

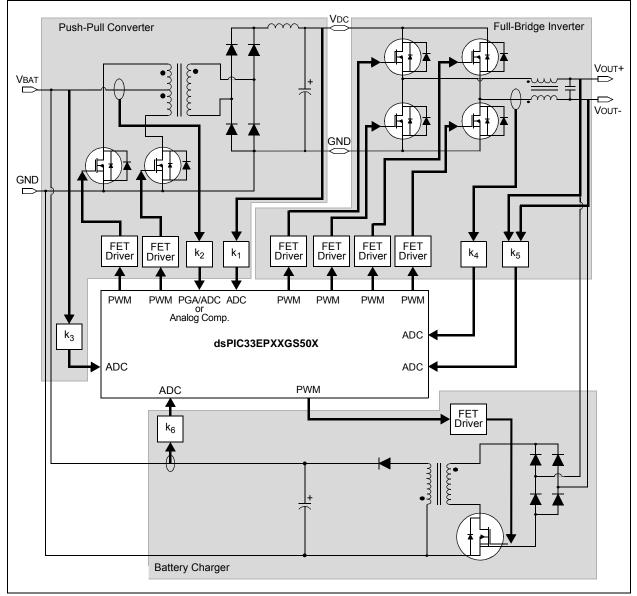
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs504-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-6: OFF-LINE UPS

TABLE 4-3: **INTERRUPT CONTROLLER REGISTER MAP**

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	-	ADCIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	-	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	-	_	-	-	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	-	_	_	_	_	—	-	_	IC4IF	IC3IF	-	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	_	PSEMIF	_	_	INT4IF	_	_	_	MI2C2IF	SI2C2IF	-	0000
IFS4	0808	-	-	-	-	-	-	PSESIF	-	-	-	-	-	-	U2EIF	U1EIF	-	0000
IFS5	080A	PWM2IF	PWM1IF	_	_	_	_	_	_		_	_	_	_	-	-	-	0000
IFS6	080C	ADCAN1IF	ADCAN0IF	—	_	_	_	AC4IF	AC3IF	AC2IF		_	_	_	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	080E	-	-	-	-	-	-	-	-	-	-	ADCAN7IF	ADCAN6IF	ADCAN5IF	ADCAN4IF	ADCAN3IF	ADCAN2IF	0000
IFS8	0810	JTAGIF	ICDIF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IFS9	0812	ADCAN16IF ⁽¹⁾	ADCAN15IF ⁽¹⁾	ADCAN14IF ⁽²⁾	ADCAN13IF(1)	ADCAN12IF ⁽²⁾	ADCAN11IF ⁽²⁾	ADCAN10IF ⁽²⁾	ADCAN9IF ⁽²⁾	ADCAN8IF ⁽²⁾	_	_	_	_	-	-	-	0000
IFS10	0814	-	I2C2BCIF	I2C1BCIF	-	-	_	-	-	_	-	-	ADCAN21IF	ADCAN20IF	ADCAN19IF	ADCAN18IF	ADCAN17IF ⁽²⁾	0000
IFS11	0816	_	-	_	_	_	_	_	-	_	_	_	ADFLTR1IF	ADFLTR0IF	ADCMP1IF	ADCMP0IF	-	0000
IEC0	0820	NVMIE	-	ADCIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	-	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	-	_	_	-	INT1IE	CNIE	AC1IF	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_	_	_	_	_	IC4IE	IC3IE	-	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	_	PSEMIE	_	_	INT4IE	_	-	_	MI2C2IE	SI2C2IE	-	0000
IEC4	0828	_	_	_	-	_	_	PSESIE	-	_	_	_	-	-	U2EIE	U1EIE	-	0000
IEC5	082A	PWM2IE	PWM1IE	_	_	_	_	_	_	_	_	_	-	_	_	_	-	0000
IEC6	082C	ADCAN1IE	ADCAN0IE	_	_	_	_	AC4IE	AC3IE	AC2IE	_	_	-	_	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	082E	_	_	_	-	_	_	_	-	_	_	ADCAN7IE	ADCAN6IE	ADCAN5IE	ADCAN4IE	ADCAN3IE	ADCAN2IE	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	_	_	_	_	-	_	_	_	-	0000
IEC9	0832	ADCAN16IE ⁽¹⁾	ADCAN15IE ⁽¹⁾	ADCAN14IE ⁽²⁾	ADCAN13IE ⁽¹⁾	ADCAN12IE ⁽²⁾	ADCAN11IE ⁽²⁾	ADCAN10IE ⁽²⁾	ADCAN9IE ⁽²⁾	ADCAN8IE ⁽²⁾	_	_	-	_	_	_	-	0000
IEC10	0834	_	I2C2BCIE	I2C1BCIE	-	_	_	_	-	_	_	_	ADCAN21IE	ADCAN20IE	ADCAN19IE	ADCAN18IE	ADCAN17IE ⁽²⁾	0000
IEC11	0836	_	_	_	_	_	_	_	_	_	_	_	ADFLTR1IE	ADFLTR0IE	ADCMP1IE	ADCMP0IE	-	0000
IPC0	0840	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	-	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	0842	-	T2IP2	T2IP1	T2IP0	-	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	-	-	-	-	4440
IPC2	0844	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	-	T3IP2	T3IP1	T3IP0	4444
IPC3	0846	_	NVMIP2	NVMIP1	NVMIP0	_	_	_	_	_	ADCIP2	ADCIP1	ADCIP0	-	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	0848	_	CNIP2	CNIP1	CNIP0	_	AC1IP2	AC1IP1	AC1IP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	-	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	084A	_	-	_	-	_	-	-	-	_	—	-	-	-	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	084C	_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	-	-	-	-	4440
IPC7	084E	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	0850	_	-	_	-	_	_	-	-	_	SPI2IP2	SPI2IP1	SPI2IP0	-	SPI2EIP2	SPI2EIP1	SPI2EIP0	0044
IPC9	0852	_	_	_	_	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	_	_	_	0440

Legend:

Note 1:

 — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Only available on dsPIC33EPXXGS506 devices. Only available on dsPIC33EPXXGS504/505 and dsPIC33EPXXGS506 devices.
 2:

4.6.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions, and the DSP accumulator class of instructions, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal
 - **Note:** Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.6.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.6.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

- 1 = Variable exception processing is enabled
- 0 = Fixed exception processing is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 10-24: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0		
bit 15	•						bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13-8		Peripheral Ou -2 for periphera	•	0	RP41 Output F	Pin bits			
bit 7.6	Unimplomon	Unimplemented, Deed ee '0'							

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-25: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	

bit 13-8 **RP43R<5:0>:** Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP42R<5:0>:** Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 15-16: SPHASEx: PWMx SECONDARY PHASE-SHIFT REGISTER (x = 1 to 5)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SPHAS	SEx<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SPHA	SEx<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplen				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		

bit 15-0 **SPHASEx<15:0>:** Secondary Phase Offset for PWMxL Output Pin bits (used in Independent PWM mode only)

- **Note 1:** If PWMCONx<9> = 0, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); SPHASEx<15:0> = Not used
 - True Independent Output mode (IOCONx<11:10> = 11), PHASEx<15:0> = Phase-shift value for PWMxL only
 - **2:** If PWMCONx<9> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); SPHASEx<15:0> = Not used
 - True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Independent time base period value for PWMxL only
 - When the PHASEx/SPHASEx registers provide the local period, the valid range of values is 0x0010-0xFFF8

REGISTER 16-2:	SPIxCON1: SPIx CONTROL REGISTER 1
----------------	-----------------------------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾					
bit 15		·					bit					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
SSEN ⁽²⁾		MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾					
bit 7	ora	moren	011122	011121	011120		bit					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-13	-	nted: Read as										
bit 12		able SCKx Pin	•		<i>'</i>)							
		SPIx clock is di	•	ctions as I/O								
bit 11	0 = Internal SPIx clock is enabled DISSDO: Disable SDOx Pin bit											
		1 = SDOx pin is not used by the module; pin functions as I/O										
		n is controlled b										
bit 10	MODE16: Word/Byte Communication Select bit											
		 1 = Communication is word-wide (16 bits) 1 = Communication is byte-wide (8 bits) 										
		-										
bit 9		ata Input Sam	ole Phase bit									
	Master Mode		the end of da	ta output time								
		 I = Input data is sampled at the end of data output time Input data is sampled at the middle of data output time 										
	<u>Slave Mode:</u> SMP must be cleared when SPIx is used in Slave mode.											
bit 8	CKE: SPIx C	lock Edge Sele	ect bit ⁽¹⁾									
					clock state to lo ock state to activ							
bit 7		 0 = Serial output data changes on transition from Idle clock state to active clock state (refer to bit 6) SSEN: Slave Select Enable bit (Slave mode)⁽²⁾ 										
		s used for Slav		is controlled h	by port function							
bit 6	-	Polarity Select	-									
	1 = Idle state	for clock is a h	nigh level; activ									
bit 5		ster Mode Enal										
	1 = Master m 0 = Slave mo	node										
Note 1: Th	e CKE bit is not		d SPI modes. I	Program this bi	t to '0' for Fram	ed SPI modes (FRMEN =					
0. Th												

- **2:** This bit must be cleared when FRMEN = 1.
- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

REGISTER 17-3: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	ACKTIM	0-0		BCL	GCSTAT	ADD10
bit 15	IRSIAI	ACKTIW	_	—	BCL	GCSTAT	
DIL 15							bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7			•		•		bit 0
Legend:		C = Clearab	le bit	HS = Hardware	e Settable bit	HSC = Hardware Se	ttable/Clearable bit
R = Readab	ole bit	W = Writable	e bit	'0' = Bit is clear	red	x = Bit is unknown	
-n = Value a	it POR	'1' = Bit is se	et	U = Unimplem	ented bit, read	as '0'	
					120	P I.I. I	
bit 15		-	-	nen operating a	s I ² C master, a	pplicable to master tra	insmit operation)
		was received as received f					
				f a slave Ackno	wledge.		
bit 14	TRSTAT: T	ransmit Statu	s bit (when o	perating as I ² C	C master, appli	cable to master trans	mit operation)
		transmit is in	· • ·	,			
		transmit is no			on Hardwara	is clear at the end of sl	lavo Acknowlodgo
bit 13				bit (I ² C Slave r			lave Acknowledge.
DIC 15		•		ence, set on th	• ·	lae of SCL x	
			• .	cleared on the	•	•	
bit 12-11	Unimpleme	ented: Read	as '0'				
bit 10	BCL: Maste	er Bus Collisi	on Detect bit				
				d during a mas	ter operation		
		collision dete s set at detec		collision			
bit 9		Seneral Call S		comsion.			
bit o		l call address		ed			
	0 = Genera	I call address	s was not rec	eived			
				nes the general	call address.	Hardware is clear at S	Stop detection.
bit 8		-Bit Address					
		ddress was i ddress was i					
				2nd byte of th	e matched 10	-bit address. Hardwa	re is clear at Stop
	detection.			-			
bit 7		Cx Write Coll					
			o the I2CxTF	RN register faile	ed because the	e I ² C module is busy	
	0 = No colli Hardware is		ccurrence of	a write to I2Cx	TRN while bus	sy (cleared by softwar	e).
bit 6		x Receive O				, (,	- /
	1 = A byte v	was received	-		r was still hold	ing the previous byte	
	0 = No over Hardware is		tempt to tran	sfer I2CxRSR f	o I2CxRCV (c	leared by software).	
bit 5		Address bit (-				
		es that the la		• ·			
	0 = Indicate	es that the las	st byte receiv	ed was a devic			
	Hardware is	s clear at a d	evice addres	s match. Hardw	vare is set by	reception of a slave b	yte.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual" for information on enabling the UARTx module for transmit operation.

19.0 HIGH-SPEED, 12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (DS70005213) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33EPXXGS50X devices have a high-speed, 12-bit Analog-to-Digital Converter (ADC) that features a low conversion latency, high resolution and oversampling capabilities to improve performance in AC/DC, DC/DC power converters.

19.1 Features Overview

The High Speed, 12-Bit Multiple SARs Analog-to-Digital Converter (ADC) includes the following features:

- Five ADC Cores: Four Dedicated Cores and One Shared (Common) Core
- User-Configurable Resolution of up to 12 Bits for each Core
- Up to 3.25 Msps Conversion Rate per Channel at 12-Bit Resolution
- Low-Latency Conversion
- Up to 22 Analog Input Channels, with a Separate 16-Bit Conversion Result Register for each Input
- Conversion Result can be Formatted as Unsigned or Signed Data, on a per Channel Basis, for All Channels
- Single-Ended and Pseudodifferential Conversions are available on All ADC Cores

- Simultaneous Sampling of up to 5 Analog Inputs
- Channel Scan Capability
- Multiple Conversion Trigger Options for each Core, including:
 - PWM1 through PWM5 (primary and secondary triggers, and current-limit event trigger)
 - PWM Special Event Trigger
 - Timer1/Timer2 period match
 - Output Compare 1 and event trigger
 - External pin trigger event (ADTRG31)
 - Software trigger
- Two Integrated Digital Comparators with Dedicated Interrupts:
 - Multiple comparison options
 - Assignable to specific analog inputs
- Two Oversampling Filters with Dedicated Interrupts:
 - Provide increased resolution
 - Assignable to a specific analog input

The module consists of five independent SAR ADC cores. Simplified block diagrams of the Multiple SARs 12-Bit ADC are shown in Figure 19-1, Figure 19-2 and Figure 19-3.

The analog inputs (channels) are connected through multiplexers and switches to the Sample-and-Hold (S&H) circuit of each ADC core. The core uses the channel information (the output format, the measurement mode and the input number) to process the analog sample. When conversion is complete, the result is stored in the result buffer for the specific analog input, and passed to the digital filter and digital comparator if they were configured to use data from this particular channel.

The ADC module can sample up to five inputs at a time (four inputs from the dedicated SAR cores and one from the shared SAR core). If multiple ADC inputs request conversion on the shared core, the module will convert them in a sequential manner, starting with the lowest order input.

The ADC provides each analog input the ability to specify its own trigger source. This capability allows the ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—		SYNCTRG3	SYNCTRG2	SYNCTRG1	SYNCTRGO
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_		_	SAMC3EN	SAMC2EN	SAMC1EN	SAMCOEN
oit 7							bit (
_egend:							
-egend. R = Readab	le hit	W = Writable	hit	II = I Inimplem	ented bit, read	l as 'N'	
n = Value a		'1' = Bit is set		0' = Bit is clea		x = Bit is unkr	own
oit 15-12	Unimpleme	ented: Read as '	0'				
pit 11	SYNCTRG3	: Dedicated AD	C Core 3 Trigg	ger Synchronizat	ion bit		
				core source cloc	k (TCORESRC)		
		C core triggers a	-				
bit 10				ger Synchronizat			
		ers are synchror C core triggers a		core source cloc onized	K (ICORESRC)		
oit 9			-	ger Synchronizat	ion bit		
				core source cloc			
		C core triggers a			. ,		
oit 8	SYNCTRG	: Dedicated AD	C Core 0 Trigg	ger Synchronizat	ion bit		
		ers are synchror C core triggers a		core source cloc onized	k (TCORESRC)		
oit 7-4		ented: Read as '	-				
oit 3	SAMC3EN:	Dedicated ADC	Core 3 Conve	ersion Delay Ena	ble bit		
				elayed and the		continue samp	ling during the
				s in the ADCORE			-4
		gger, the sampli re clock cycle	ng will be sto	pped immediatel	y and the conv	version will be	started on the
oit 2	SAMC2EN:	Dedicated ADC	Core 2 Conve	ersion Delay Ena	ble bit		
				elayed and the A		continue samp	ling during the
				s in the ADCORE		eraion will be	atartad an the
		re clock cycle	ng will be sto	pped immediatel	y and the com		started on the
oit 1		-	Core 1 Conve	ersion Delay Ena	ble bit		
				elayed and the A		continue samp	ling during the
				s in the ADCORE			
		gger, the sampli re clock cycle	ng will be sto	pped immediatel	y and the conv	version will be	started on the
oit O		-	Core 0 Conve	ersion Delay Ena	ble bit		
				elayed and the A		continue samp	ling during the
				s in the ADCORE		-	-
				pped immediatel			

DIFF7 SIGN7 DIFF6 SIGN6 DIFF5 SIGN5 DIFF4 SIGN bit 15								
bit 15 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DIFF3 SIGN3 DIFF2 SIGN2 DIFF1 SIGN1 DIFF0 SIGN	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
R/W-0R/W-0R/W-0R/W-0R/W-0R/W-0DIFF3SIGN3DIFF2SIGN2DIFF1SIGN1DIFF0SIGN	DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF4	SIGN4
DIFF3 SIGN3 DIFF2 SIGN2 DIFF1 SIGN1 DIFF0 SIGN	bit 15		•	•	•	•		bit 8
DIFF3 SIGN3 DIFF2 SIGN2 DIFF1 SIGN1 DIFF0 SIGN								
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7	DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0
	bit 7		•	•	•	•	•	bit 0

REGISTER 19-19: ADMOD0L: ADC INPUT MODE CONTROL REGISTER 0 LOW

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1(odd) **DIFF<7:0>:** Differential-Mode for Corresponding Analog Inputs bits

1 = Channel is differential

- 0 = Channel is single-ended
- bit 14-0 (even) **SIGN<7:0>:** Output Data Sign for Corresponding Analog Inputs bits
 - 1 = Channel output data is signed
 - 0 = Channel output data is unsigned

REGISTER 19-20: ADMOD0H: ADC INPUT MODE CONTROL REGISTER 0 HIGH

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| DIFF15 | SIGN15 | DIFF14 | SIGN14 | DIFF13 | SIGN13 | DIFF12 | SIGN12 |
| bit 15 | | | | | | | bit 8 |

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF11	SIGN11	DIFF10	SIGN10	DIFF9	SIGN9	DIFF8	SIGN8
bit 7							bit 0

Legend:				
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-1(odd) DIFF<15:8>: Differential-Mode for Corresponding Analog Inputs bits

- 1 = Channel is differential
- 0 = Channel is single-ended

bit 14-0 (even) SIGN<15:8>: Output Data Sign for Corresponding Analog Inputs bits

- 1 = Channel output data is signed
- 0 = Channel output data is unsigned

REGISTER 19-27: ADTRIGXH: ADC CHANNEL TRIGGER x SELECTION REGISTER HIGH (x = 0 to 5)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	_	TRGSRC(4x+3)<4:0>						
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	_	TRGSRC(4x+2)<4:0>						
bit 7							bit 0		

Legend:

•				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 TRGSRC(4x+3)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits

TRGSRC(4x+3)<4:0>: Ingger Source Selection T
11111 = ADTRG31
11110 = Reserved
11101 = Reserved
11100 = PWM Generator 5 current-limit trigger
11011 = PWM Generator 4 current-limit trigger
11010 = PWM Generator 3 current-limit trigger
11001 = PWM Generator 2 current-limit trigger
11000 = PWM Generator 1 current-limit trigger
10111 = Output Compare 2 trigger
10110 = Output Compare 1 trigger
10101 = Reserved
10100 = Reserved
10011 = PWM Generator 5 secondary trigger
10010 = PWM Generator 4 secondary trigger
10001 = PWM Generator 3 secondary trigger
10000 = PWM Generator 2 secondary trigger
01111 = PWM Generator 1 secondary trigger
01110 = PWM secondary Special Event Trigger
01101 = Timer2 period match
01100 = Timer1 period match
01011 = Reserved
01010 = Reserved
01001 = PWM Generator 5 primary trigger
01000 = PWM Generator 4 primary trigger
00111 = PWM Generator 3 primary trigger
00110 = PWM Generator 2 primary trigger
00101 = PWM Generator 1 primary trigger
00100 = PWM Special Event Trigger
00011 = Reserved
00010 = Level software trigger
00001 = Common software trigger
00000 = No trigger is enabled
Unimplemented: Read as '0'

bit 7-5

23.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXGS50X family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

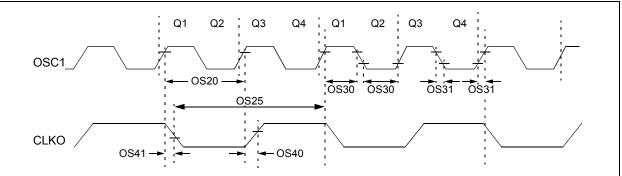
- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

23.1 Configuration Bits

In dsPIC33EPXXGS50X family devices, the Configuration Words are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored at the end of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 23-1 with detailed descriptions in Table 23-2. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration Shadow registers during device Resets.

For devices operating in Dual Partition modes, the BSEQx bits (FBTSEQ<11:0>) determine which panel is the Active Partition at start-up and the Configuration Words from that panel are loaded into the Configuration Shadow registers.

Note:	Configuration data is reloaded on all types
	of device Resets.


When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Words for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled. Program code executing out of configuration space will cause a device Reset.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words.

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers \in {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

FIGURE 26-2: EXTERNAL CLOCK TIMING

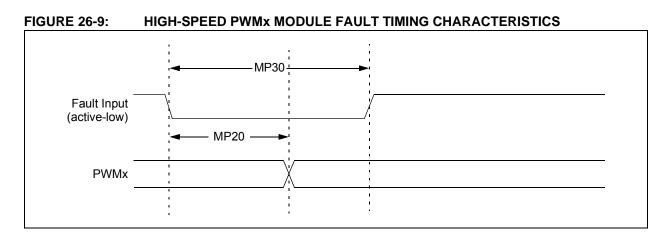
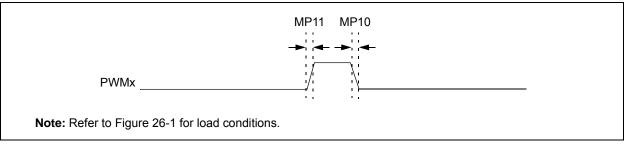

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symb	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
OS10 FIN		External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	60	MHz	EC
		Oscillator Crystal Frequency	3.5 10		10 40	MHz MHz	XT HS
OS20	Tosc	Tosc = 1/Fosc	8.33		DC	ns	+125°C
		Tosc = 1/Fosc	7.14		DC	ns	+85°C
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67		DC	ns	+125°C
		Instruction Cycle Time ⁽²⁾	14.28	_	DC	ns	+85°C
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.2		ns	
OS41	TckF	CLKO Fall Time ^(3,4)	—	5.2	_	ns	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	_	mA/V	HS, VDD = 3.3V, TA = +25°C
			—	6	_	mA/V	XT, VDD = 3.3V, TA = +25°C

TABLE 26-17: EXTERNAL CLOCK TIMING REQUIREMENTS


Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized but not tested in manufacturing.

FIGURE 26-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

TABLE 26-30: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
MP10	TFPWM	PWMx Output Fall Time	—	—	—	ns	See Parameter DO32
MP11	TRPWM	PWMx Output Rise Time	_	_	_	ns	See Parameter DO31
MP20	Tfd	Fault Input ↓ to PWMx I/O Change	_	_	15	ns	
MP30	Tfh	Fault Input Pulse Width	15	—	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

NOTES:

SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	332
Timer1-Timer5 External Clock Characteristics	321
UARTx I/O Characteristics	342

U

Unique Device Identifier (UDID) Universal Asynchronous Receiver	31				
Transmitter (UART)					
Control Registers					
Helpful Tips					
Resources	224				
Universal Asynchronous Receiver Transmitter. See UART.					
User OTP Memory					

۷

285
. 277, 286
286
384
10

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820