

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs504t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description					
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.					
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.					
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.					
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.					
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.					
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.					
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.					
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2.					
TMS	I	ST	No	JTAG Test mode select pin.					
TCK	I	ST	No	JTAG test clock input pin.					
TDI	I	ST	No	JTAG test data input pin.					
TDO	0		No	JTAG test data output pin.					
FLT1-FLT8	Ι	ST	Yes	PWM Fault Inputs 1 through 8.					
FLT9-FLT12	I	ST	No	PWM Fault Inputs 9 through 12.					
FLT31		ST	No	PWM Fault Input 31 (Class B Fault).					
PWM1L-PWM3L	0	_	No	PWM Low Outputs 1 through 3.					
PWM1H-PWM3H	0	_	No	PWM High Outputs 1 through 3.					
PWM4L-PWM5L ⁽²⁾ PWM4H-PWM5H ⁽²⁾	0	_	Yes	PWM Low Outputs 4 and 5.					
SYNCI1, SYNCI2	0	— ST	Yes Yes	PWM High Outputs 4 and 5.					
SYNCO1, SYNCO2	0	51	Yes	PWM Synchronization Inputs 1 and 2. PWM Synchronization Outputs 1 and 2.					
CMP1A-CMP4A		Analog	No	Comparator Channels 1 through 4 A input.					
CMP1B-CMP4B		Analog	No	Comparator Channels 1 through 4 B input.					
CMP1C-CMP4C	i	Analog	No	Comparator Channels 1 through 4 C input.					
CMP1D-CMP4D	i	Analog	No	Comparator Channels 1 through 4 D input.					
DACOUT1, DACOUT2	0		No	DAC Output Voltages 1 and 2.					
EXTREF1, EXTREF2	Ι	Analog	No	External Voltage Reference Inputs 1 and 2 for the reference DACs.					
ISRC1-ISRC4	0	Analog	No	Constant-Current Outputs 1 through 4.					
PGA1P1-PGA1P4	Ι	Analog	No	PGA1 Positive Inputs 1 through 4.					
PGA1N1-PGA1N3	I	Analog	No	PGA1 Negative Inputs 1 through 3.					
PGA2P1-PGA2P4	I	Analog	No	PGA2 Positive Inputs 1 through 4.					
PGA2N1-PGA2N3	I	Analog	No	PGA2 Negative Inputs 1 through 3.					
ADTRG31	Ι	ST	No	External ADC trigger source.					
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.					
PGEC1	Ι	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.					
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.					
PGEC2	Ι	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.					
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.					
PGEC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 3.					

TABLE 1-1:	PINOUT I/O DESCRIPTIONS (CONTINUED)
------------	-------------------------------------

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog inputP = PowerO = OutputI = InputTTL = TTL input buffer

1: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

2: These pins are dedicated on 64-pin devices.

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXGS50X family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXGS50X devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Table 3-1.

TABLE 3-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate 1 Working Register Array
W0 through W14 ⁽¹⁾	Alternate 2 Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Counter Register
DOSTARTH ⁽²⁾ , DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG 0 = Stack frame is not active; W14 and W15 address the base Data Space
bit 1	RND: Rounding Mode Select bit
	1 = Biased (conventional) rounding is enabled0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply
Note 1:	This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0							
—	—	—	—	—	CCTXI2	CCTXI1	CCTXI0							
bit 15		•		bit 8										
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0							
	—	—	_	—	MCTXI2	MCTXI1	MCTXI0							
bit 7							bit 0							
Legend:														
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'								
-n = Value at P	e at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown													

bit 15-11	Unimplemented: Read as '0'
bit 10-8	CCTXI<2:0>: Current (W Register) Context Identifier bits
	111 = Reserved
	•
	•
	•
	011 = Reserved
	010 = Alternate Working Register Set 2 is currently in use
	001 = Alternate Working Register Set 1 is currently in use
	000 = Default register set is currently in use
bit 7-3	Unimplemented: Read as '0'
bit 2-0	MCTXI<2:0>: Manual (W Register) Context Identifier bits
	111 = Reserved
	•
	•
	•
	011 = Reserved
	010 = Alternate Working Register Set 2 was most recently manually selected
	001 = Alternate Working Register Set 1 was most recently manually selected
	000 = Default register set was most recently manually selected

TABLE 4-33: PORTA REGISTER MAP FOR dsPIC33EPXXGS506 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_	_		_				_	_	_			TRISA<4:0>	•		001F
PORTA	0E02	_		—		—					—	—			RA<4:0>			0000
LATA	0E04	_		—		—					—	—	LATA<4:0> 0					0000
ODCA	0E06	_		—		—					—	—			ODCA<4:0>	•		0000
CNENA	0E08	_		—		—					—	—		(CNIEA<4:0	>		0000
CNPUA	0E0A	_		—		—					—	—		C	CNPUA<4:0	>		0000
CNPDA	0E0C	_		—		—					—	—	CNPDA<4:0> 00					0000
ANSELA	0E0E	_	_	_	-	_	-	-	-	_	—	_	_	—		ANSA<2:0>		0007

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PORTB REGISTER MAP FOR dsPIC33EPXXGS506 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10								TRISB<1	5:0>								FFFF
PORTB	0E12								RB<15	:0>								xxxx
LATB	0E14	LATB<15:0> xxxx								xxxx								
ODCB	0E16								ODCB<1	5:0>								0000
CNENB	0E18								CNIEB<1	5:0>								0000
CNPUB	0E1A								CNPUB<	15:0>								0000
CNPDB	0E1C	CNPDB<15:0> 000							0000									
ANSELB	0E1E		_	—	—	—	ANSB<	:10:9>	—		ANSB<7:5>	•	_		ANSE	3<3:0>		06EF

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: PORTC REGISTER MAP FOR dsPIC33EPXXGS506 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	0 TRISC<15:0>												FFFF				
PORTC	0E22		RC<15:0> xxxx										xxxx					
LATC	0E24		LATC<15:0> xxxx									xxxx						
ODCC	0E26								ODCC<1	5:0>								0000
CNENC	0E28								CNIEC<1	5:0>								0000
CNPUC	0E2A								CNPUC<	15:0>								0000
CNPDC	0E2C		CNPDC<15:0> 00								0000							
ANSELC	0E2E	_	_	—		ANSC<	:12:9>		_	—		ANSC<6:4>		—	/	ANSC<2:0>		1E77

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0						
TRAPR	IOPUWR		—	VREGSF		CM	VREGS						
bit 15			L				bit 8						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1						
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR						
bit 7							bit (
Legend:													
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'							
-n = Value at l		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown						
bit 15	TRAPR: Trap	Reset Flag bit											
	-	onflict Reset ha											
	0 = A Trap Co	onflict Reset ha	s not occurre	ed									
bit 14	IOPUWR: Ille	gal Opcode or	Uninitialized	W Register Ac	cess Reset Flag	bit							
	•	•		gal address m	ode or Uninitial	ized W registe	er used as ar						
		Pointer caused		ogistor Posot k	nas not occurred	4							
bit 13-12	-	ited: Read as '		egister Reset i	las not occurred	1							
bit 11	•				n hit								
	VREGSF: Flash Voltage Regulator Standby During Sleep bit 1 = Flash voltage regulator is active during Sleep												
		Itage regulator		•	ing Sleep								
bit 10		ted: Read as '	-	5	0								
bit 9	-	I: Configuration Mismatch Flag bit											
		uration Mismato uration Mismato											
bit 8	VREGS: Volta	age Regulator S	Standby Durir	ng Sleep bit									
	VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator is active during Sleep												
	0 = Voltage r	egulator goes i	nto Standby r	mode during SI	еер								
bit 7		nal Reset (MCL											
		Clear (pin) Res											
bit 6		Clear (pin) Res											
		instruction has	, .										
		instruction has											
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾									
	1 = WDT is e												
	0 = WDT is d	isabled											
bit 4		hdog Timer Tim	-	it									
		e-out has occur e-out has not oc											
			set or cleare	d in software. S	Setting one of th	ese bits in soft	ware does not						
	use a device Re		hite are '11'	(upprogramm)		alwaye anabla	d rogardiaca						
	the SWDTEN< 1:0			unprogramme	ed), the WDT is	aiways enable	u, regardiess						

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

© 2013-2017 Microchip Technology Inc.

of the SWDTEN bit setting.

13.0 INPUT CAPTURE

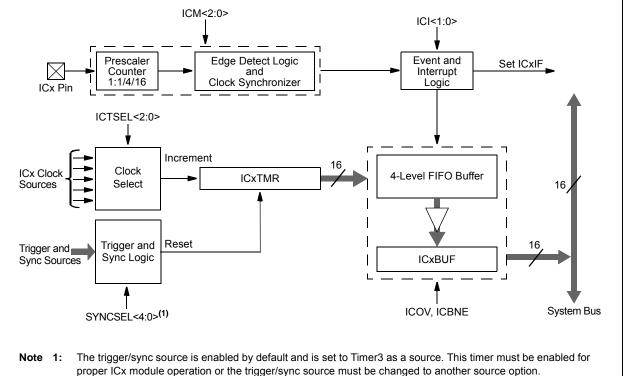
- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70000352) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurements. The dsPIC33EPXXGS50X family devices support four input capture channels.

Key features of the input capture module include:

 Hardware-Configurable for 32-Bit Operation in All modes by Cascading Two Adjacent Modules

- Synchronous and Trigger modes of Output Compare Operation, with up to 21 User-Selectable Trigger/Sync Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to Six Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter


13.1 Input Capture Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

13.1.1 KEY RESOURCES

- "Input Capture" (DS70000352) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

FIGURE 13-1: INPUT CAPTURE x MODULE BLOCK DIAGRAM

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = OCxRS compare event is used for synchronization
 - 11110 = INT2 pin synchronizes or triggers OCx
 - 11101 = INT1 pin synchronizes or triggers OCx
 - 11100 = Reserved
 - 11011 = CMP4 module synchronizes or triggers OCx
 - 11010 = CMP3 module synchronizes or triggers OCx
 - 11001 = CMP2 module synchronizes or triggers OCx
 - 11000 = CMP1 module synchronizes or triggers OCx
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Reserved
 - 10100 = Reserved
 - 10011 = IC4 input capture interrupt event synchronizes or triggers OCx
 - 10010 = IC3 input capture interrupt event synchronizes or triggers OCx
 - 10001 = IC2 input capture interrupt event synchronizes or triggers OCx
 - 10000 = IC1 input capture interrupt event synchronizes or triggers OCx
 - 01111 = Timer5 synchronizes or triggers OCx
 - 01110 = Timer4 synchronizes or triggers OCx
 - 01101 = Timer3 synchronizes or triggers OCx
 - 01100 = Timer2 synchronizes or triggers OCx (default)
 - 01011 = Timer1 synchronizes or triggers OCx
 - 01010 = Reserved
 - 01001 = Reserved
 - 01000 = IC4 input capture event synchronizes or triggers OCx
 - 00111 = IC3 input capture event synchronizes or triggers OCx
 - 00110 = IC2 input capture event synchronizes or triggers OCx
 - 00101 = IC1 input capture event synchronizes or triggers OCx
 - 00100 = OC4 module synchronizes or triggers $OCx^{(1,2)}$
 - 00011 = OC3 module synchronizes or triggers $OCx^{(1,2)}$
 - 00010 = OC2 module synchronizes or triggers $OCx^{(1,2)}$
 - 00001 = OC1 module synchronizes or triggers $OCx^{(1,2)}$
 - 00000 = No sync or trigger source for OCx
- Note 1: Do not use the OCx module as its own synchronization or trigger source.
 - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

REGISTER 15-27: PWMCAPx: PWMx PRIMARY TIME BASE CAPTURE REGISTER (x = 1 to 5)

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				P<12:5> ^(1,2,3,4)			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	U-0	U-0	U-0
	PW	MCAP<4:0>(1,2,3	8,4)		_		
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bi	t	II = I Inimplem	onted hit read	1 26 '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 **PWMCAP<12:0>:** PWMx Primary Time Base Capture Value bits^(1,2,3,4) The value in this register represents the captured PWMx time base value when a leading edge is detected on the current-limit input.

bit 2-0 Unimplemented: Read as '0'

- **Note 1:** The capture feature is only available on a primary output (PWMxH).
 - 2: This feature is active only after LEB processing on the current-limit input signal is complete.
 - **3:** The minimum capture resolution is 8.32 ns.
 - 4: This feature can be used when the XPRES bit (PWMCONx<1>) is set to '0'.

17.0 INTER-INTEGRATED CIRCUIT (I²C)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit (I²C)" (DS70000195) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family of devices contains two Inter-Integrated Circuit (I 2 C) modules: I2C1 and I2C2.

The I^2C module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx/ASCLx pin is clock
- · The SDAx/ASDAx pin is data

The I²C module offers the following key features:

- I²C Interface Supporting Both Master and Slave modes of Operation
- I²C Slave mode Supports 7 and 10-Bit Addressing
- I²C Master mode Supports 7 and 10-Bit Addressing
- I²C Port allows Bidirectional Transfers between Master and Slaves
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates accordingly
- System Management Bus (SMBus) Support
- Alternate I²C Pin Mapping (ASCLx/ASDAx)

17.1 I²C Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

17.1.1 KEY RESOURCES

- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

18.1 UART Helpful Tips

- In multi-node, direct connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pullup or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the UxRX pin.
 - b) If URXINV = 1, use a pull-down resistor on the UxRX pin.
- 2. The first character received on a wake-up from Sleep mode, caused by activity on the UxRX pin of the UARTx module, will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid; this is to be expected.

18.2 UART Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

18.2.1 KEY RESOURCES

- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual" for information on enabling the UARTx module for transmit operation.

NOTES:

REGISTER 20-1: CMPxCON: COMPARATOR x CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	HC-0, HS	R/W-0	R/W-0	R/W-0
INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE
bit 7							bit 0

Legend: HC = Hardware Clearable bit HS = Hardware		HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CMPON: Comparator Operating Mode bit
	1 = Comparator module is enabled
	0 = Comparator module is disabled (reduces power consumption)
bit 14	Unimplemented: Read as '0'
bit 13	CMPSIDL: Comparator Stop in Idle Mode bit
	1 = Discontinues module operation when device enters Idle mode.
	0 = Continues module operation in Idle mode
	If a device has multiple comparators, any CMPSIDL bit set to '1' disables all comparators while in Idle mode.
bit 12-11	HYSSEL<1:0>: Comparator Hysteresis Select bits
	11 = 20 mV hysteresis
	10 = 10 mV hysteresis
	01 = 5 mV hysteresis 00 = No hysteresis is selected
bit 10	FLTREN: Digital Filter Enable bit
	1 = Digital filter is enabled
	0 = Digital filter is disabled
bit 9	FCLKSEL: Digital Filter and Pulse Stretcher Clock Select bit
	1 = Digital filter and pulse stretcher operate with the PWM clock
	0 = Digital filter and pulse stretcher operate with the system clock
bit 8	DACOE: DACx Output Enable bit
	1 = DACx analog voltage is connected to the DACOUTx pin ⁽¹⁾
	0 = DACx analog voltage is not connected to the DACOUTx pin
bit 7-6	INSEL<1:0>: Input Source Select for Comparator bits
	If ALTINP = 0, Select from Comparator Inputs:
	11 = Selects CMPxD input pin 10 = Selects CMPxC input pin
	01 = Selects CMPxB input pin
	00 = Selects CMPxA input pin
	If ALTINP = 1, Select from Alternate Inputs:
	11 = Reserved
	10 = Reserved 01 = Selects PGA2 output
	01 = Selects PGA2 output 00 = Selects PGA1 output
•• · ·	

Note 1: DACOUTx can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DACx output by setting their respective DACOE bit.

Base Instr #	nstr Assembly Assembly Syntax Descript			Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
55	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
56	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
57	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
58	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
59	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
60	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
61	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 time	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 time	1	1	None
62	RESET	RESET		Software device Reset	1	1	None
63	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
64	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
65	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
66	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
67	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
68	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
69	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
70	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
71	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
72	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
73	SFTAC	SFTAC	Acc, Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

25.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

25.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

DC CHARACT	ERISTICS			•	hs: 3.0V to 3.6V ≤ TA ≤ +85°C for Indu ≤ TA ≤ +125°C for Ex			
Parameter No.	Тур.	Max.	Units	Conditions				
Idle Current (II	dle) ⁽¹⁾							
DC40d	2	4	mA	-40°C				
DC40a	2	4	mA	+25°C	- 3.3V	10 MIPS		
DC40b	2	4	mA	+85°C	5.3V	TO MIES		
DC40c	2	4	mA	+125°C				
DC42d	3	6	mA	-40°C				
DC42a	3	6	mA	+25°C	- 3.3V	20 MIPS		
DC42b	3	6	mA	+85°C	5.3V	20 MIF 3		
DC42c	3	6	mA	+125°C				
DC44d	6	12	mA	-40°C				
DC44a	6	12	mA	+25°C	- 3.3V	40 MIPS		
DC44b	6	12	mA	+85°C	5.3V	40 MIF 3		
DC44c	6	12	mA	+125°C				
DC45d	8	15	mA	-40°C				
DC45a	8	15	mA	+25°C	- 3.3V	60 MIPS		
DC45b	8	15	mA	+85°C	3.3V	OU IVIIPS		
DC45c	8	15	mA	+125°C]			
DC46d	10	20	mA	-40°C				
DC46a	10	20	mA	+25°C	3.3V	70 MIPS		
DC46b	10	20	mA	+85°C]			

TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (lidle)

Note 1: Base Idle current (IIDLE) is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

TABLE 26-20: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS		d Operatir g tempera	ture -40	$^{\circ}C \leq TA \leq \cdot$	/ to 3.6V (unless other +85°C for Industrial +125°C for Extended	wise stated)		
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
Internal	FRC Accuracy @ FRC Fre	equency =	7.37 MHz	(1)					
F20a	FRC	-2	0.5	+2	%	$-40^\circ C \le T A \le -10^\circ C$	VDD = 3.0-3.6V		
		-0.9	0.5	+0.9	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V		
F20b	FRC	-2	1	+2	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V		

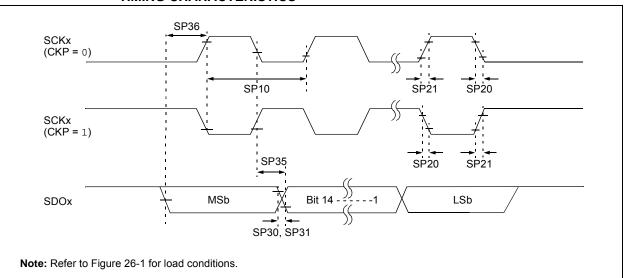

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 26-21: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS		I Operatin g temperati	ure -40°	$C \le TA \le +$	to 3.6V (unless otherv 85°C for Industrial 125°C for Extended	vise stated)	
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
LPRC	@ 32.768 kHz ⁽¹⁾							
F21a	LPRC	-30	_	+30	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V	
		-20	—	+20	%	$-10^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V	
F21b	LPRC	-30	_	+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: This is the change of the LPRC frequency as VDD changes.

FIGURE 26-12: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 26-32: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCKx Frequency	—	_	15	MHz	(Note 3)	
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCKx Output Rise Time	_			ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 26-43: ADC MODULE SPECIFICATIONS (CONTINUED)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽⁵⁾				
			Operating temperature $-40^{\circ}C \le -40^{\circ}C $			TA \leq +85°C for Industrial TA \leq +125°C for Extended	
Param No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
		ADC	Accuracy: S	Single-Ende	d Input		·
AD20b	Nr	Resolution		12		bits	
AD21b	INL	Integral Nonlinearity	> -3	_	< 3	LSb	AVss = 0V, AVDD = 3.3V
AD22b	DNL	Differential Nonlinearity	> -1	-	< 1.5	LSb	AVss = 0V, AVdd = 3.3V (Note 2)
AD23b	Gerr	Gain Error (Dedicated Core)	> 5	13	< 20	LSb	AVss = 0V, AVdd = 3.3V
		Gain Error (Shared Core)	> -1	5	< 10	LSb	
AD24b	EOFF	Offset Error (Dedicated Core)	> 2	10	< 18	LSb	AVss = 0V, AVdd = 3.3V
		Offset Error (Shared Core)	> 2	8	< 15	LSb	
AD25b		Monotonicity		_	_		Guaranteed
	•		Dynamic P	erformance	e		
AD31b	SINAD	Signal-to-Noise and Distortion	63	-	> 65	dB	(Notes 3, 4)
AD34b	ENOB	Effective Number of Bits	10.3	_	—	bits	(Notes 3, 4)

Note 1: These parameters are not characterized or tested in manufacturing.

2: No missing codes, limits based on characterization results.

3: These parameters are characterized but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoq, KEELoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1714-9