AVDD)
bit 4	HYSPOL: Comparator Hysteresis Polarity Select bit
	 1 = Hysteresis is applied to the falling edge of the comparator output 0 = Hysteresis is applied to the rising edge of the comparator output
bit 3	CMPSTAT: Comparator Current State bit
	Reflects the current output state of Comparator x, including the setting of the CMPPOL bit.
bit 2	ALTINP: Alternate Input Select bit
	1 = INSEL<1:0> bits select alternate inputs
	0 = INSEL<1:0> bits select comparator inputs
bit 1	CMPPOL: Comparator Output Polarity Control bit
	1 = Output is inverted
	0 = Output is non-inverted
bit 0	RANGE: DACx Output Voltage Range Select bit
	1 = AVDD is the maximum DACx output voltage
	0 = Unimplemented, do not use

Note 1: DACOUTx can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DACx output by setting their respective DACOE bit.

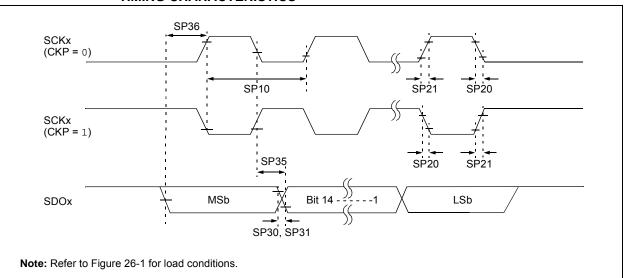
22.3 Current Source Control Register

REGISTER 22-1: ISRCCON: CONSTANT-CURRENT SOURCE CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
ISRCEN			—	—	OUTSEL2	OUTSEL1	OUTSEL0		
bit 15		•	•	•			bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
0-0	0-0	ISRCCAL5	ISRCCAL4	ISRCCAL3	ISRCCAL2	ISRCCAL1	ISRCCAL0		
 bit 7		ISRCCALS	ISRUUAL4	ISRUUALS	ISRCCALZ	ISRCCALT	bit (
							DILC		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
	•	>: Output Con		Select bits					
bit 14-11 bit 10-8	0 = Current s Unimplemen OUTSEL<2:0 111 = Reserv 110 = Reserv 101 = Reserv	ved ved	o' stant-Current	Select bits					
	011 = Input p 010 = Input p 001 = Input p	in, ISRC3 (AN in, ISRC2 (AN in, ISRC1 (AN put is selected	5) 6)						
bit 7-6	Unimplemen	ted: Read as '	0'						
bit 5-0	The calibratio module is ena	 Jnimplemented: Read as '0' SRCCAL<5:0>: Constant-Current Source Calibration bits The calibration value must be copied from Flash address, 0x800E78, into these bits before the nodule is enabled. Refer to the calibration data address table (Table 23-3) in Section 23.0 "Special Features" for more information. 							

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers \in {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}


TABLE 26-23:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SY00	Tpu	Power-up Period	_	400	600	μS		
SY10	Тоѕт	Oscillator Start-up Time	—	1024 Tosc	_	—	Tosc = OSC1 period	
SY12	Twdt	Watchdog Timer Time-out Period	0.81	_	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 26-21) at +85°C	
			3.25	_	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 26-21) at +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS		
SY20	TMCLR	MCLR Pulse Width (low)	2	_		μS		
SY30	TBOR	BOR Pulse Width (low)	1			μS		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μS	-40°C to +85°C	
SY36	Tvreg	Voltage Regulator Standby-to-Active mode Transition Time	—	_	30	μS		
SY37	Toscdfrc	FRC Oscillator Start-up Delay	_	48	_	μS		
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	—	—	70	μS		

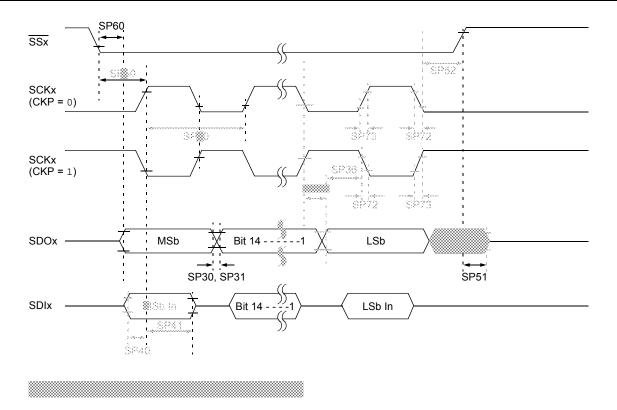
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

FIGURE 26-12: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 26-32: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Sympol Characteristic ¹			Тур. ⁽²⁾	Max.	Units	Conditions		
SP10	FscP	Maximum SCKx Frequency	—	_	15	MHz	(Note 3)		
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)		
SP21	TscR	SCKx Output Rise Time	_			ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDOx Data Output Rise Time	-	—	_	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns			
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns			


Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

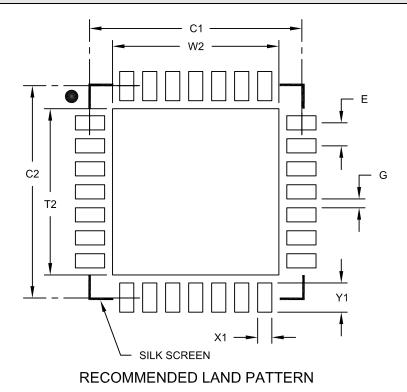
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC/DC CHARACTERISTICS ⁽¹⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic		Min.	Тур.	Max.	Units	Comments	
PA01	Vin	Input Voltage Rang	е	AVss - 0.3	_	AVDD + 0.3	V		
PA02	Vсм	Common-Mode Inp Voltage Range	ut	AVss	—	AVDD - 1.6	V		
PA03	Vos	Input Offset Voltage	;	-10	_	10	mV		
PA04	Vos	Input Offset Voltage with Temperature	e Drift	—	±15	—	µV/∘C		
PA05	Rin+	Input Impedance of Positive Input		_	>1M 7 pF	—	Ω pF		
PA06	Rin-	Input Impedance of Negative Input		—	10K 7 pF	—	Ω pF		
PA07 (Gerr	GERR Gain Error		-2	_	2	%	Gain = 4x, 8x	
				-3	—	3	%	Gain = 16x	
				-4		4	%	Gain = 32x, 64x	
PA08	Lerr	Gain Nonlinearity E	rror	—	—	0.5	%	% of full scale, Gain = 16x	
PA09	IDD	Current Consumption	on	_	2.0	—	mA	Module is enabled with a 2-volt P-P output voltage swing	
PA10a	BW	Small Signal	G = 4x	_	10	—	MHz		
PA10b		Bandwidth (-3 dB)	G = 8x	_	5	—	MHz		
PA10c			G = 16x	—	2.5	—	MHz		
PA10d			G = 32x	_	1.25	—	MHz		
PA10e			G = 64x		0.625	_	MHz		
PA11	OST	Output Settling Time to 1% of Final Value		_	0.4	—	μs	Gain = 16x, 100 mV input step change	
PA12	SR	Output Slew Rate		_	40	—	V/µs	Gain = 16x	
PA13	TGSEL	Gain Selection Time	e	_	1	_	μs		
PA14	TON	Module Turn On/Set	ting Time	_	_	10	μs		

TABLE 26-48: PGAx MODULE SPECIFICATIONS

Note 1: The PGAx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.


TABLE 26-49: CONSTANT-CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS ⁽¹⁾				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$			
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
CC01	Idd	Current Consumption	—	30	—	μA	
CC02	IREG	Regulation of Current with Voltage On	—	±3	—	%	
CC03	Ιουτ	Current Output at Terminal	_	10	_	μA	

Note 1: The constant-current source module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimensio	n Limits	MIN	NOM	MAX			
Contact Pitch	E		0.65 BSC				
Optional Center Pad Width	W2			4.70			
Optional Center Pad Length	T2			4.70			
Contact Pad Spacing	C1		6.00				
Contact Pad Spacing	C2		6.00				
Contact Pad Width (X28)	X1			0.40			
Contact Pad Length (X28)	Y1			0.85			
Distance Between Pads	G	0.25					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A