

Welcome to E-XFL.COM

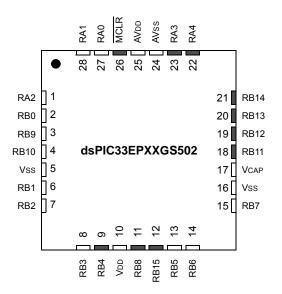
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs505-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

28-Pin QFN-S, UQFN

Pin	Pin Function	Pin	Pin Function
1	AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2	15	PGEC1/AN21/SDA1/RP39/RB7
2	AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0		Vss
3	AN4/CMP2C/CMP3A/ISRC4/RP41/RB9	17	VCAP
4	AN5/CMP2D/CMP3B/ISRC3/RP42/RB10	18	TMS/PWM3H/ RP43 /RB11
5	Vss	19	TCK/PWM3L/RP44/RB12
6	OSC1/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1	20	PWM2H/ RP45 /RB13
7	OSC2/CLKO/AN7/PGA1N2/CMP3D/CMP4B/RP34/RB2	21	PWM2L/ RP46 /RB14
8	PGED2/AN18/DACOUT1/INT0/ RP35 /RB3	22	PWM1H/RA4
9	PGEC2/ADTRG31/EXTREF1/RP36/RB4	23	PWM1L/RA3
10	Vdd	24	AVss
11	PGED3/SDA2/FLT31/RP40/RB8	25	AVdd
12	PGEC3/SCL2/ RP47 /RB15	26	MCLR
13	TDO/AN19/PGA2N2/ RP37 /RB5	27	AN0/PGA1P1/CMP1A/RA0
14	PGED1/TDI/AN20/SCL1/ RP38 /RB6	28	AN1/PGA1P2/PGA2P1/CMP1B/RA1

Legend: Shaded pins are up to 5 VDC tolerant. RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

2.5 ICSP Pins

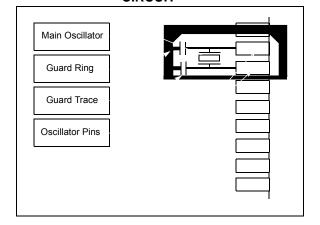
The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, MPLAB ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "Multi-Tool Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749


2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 8.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

4.3 Data Address Space

The dsPIC33EPXXGS50X family CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-6 through Figure 4-8.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes or 32K words.

The lower half of the data memory space (i.e., when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV).

dsPIC33EPXXGS50X family devices implement up to 12 Kbytes of data memory. If an EA points to a location outside of this area, an all-zero word or byte is returned.

4.3.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.3.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

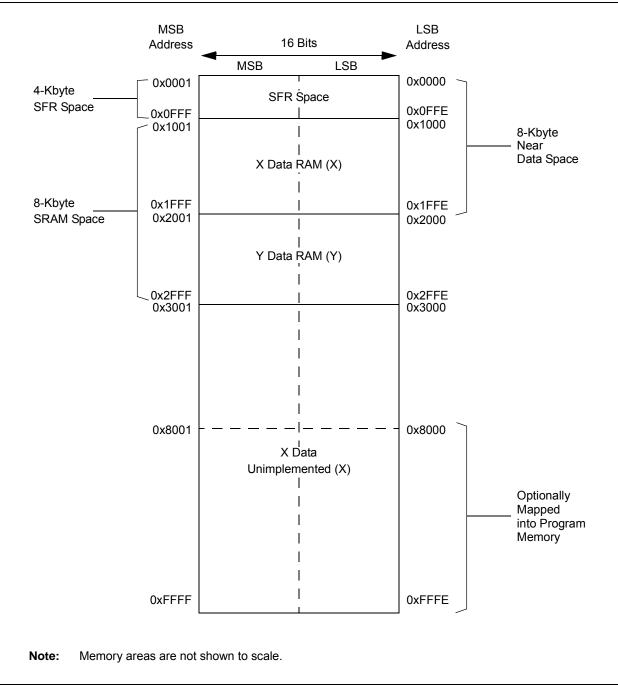
To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXGS50X family instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through wordaligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.3.3 SFR SPACE


The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXGS50X family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.3.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33EP64GS50X DEVICES

TABLE 4-9: **PWM GENERATOR 2 REGISTER MAP**

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	—	-	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON2	0C44	IFLTMOD	CLSRC4	CLSRC3	C3 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 FLTMOD0							00F8						
PDC2	0C46		PWM2 Generator Duty Cycle Register (PDC2<15:0>)									0000						
PHASE2	0C48					F	WM2 Primary	Phase-Shift c	or Independen	t Time Base	e Period Reg	gister (PHASE	2<15:0>)					0000
DTR2	0C4A	PWM2 Dead-Time Register (DTR2<13:0>)								0000								
ALTDTR2	0C4C	— PWM2 Alternate Dead-Time Register (ALTDTR2<13:0>)									0000							
SDC2	0C4E	PWM2 Secondary Duty Cycle Register (SDC2<15:0>)									0000							
SPHASE2	0C50							PWM2 Secon	dary Phase-Sl	hift Register	r (SPHASE2	<15:0>)						0000
TRIG2	0C52					PWM2 Pri	mary Trigger C	Compare Value	e Register (TR	GCMP<12:	:0>)				_	_	_	0000
TRGCON2	0C54	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	-	_	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG2	0C56					PWM2 Seco	ndary Trigger	Compare Valu	e Register (S	TRGCMP<1	12:0>)				—	—	_	0000
PWMCAP2	0C58					PWM2 P	rimary Time B	ase Capture F	Register (PWN	/ICAP<12:0	>)				_	_	_	0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	— — PWM2 Leading-Edge Blanking Delay Register (LEB<8:0>) — — — —									0000							
AUXCON2	0C5E								0000									
		_	-			BLANKSEL3	-	BLAINKSELT	BLANKSELU	_	_	UNUPSELS	UNUPSEL2	CHUPSELT	CHOPSELU	CHUPHEN	CHUPLEN	0

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: PWM GENERATOR 3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	_	_	MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLDAT1 CLDAT0 SWAP OSYNC						OSYNC	C000					
FCLCON3	0C64	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 FLTMOD0							00F8					
PDC3	0C66		PWM3 Generator Duty Cycle Register (PDC3<15:0>)									0000						
PHASE3	0C68					Р	WM3 Primary	Phase-Shift o	r Independent	Time Base	Period Regi	ster (PHASE3	<15:0>)					0000
DTR3	0C6A	— — PWM3 Dead-Time Register (DTR3<13:0>)								0000								
ALTDTR3	0C6C	— — PWM3 Alternate Dead-Time Register (ALTDTR3<13:0>)								0000								
SDC3	0C6E	PWM3 Secondary Duty Cycle Register (SDC3<15:0>)									0000							
SPHASE3	0C70						I	PWM3 Second	lary Phase-Sh	ift Register ((SPHASE3<	<15:0>)						0000
TRIG3	0C72					PWM3 Pri	mary Trigger C	Compare Value	e Register (TR	GCMP<12:0)>)				_	_	_	0000
TRGCON3	0C74	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG3	0C76					PWM3 Seco	ndary Trigger	Compare Valu	e Register (S	RGCMP<1	2:0>)				_	_	_	0000
PWMCAP3	0C78					PWM3 P	rimary Time B	ase Capture F	Register (PWN	ICAP<12:0>	·)				-	_	_	0000
LEBCON3	0C7A	PHR	PHR PHF PLR PLF FLTLEBEN CLLEBEN BCH BCL BPHH BPHL BPLH BPLL 0									0000						
LEBDLY3	0C7C	PWM3 Leading-Edge Blanking Delay Register (LEB<8:0>)									0000							
AUXCON3	0C7E	HRPDIS	HRDDIS	_	-							0000						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

- bit 2
 STKERR: Stack Error Trap Status bit

 1 = Stack error trap has occurred
 0 = Stack error trap has not occurred

 bit 1
 OSCFAIL: Oscillator Failure Trap Status bit

 1 = Oscillator failure trap has occurred
 0 = Oscillator failure trap has not occurred
- bit 0 Unimplemented: Read as '0'

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

bit 4-0

PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler) 11111 = Input divided by 33

•

00001 = Input divided by 3

00000 = Input divided by 2 (default)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - **2:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	—	_	—	—	—	_	PLLDIV8	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
			PLLDI	V<7:0>				
bit 7							bit 0	
Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-9	Unimplemen	ted: Read as ')'					
bit 8-0	PLLDIV<8:0>	-: PLL Feedbac	k Divisor bits (also denoted a	is 'M', PLL mul	tiplier)		
	111111111	= 513						
	•							
	•							
	•							
	000110000=	= 50 (default)						
	•							
	•							
	• 000000010 =	= 4						
	00000010-	– –						

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

000000001 = 3 000000000 = 2

9.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

9.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral (for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

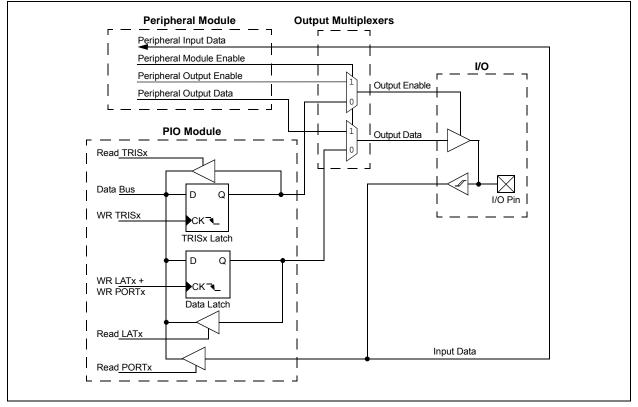
10.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS7000598) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally, a Parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 illus-trates how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

© 2013-2017 Microchip Technology Inc.

REGISTER 10-17: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SYNCI2R7 | SYNCI2R6 | SYNCI2R5 | SYNCI2R4 | SYNCI2R3 | SYNCI2R2 | SYNCI2R1 | SYNCI2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 SYNCI2R<7:0>: Assign PWM Synchronization Input 2 to the Corresponding RPn Pin bits 10110101 = Input tied to RP181 10110100 = Input tied to RP180 •

• 00000001 = Input tied to RP1 00000000 = Input tied to Vss

12.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare modules (Timer2 and Timer3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1. T3CON and T5CON are shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 12-2.

12.1 Timer Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

12.1.1 KEY RESOURCES

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 13-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾		SYNCSEL4(4)	SYNCSEL3(4)	SYNCSEL2(4)	SYNCSEL1(4)	SYNCSEL0(4)
bit 7							bit 0

Legend:	HS = Hardware Settable b	it	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 8 **IC32:** Input Capture x 32-Bit Timer Mode Select bit (Cascade mode)

- 1 = Odd ICx and even ICx form a single 32-bit input capture module⁽¹⁾
- 0 = Cascade module operation is disabled

bit 7 ICTRIG: Input Capture x Trigger Operation Select bit⁽²⁾

- 1 = Input source is used to trigger the input capture timer (Trigger mode)
- 0 = Input source is used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear
- bit 5 Unimplemented: Read as '0'
- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.

REGISTER 15-22: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (x = 1 to 5) (CONTINUED)

bit 7-3	FLTSRC<4:0>: Fault Control Signal Source Select for PWMx Generator bits 11111 = Fault 31 (Default) 10001 = Reserved 10000 = Analog Comparator 4 01111 = Analog Comparator 3 01100 = Analog Comparator 2 01101 = Analog Comparator 1 01100 = Fault 12 01010 = Fault 11 01000 = Fault 12 01011 = Fault 11 01000 = Fault 12 01001 = Fault 10 01001 = Fault 5 00101 = Fault 4 00011 = Fault 3 00102 = Fault 4 00011 = Fault 1 00111 = Fault 1 00102 = Fault 1 00103 = Fault 4 00014 = Fault 5 0015 0015 0016 10000 = Fault 4 00011 = Fault 1 00012 = Fault 1 00014 = Fault 1 00015 0016 0017 10018 10019 119 119 119 1119 1119 1119 1119 1119
bit 2	FLTPOL: Fault Polarity for PWMx Generator bit ⁽¹⁾ 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high
bit 1-0	FLTMOD<1:0>: Fault Mode for PWMx Generator bits 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (cycle) 00 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (latched condition)

Note 1: These bits should be changed only when PTEN = 0 (PTCON<15>).

REGISTER 15-23: STRIGX: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER (x = 1 to 5)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STRGC	MP<12:5>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
		STRGCMP<4:0	>			_	_	
bit 7							bit (
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 15-3	When the se	<12:0>: Seconda econdary PWMx ger the ADC mod	functions in th	•		contains the co	mpare values	
bit 2-0		nted: Read as '						

Note 1: STRIGx cannot generate the PWM trigger interrupts.

REGISTER 19-26: ADTRIGXL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW (x = 0 to 5) (CONTINUED)

bit 4-0 TRGSRC(4x)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits

- 11111 = ADTRG31
- 11110 = Reserved
- 11101 = Reserved
- 11100 = PWM Generator 5 current-limit trigger
- 11011 = PWM Generator 4 current-limit trigger
- 11010 = PWM Generator 3 current-limit trigger
- 11001 = PWM Generator 2 current-limit trigger
- 11000 = PWM Generator 1 current-limit trigger
- 10111 = Output Compare 2 trigger
- 10110 = Output Compare 1 trigger 10101 = Reserved
- 10100 = Reserved
- 10011 = PWM Generator 5 secondary trigger
- 10010 = PWM Generator 4 secondary trigger
- 10001 = PWM Generator 3 secondary trigger
- 10000 = PWM Generator 2 secondary trigger
- 01111 = PWM Generator 1 secondary trigger
- 01110 = PWM secondary Special Event Trigger
- 01101 = Timer2 period match
- 01100 = Timer1 period match
- 01011 = Reserved
- 01010 = Reserved
- 01001 = PWM Generator 5 primary trigger
- 01000 = PWM Generator 4 primary trigger
- 00111 = PWM Generator 3 primary trigger
- 00110 = PWM Generator 2 primary trigger
- 00101 = PWM Generator 1 primary trigger
- 00100 = PWM Special Event Trigger
- 00011 = Reserved
- 00010 = Level software trigger
- 00001 = Common software trigger
- 00000 = No trigger is enabled

REGISTER 19-29: ADCAL0H: ADC CALIBRATION REGISTER 0 HIGH

R-0, HSC	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0		
CAL3RDY	—	—	—	_	CAL3DIFF	CAL3EN	CAL3RUN		
bit 15							bit 8		
R-0, HSC	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0		
CAL2RDY		—		_	CAL2DIFF	CAL2EN	CAL2RUN		
bit 7	·	·	•				bit 0		
Legend:		r = Reserved	bit	U = Unimpler	nented bit, read	as '0'			
R = Readabl	e bit	W = Writable	bit	HSC = Hardw	vare Settable/C	earable bit			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15		Dedicated ADC			g bit				
		ed ADC Core 3 c							
hit 11 10		ed ADC Core 3 c		progress					
bit 14-12 bit 11	-	nted: Read as ' /lust be written a							
bit 10		Dedicated ADC		ntial Mada Cali	ibration bit				
		ed ADC Core 3 v							
		d ADC Core 3 v			•				
bit 9	CAL3EN: De	edicated ADC C	ore 3 Calibratio	on Enable bit	·				
	1 = Dedicate	ed ADC Core 3 o	calibration bits	(CALxRDY, CA	LxDIFF and CA	LxRUN) can b	e accessed by		
	software	e							
1.1.0		ed ADC Core 3							
bit 8		Dedicated ADC it is set by soft			ara 2 adibratia	n avala ia atar	tad: this hit is		
		ically cleared by				IT CYCLE IS SLAI	teu, this bit is		
		e can start the n		cycle					
bit 7	CAL2RDY:	Dedicated ADC	Core 2 Calibra	tion Status Flag	g bit				
		ed ADC Core 2 c							
		ed ADC Core 2 c		progress					
bit 6-4	-	nted: Read as '							
bit 3		/lust be written a							
bit 2		Dedicated ADC							
	 1 = Dedicated ADC Core 2 will be calibrated in Differential Input mode 0 = Dedicated ADC Core 2 will be calibrated in Single-Ended Input mode 								
bit 1		edicated ADC C		-					
bit i		ed ADC Core 2 (LxDIFF and CA	LxRUN) can b	e accessed by		
	software			(,,		,,			
	0 = Dedicate	ed ADC Core 2	calibration bits	are disabled					
bit 0		Dedicated ADC							
		it is set by soft		icated ADC Co	ore 2 calibratio	n cycle is star	ted; this bit is		
		ically cleared by e can start the n		cycle					
				0,000					

REGISTER 19-32: ADCMPxENL: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER LOW (x = 0 or 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CMPEN	N<15:8>			
bit 15							bit 8
DANIO	D /// 0	DAMO	D 4440	DAMO		D 1110	D /// 0
R/W/0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CMPE	N<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CMPEN<15:0>: Comparator Enable for Corresponding Input Channels bits

0 = Conversion result for corresponding channel is not used by the comparator

REGISTER 19-33: ADCMPxENH: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER HIGH (x = 0 or 1)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—		—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			CMPEN	<21:16>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0

CMPEN<21:16>: Comparator Enable for Corresponding Input Channels bits

0 = Conversion result for corresponding channel is not used by the comparator

^{1 =} Conversion result for corresponding channel is used by the comparator

^{1 =} Conversion result for corresponding channel is used by the comparator

REGISTER 20-1: CMPxCON: COMPARATOR x CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	HC-0, HS	R/W-0	R/W-0	R/W-0
INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CMPON: Comparator Operating Mode bit
	1 = Comparator module is enabled
	0 = Comparator module is disabled (reduces power consumption)
bit 14	Unimplemented: Read as '0'
bit 13	CMPSIDL: Comparator Stop in Idle Mode bit
	1 = Discontinues module operation when device enters Idle mode.
	0 = Continues module operation in Idle mode
	If a device has multiple comparators, any CMPSIDL bit set to '1' disables all comparators while in Idle mode.
bit 12-11	HYSSEL<1:0>: Comparator Hysteresis Select bits
	11 = 20 mV hysteresis
	10 = 10 mV hysteresis
	01 = 5 mV hysteresis 00 = No hysteresis is selected
bit 10	FLTREN: Digital Filter Enable bit
	1 = Digital filter is enabled
	0 = Digital filter is disabled
bit 9	FCLKSEL: Digital Filter and Pulse Stretcher Clock Select bit
	1 = Digital filter and pulse stretcher operate with the PWM clock
	0 = Digital filter and pulse stretcher operate with the system clock
bit 8	DACOE: DACx Output Enable bit
	1 = DACx analog voltage is connected to the DACOUTx pin ⁽¹⁾
	0 = DACx analog voltage is not connected to the DACOUTx pin
bit 7-6	INSEL<1:0>: Input Source Select for Comparator bits
	If ALTINP = 0, Select from Comparator Inputs:
	11 = Selects CMPxD input pin 10 = Selects CMPxC input pin
	01 = Selects CMPxB input pin
	00 = Selects CMPxA input pin
	If ALTINP = 1, Select from Alternate Inputs:
	11 = Reserved
	10 = Reserved 01 = Selects PGA2 output
	01 = Selects PGA2 output 00 = Selects PGA1 output
•• · ·	

Note 1: DACOUTx can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DACx output by setting their respective DACOE bit.

25.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Pin Count Tape and Reel Flag Temperature Range		Examples: dsPIC33EP64GS504-I/PT: dsPIC33, Enhanced Performance, 64-Kbyte Program Memory, SMPS, 44-Pin, Industrial Temperature, TQFP Package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Flash Memory Family:	EP = Enhanced Performance	
Product Group:	GS = SMPS Family	
Pin Count:	02 = 28-pin 04 = 44-pin 05 = 48-pin 06 = 64-pin	
Temperature Range:	$ \begin{array}{rcl} I &=& -40^\circ C \text{ to } +85^\circ C \text{ (Industrial)} \\ E &=& -40^\circ C \text{ to } +125^\circ C \text{ (Extended)} \end{array} $	
Package:	2N = Ultra Thin Quad Flat, No Lead – (28-pin) 6x6 mm (UQFN) ML = Plastic Quad Flat, No Lead – (44-pin) 8x8 mm body (QFN) MM = Plastic Quad Flat, No Lead – (28-pin) 6x6 mm body (QFN-S) PT = Plastic Thin Quad Flatpack – (44-pin) 10x10 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (64-pin) 10x10 mm body (TQFP) SO = Plastic Small Outline, Wide – (28-pin) 7.50 mm body (SOIC) Y8 = Thin Quad Flatpack – (48-pin) 7x7 mm (TQFP)	