

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs504t-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5.2 EXTENDED X DATA SPACE

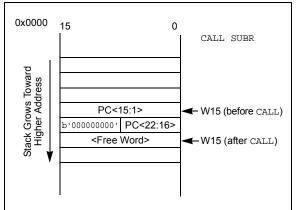
The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible, regardless of the contents of the Data Space Page register. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space in combination with DSRPAG = 0x00. Consequently, DSRPAG is initialized to 0x001 at Reset.

- Note 1: DSRPAG should not be used to access Page 0. An EDS access with DSRPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSRPAG in software has no effect.

The remaining PSV pages are only accessible using the DSRPAG register in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

4.5.3 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP), and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the Stack Pointer (for example, creating stack frames).


Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the
	hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXGS50X devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-11 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes). When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-11. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-11: CALL STACK FRAME

4.9 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXGS50X family architecture uses a 24-bit wide Program Space (PS) and a 16-bit wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EPXXGS50X family devices provides two methods by which Program Space can be accessed during operation:

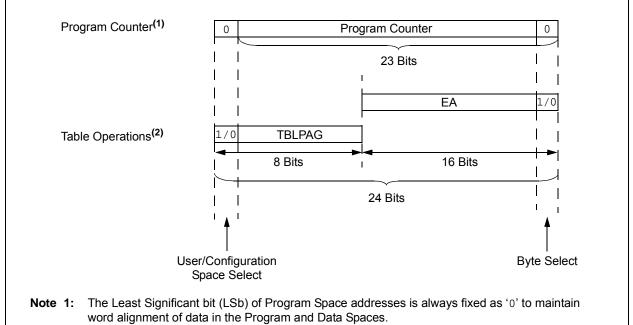

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-40: PROGRAM SPACE ADDRESS CONSTRUCTION

Access Type	Access	Program Space Address					
	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access (Code Execution)	User	0 PC<22:1> 0				0	
			0xxx xxxx x	xxx xxx	x xxxx xxx0		
TBLRD/TBLWT (Byte/Word Read/Write)	User	TB	LPAG<7:0>		Data EA<15:0>		
		0	xxx xxxx	XXXX		xx	
	Configuration	TBLPAG<7:0>		Data EA<15:0>			
		1	xxx xxxx	xxxx xxxx xxxx xxxx			

FIGURE 4-14: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

2: Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/SO-0(¹⁾ R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	R/C-0	R-0	R/W-0	R/C-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	SFTSWP ⁽⁶⁾	P2ACTIV ⁽⁶⁾	RPDF	URERR
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^(3,4)
bit 7							bit 0
Legend:		C = Clearab	le bit	SO = Settable	Only bit		
R = Reada	able bit	W = Writable	e bit	U = Unimplem	ented bit, read a	as '0'	
-n = Value	at POR	'1' = Bit is se	et	'0' = Bit is clea	red	x = Bit is unkn	own
bit 15	WR: Write Co						
					on; the operation	on is self-timed	and the bit is
				tion is complete ete and inactive			
bit 14	WREN: Write	-	-		-		
			m/erase operat	ions			
			/erase operation				
bit 13			Error Flag bit ⁽¹				
				ce attempt, or te	rmination has o	ccurred (bit is se	et automatically
	•	et attempt of the second se		pleted normally	,		
bit 12			le Control bit ⁽²⁾				
				ndby mode dur	ing Idle mode		
		• •	or is active duri	•	0		
bit 11	SFTSWP: Pa	artition Soft Sv	vap Status bit ^{(€}	5)			
					e BOOTSWP inst		
			artition swap us sed on FBTSE		P instruction or	a device Reset	will determine
bit 10	P2ACTIV: Pa			C .			
			apped into the a	active region			
			apped into the a	•			
bit 9	RPDF: Row F	Programming	Data Format b	it			
				npressed forma			
	0 = Row data	a to be stored	in RAM in und	ompressed forr	nat		
Note 1:	These bits can on	ly be reset or	a POR.				
2:	If this bit is set, po				DLE) and upon e	exiting Idle mod	e, there is a
•	delay (TVREG) bef		-	-			
	All other combinat			•		ana ara in prag	~~~~
4: 5:	Execution of the I Two adjacent wor		-	-	-		
5. 6:	Only available on		-		-	-	
0.	this bit is reserved						
7:	The specific Boot			of the program	med data:		
	11 = Single Partitio						
	10 = Dual Partitio 01 = Protected Du						
	00 = Reserved						

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS7000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXGS50X family CPU.

The interrupt controller has the following features:

- Six processor exceptions and software traps
- · Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Fixed interrupt entry and return latencies
- Alternate Interrupt Vector Table (AIVT) for debug support

7.1 Interrupt Vector Table

The dsPIC33EPXXGS50X family Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location, 000004h. The IVT contains six non-maskable trap vectors and up to 246 sources of interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-2, is available only when the Boot Segment is defined and the AIVT has been enabled. To enable the Alternate Interrupt Vector Table, the Configuration bit, AIVTDIS in the FSEC register, must be programmed and the AIVTEN bit must be set (INTCON2<8> = 1). When the AIVT is enabled, all interrupt and exception processes use the alternate vectors instead of the default vectors. The AIVT begins at the start of the last page of the Boot Segment, defined by BSLIM<12:0>. The second half of the page is no longer usable space. The Boot Segment must be at least 2 pages to enable the AIVT.

Note: Although the Boot Segment must be enabled in order to enable the AIVT, application code does not need to be present inside of the Boot Segment. The AIVT (and IVT) will inherit the Boot Segment code protection.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXGS50X family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
GIE	DISI	SWTRAP	_	_	_		AIVTEN			
bit 15							bit			
U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
		—	INT4EP		INT2EP	INT1EP	INT0EP			
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown			
bit 15	GIE: Global	Interrupt Enable	e bit							
		ts and associate								
		ts are disabled, I	•	till enabled						
bit 14		Instruction Statu								
		struction is active struction is not a								
bit 13										
DIL 15		SWTRAP: Software Trap Status bit 1 = Software trap is enabled								
		e trap is disabled								
bit 12-9	Unimpleme	ented: Read as '	0'							
bit 8	AIVTEN: Al	ternate Interrupt	Vector Table E	Enable						
		ternate Interrupt								
		andard Interrupt								
bit 7-5	-	ented: Read as '								
bit 4		ternal Interrupt 4	-	Polarity Selec	ct bit					
	•	t on negative edg t on positive edg	•							
bit 3	-	ented: Read as '								
bit 2	-	ternal Interrupt 2		Polarity Selec	rt hit					
SIL 2		t on negative ed	0							
		t on positive edg								
bit 1	INT1EP: Ex	ternal Interrupt 1	Edge Detect	Polarity Selec	ct bit					
		t on negative ed								
	•	t on positive edg								
bit 0		ternal Interrupt (-	Polarity Selec	ct bit					
		t on negative edg								
	0 = memup	t on positive edg	e							

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

10.5 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 26-11 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1; this indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristics specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the Absolute Maximum Ratings in Section 26.0 "Electrical Characteristics" of this data sheet. For example:

Vон = 2.4v @ Iон = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in **Section 27.0 "DC and AC Device Characteristics Graphs"** for additional information.

REGISTER 10-14: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SCK2INR7	SCK2INR6	SCK2INR5	SCK2INR4	SCK2INR3	SCK2INR2	SCK2INR1	SCK2INR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit (
Legend:							
R = Readable bit		W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
	10110100 = • • 00000001 =	Input tied to Rf Input tied to Rf Input tied to Rf Input tied to Vs	2180 21				
bit 7-0	10110101 =	Input tied to RF Input tied to RF	2181 2180	12) to the Corre	esponding RPn	Pin bits	

12.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare modules (Timer2 and Timer3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1. T3CON and T5CON are shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 12-2.

12.1 Timer Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

12.1.1 KEY RESOURCES

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 12-2:	TyCON: ((TIMER3 AND TIMER	5) CONTROL REGISTER
-----------------------	----------	-------------------	---------------------

TON ⁽¹⁾		R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL ⁽²⁾	—	_	_	_	_
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
_	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	_	_	TCS ^(1,3)	_
bit 7							bit
Legend:							
R = Readable	hit	W = Writable	hit	= Inimpler	mented bit, rea	ad as 'O'	
-n = Value at I		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	מעאר
	FOR	I - DILISSEL			aleu		50011
bit 15	TON: Timery	On bit ⁽¹⁾					
	1 = Starts 16-	•					
	0 = Stops 16-	bit Timery					
bit 14	•	ted: Read as '					
bit 13	TSIDL: Timer	y Stop in Idle M	lode bit ⁽²⁾				
		ues module op			dle mode		
		s module opera		ode			
bit 12-7	-	ted: Read as '		(4)			
bit 6		ery Gated Time	Accumulation	Enable bit ⁽¹⁾			
	When TCS = This bit is ign						
	When TCS =						
		<u>o.</u> le accumulatior	n is enabled				
		e accumulation					
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescal	e Select bits ⁽¹⁾	1		
	11 = 1:256						
	10 = 1:64						
	01 = 1:8 00 = 1:1						
bit 3-2		ted: Read as '	ı'				
bit 1	-	Clock Source S					
		clock is from pir		e risina edae)			
	0 = Internal c			c rising cage)			
bit 0		ted: Read as ')'				
				1), these bits	have no effec	t on Timery operat	tion; all time
	ictions are set th	•		1) in the Time-	v Control rogi	ster (TxCON<3>),	

2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all devices. See the "Pin Diagrams" section for the available pins.

REGISTER 15-20: IOCONX: PWMx I/O CONTROL REGISTER (x = 1 to 5) (CONTINUED)

bit 3-2	CLDAT<1:0>: State for PWMxH and PWMxL Pins if CLMOD is Enabled bits ⁽²⁾
	IFLTMOD (FCLCONx<15>) = 0: Normal Fault Mode:
	If current limit is active, then CLDAT1 provides the state for the PWMxH pin.
	If current limit is active, then CLDAT0 provides the state for the PWMxL pin.
	IFLTMOD (FCLCONx<15>) = 1: Independent Fault Mode:
	CLDAT<1:0> bits are ignored.
bit 1	SWAP: SWAP PWMxH and PWMxL Pins bit
	 1 = PWMxH output signal is connected to the PWMxL pins; PWMxL output signal is connected to the PWMxH pins
	0 = PWMxH and PWMxL pins are mapped to their respective pins
bit 0	OSYNC: Output Override Synchronization bit
	 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWMx time base 0 = Output overrides via the OVRDAT<1:0> bits occur on the next CPU clock boundary

- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: State represents the active/inactive state of the PWMx depending on the POLH and POLL bits settings.

REGISTER 15-21: TRIGX: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER (x = 1 to 5)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<12:5>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		TRGCMP<4:0>	>		_	_	_
bit 7					·		bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-3 **TRGCMP<12:0>:** Trigger Compare Value bits When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADC module.

bit 2-0 Unimplemented: Read as '0'

R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 **HRPDIS HRDDIS** ____ BLANKSEL3 BLANKSEL2 BLANKSEL1 **BLANKSEL0** _ bit 15 bit 8 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN bit 7 bit 0 Leaend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 HRPDIS: High-Resolution PWMx Period Disable bit 1 = High-resolution PWMx period is disabled to reduce power consumption 0 = High-resolution PWMx period is enabled bit 14 HRDDIS: High-Resolution PWMx Duty Cycle Disable bit 1 = High-resolution PWMx duty cycle is disabled to reduce power consumption 0 = High-resolution PWMx duty cycle is enabled bit 13-12 Unimplemented: Read as '0' bit 11-8 BLANKSEL<3:0>: PWMx State Blank Source Select bits The selected state blank signal will block the current-limit and/or Fault input signals (if enabled via the BCH and BCL bits in the LEBCONx register). 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM5H is selected as the state blank source 0100 = PWM4H is selected as the state blank source 0011 = PWM3H is selected as the state blank source 0010 = PWM2H is selected as the state blank source 0001 = PWM1H is selected as the state blank source 0000 = No state blanking bit 7-6 Unimplemented: Read as '0' bit 5-2 CHOPSEL<3:0>: PWMx Chop Clock Source Select bits The selected signal will enable and disable (chop) the selected PWMx outputs. 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM5H is selected as the chop clock source 0100 = PWM4H is selected as the chop clock source 0011 = PWM3H is selected as the chop clock source 0010 = PWM2H is selected as the chop clock source 0001 = PWM1H is selected as the chop clock source 0000 = Chop clock generator is selected as the chop clock source bit 1 **CHOPHEN:** PWMxH Output Chopping Enable bit 1 = PWMxH chopping function is enabled 0 = PWMxH chopping function is disabled bit 0 CHOPLEN: PWMxL Output Chopping Enable bit 1 = PWMxL chopping function is enabled 0 = PWMxL chopping function is disabled

REGISTER 15-26: AUXCONx: PWMx AUXILIARY CONTROL REGISTER (x = 1 to 5)

17.0 INTER-INTEGRATED CIRCUIT (I²C)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit (I²C)" (DS70000195) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family of devices contains two Inter-Integrated Circuit (I 2 C) modules: I2C1 and I2C2.

The I^2C module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx/ASCLx pin is clock
- · The SDAx/ASDAx pin is data

The I²C module offers the following key features:

- I²C Interface Supporting Both Master and Slave modes of Operation
- I²C Slave mode Supports 7 and 10-Bit Addressing
- I²C Master mode Supports 7 and 10-Bit Addressing
- I²C Port allows Bidirectional Transfers between Master and Slaves
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates accordingly
- System Management Bus (SMBus) Support
- Alternate I²C Pin Mapping (ASCLx/ASDAx)

17.1 I²C Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

17.1.1 KEY RESOURCES

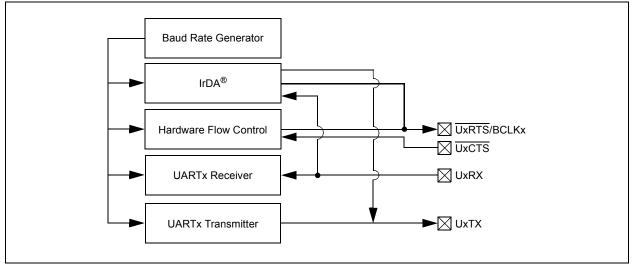
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXGS50X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.


The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps in 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps in 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit Mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 18-1. The UARTx module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UARTX SIMPLIFIED BLOCK DIAGRAM

REGISTER 19-15: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN	<7:0>			
bit 7							bit 0
<u> </u>							
Legend:							

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 EIEN<15:0>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 19-16: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			EIEN<	21:16>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 EIEN<21:16>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or table read is performed. In these cases, the execution takes multiple instruction cycles,

Slit6

Wb

Wd

Wdo

Wm,Wn

with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the "16-bit MCU and DSC Programmer's Reference Manual' (DS70157).

#textMeans literal defined by "text"(text)Means "content of text"[text]Means "the location addressed by text" $\{\}$ Optional field or operation $a \in \{b, c, d\}$ a is selected from the set of values b, c, d <n:m>Register bit field.bByte mode selection</n:m>	
[text] Means "the location addressed by text" {} Optional field or operation a ∈ {b, c, d} a is selected from the set of values b, c, d <n:m> Register bit field</n:m>	
$a \in \{b, c, d\}$ a is selected from the set of values b, c, d $$ Register bit field	
<n:m> Register bit field</n:m>	
.b Byte mode selection	
.d Double-Word mode selection	
.S Shadow register select	
.w Word mode selection (default)	
Acc One of two accumulators {A, B}	
AWB Accumulator write-back destination address register \in {W13, [W13]+ = 2}	
bit4 4-bit bit selection field (used in word addressed instructions) $\in \{015\}$	
C, DC, N, OV, Z MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero	
Expr Absolute address, label or expression (resolved by the linker)	
f File register address $\in \{0x00000x1FFF\}$	
lit1 1-bit unsigned literal $\in \{0,1\}$	
lit4 4-bit unsigned literal $\in \{015\}$	
lit5 5-bit unsigned literal $\in \{031\}$	
lit8 8-bit unsigned literal $\in \{0255\}$	
lit10 10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode	
lit14 14-bit unsigned literal $\in \{016384\}$	
lit16 16-bit unsigned literal $\in \{065535\}$	
lit23 23-bit unsigned literal \in {08388608}; LSb must be '0'	
None Field does not require an entry, can be blank	
OA, OB, SA, SB DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate	
PC Program Counter	
Slit10 10-bit signed literal ∈ {-512511}	
Slit16 16-bit signed literal ∈ {-3276832767}	

Destination W register ∈ { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }

{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }

Dividend, Divisor Working register pair (direct addressing)

6-bit signed literal \in {-16...16}

Base W register \in {W0...W15}

Destination W register \in

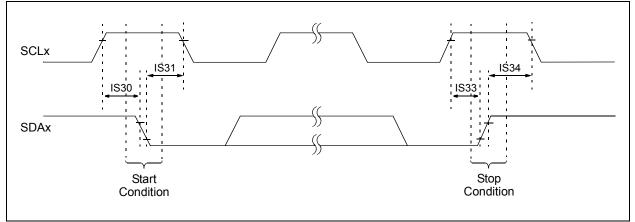
TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
55	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
56	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
57	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
58	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
59	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
60	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
61	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 time	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 time	1	1	None
62	RESET	RESET		Software device Reset	1	1	None
63	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
64	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
65	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
66	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
67	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
68	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
69	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
70	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
71	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
72	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
73	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

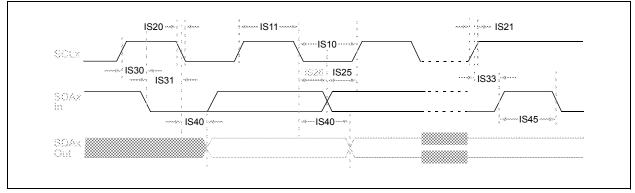
TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Тур.	Max.	Units	Conditions			
Idle Current (II	dle) ⁽¹⁾						
DC40d	2	4	mA	-40°C			
DC40a	2	4	mA	+25°C	2 2)/	10 MIPS	
DC40b	2	4	mA	+85°C	3.3V	TO MIES	
DC40c	2	4	mA	+125°C			
DC42d	3	6	mA	-40°C			
DC42a	3	6	mA	+25°C	- 3.3V	20 MIPS	
DC42b	3	6	mA	+85°C		20 MIF 3	
DC42c	3	6	mA	+125°C			
DC44d	6	12	mA	-40°C			
DC44a	6	12	mA	+25°C	- 3.3V	40 MIPS	
DC44b	6	12	mA	+85°C	3.3V	40 MIF 3	
DC44c	6	12	mA	+125°C			
DC45d	8	15	mA	-40°C			
DC45a	8	15	mA	+25°C	- 3.3V	60 MIPS	
DC45b	8	15	mA	+85°C	3.3V	OU IVIIPS	
DC45c	8	15	mA	+125°C]		
DC46d	10	20	mA	-40°C			
DC46a	10	20	mA	+25°C	3.3V	70 MIPS	
DC46b	10	20	mA	+85°C]		

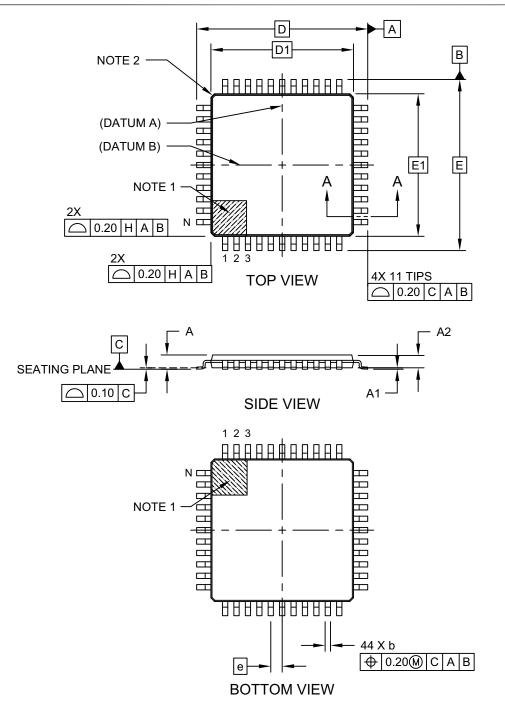

TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (lidle)

Note 1: Base Idle current (IIDLE) is measured as follows:


 CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

FIGURE 26-21: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)



44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2

	440
REFOCON (Reference Oscillator Control)	
RPINR0 (Peripheral Pin Select Input 0)	134
RPINR1 (Peripheral Pin Select Input 1)	
RPINR11 (Peripheral Pin Select Input 11)	
RPINR12 (Peripheral Pin Select Input 12)	
RPINR13 (Peripheral Pin Select Input 13)	
RPINR18 (Peripheral Pin Select Input 18)	142
RPINR19 (Peripheral Pin Select Input 19)	
RPINR2 (Peripheral Pin Select Input 2)	
RPINR20 (Peripheral Pin Select Input 20)	
RPINR21 (Peripheral Pin Select Input 21)	
RPINR22 (Peripheral Pin Select Input 22)	146
RPINR23 (Peripheral Pin Select Input 23)	147
RPINR3 (Peripheral Pin Select Input 3)	
RPINR37 (Peripheral Pin Select Input 37)	
RPINR38 (Peripheral Pin Select Input 38)	
RPINR42 (Peripheral Pin Select Input 42)	
RPINR43 (Peripheral Pin Select Input 43)	151
RPINR7 (Peripheral Pin Select Input 7)	137
RPINR8 (Peripheral Pin Select Input 8)	
RPOR0 (Peripheral Pin Select Output 0)	
RPOR1 (Peripheral Pin Select Output 1)	
RPOR10 (Peripheral Pin Select Output 10)	
RPOR11 (Peripheral Pin Select Output 11)	157
RPOR12 (Peripheral Pin Select Output 12)	158
RPOR13 (Peripheral Pin Select Output 13)	
RPOR14 (Peripheral Pin Select Output 14)	
RPOR15 (Peripheral Pin Select Output 15)	
RPOR16 (Peripheral Pin Select Output 16)	
RPOR17 (Peripheral Pin Select Output 17)	160
RPOR18 (Peripheral Pin Select Output 18)	
RPOR2 (Peripheral Pin Select Output 2)	
RPOR3 (Peripheral Pin Select Output 3)	
RPOR4 (Peripheral Pin Select Output 4)	
RPOR5 (Peripheral Pin Select Output 5)	154
RPOR6 (Peripheral Pin Select Output 6)	155
RPOR7 (Peripheral Pin Select Output 7)	
RPOR8 (Peripheral Pin Select Output 8)	
RPOR9 (Peripheral Pin Select Output 9)	
SDCx (PWMx Secondary Duty Cycle)	
SEVTCMP (PWMx Special Event Compare)	187
SPHASEx (PWMx Secondary Phase-Shift)	196
SPIxCON1 (SPIx Control 1)	
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	
SR (CPU STATUS)	6, 95
SSEVTCMP (PWMx Secondary	
Special Event Compare)	190
STCON (PWMx Secondary Master	
Time Base Control)	188
	100
STCON2 (PWMx Secondary Clock Divider	
Select 2)	189
STPER (PWMx Secondary Master	
Time Base Period)	189
STRIGx (PWMx Secondary Trigger	
Compare Value)	202
• •	
T1CON (Timer1 Control)	
TRGCONx (PWMx Trigger Control)	198
TRIGx (PWMx Primary Trigger	
Compare Value)	200
TxCON (Timer2/4 Control)	
TyCON (Timer3/5 Control)	100
	170
UXMODE (UARTx Mode) UxSTA (UARTx Status and Control)	170 225

Resets
Brown-out Reset (BOR)85
Configuration Mismatch Reset (CM) 85
Illegal Condition Reset (IOPUWR)
Illegal Opcode
Security
Uninitialized W Register 85
Master Clear (MCLR) Pin Reset
Power-on Reset (POR) 85
RESET Instruction (SWR)
Resources
Trap Conflict Reset (TRAPR) 85
Watchdog Timer Time-out Reset (WDTO) 85
Revision History
S
Serial Peripheral Interface (SPI) 207
Serial Peripheral Interface. See SPI.
Software Simulator
MPLAB X SIM 301
Special Features of the CPU
SPI
Control Registers
Helpful Tips
Resources

т

Thermal Operating Conditions	304
Thermal Packaging Characteristics	304
Third-Party Development Tools	302
Timer1	163
Control Register	165
Mode Settings	163
Resources	164
Timer2/3 and Timer4/5	167
Control Registers	169
Resources	167
Timing Diagrams	
BOR and Master Clear Reset Characteristics	
External Clock	
High-Speed PWMx Fault Characteristics	
High-Speed PWMx Module Characteristics	
I/O Characteristics	
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	
Input Capture x (ICx) Characteristics	
OCx/PWMx Characteristics	
Output Compare x (OCx) Characteristics	324
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	329
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	328
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	326
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	327
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	336
SPIx Slave Mode (Full-Duplex, CKE = 0 ,	<u> </u>
CKP = 1, SMP = 0)	334
SPIx Slave Mode (Full-Duplex, CKE = 1, $CKP = 0$, $CKP = 0$)	
CKP = 0, SMP = 0)	330