

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs505t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP64GS50X DEVICES

-	gome Instruction	0x000000
Î	GOTO Instruction	0x000000
	Reset Address	0x000002
d)	Interrupt Vector Table	0x000004 0x0001FE
lory Space	User Program Flash Memory (22,207 instructions)	0x000200 0x00AF7E
r Merr	Device Configuration	0x00AF80
Use		0x00AFFE
	Unimplemented (Read '0's)	
	Reserved	0x7FFFFE 0x800000 0x800E46
	Calibration Data	0x800E48 0x800E78
0	Reserved	0x800E7A 0x800EFE
Space	UDID	0x800F00 0x800F08
nory (Reserved	0x800F0A 0x800F7E
n Mer	User OTP Memory	0x800F80
uratio	Reserved	0x801000
nfigu		0xF9FFFE
ö		0xFA0002 0xFA0004
	Reserved	0.555555
	DEVID	0xFEFFFE 0xFF0000 0xFF0002
	Reserved	0xFF0004
	- L	UXFFFFFE

Note: Memory areas are not shown to scale.

4.3 Data Address Space

The dsPIC33EPXXGS50X family CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-6 through Figure 4-8.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes or 32K words.

The lower half of the data memory space (i.e., when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV).

dsPIC33EPXXGS50X family devices implement up to 12 Kbytes of data memory. If an EA points to a location outside of this area, an all-zero word or byte is returned.

4.3.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.3.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXGS50X family instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through wordaligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.3.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXGS50X family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.3.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

TABLE 4-2: CPU CORE REGISTER MAP (CONTINUED)

							,											
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DOENDL	003E					D	o Loop End	Address Re	egister Low	(DOENDL<	:15:1>)						—	0000
DOENDH	0040	_	_	_	_	_	_	_	_	_	_	DO LO	oop End Ad	dress Regi	ster High ([DOENDH<	5:0>)	0000
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	_	US1	US0	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048	X Mode Start Address Register (XMODSRT<15:1>)												_	0000			
XMODEND	004A						X Mode End	Address R	egister (XN	IODEND<1	5:1>)						_	0001
YMODSRT	004C						Y Mode Star	t Address F	Register (YN	10DSRT<1	5:1>)						_	0000
YMODEND	004E						Y Mode End	Address R	egister (YN	IODEND<1	5:1>)						_	0001
XBREV	0050	BREN							XBRE	V<14:0>								0000
DISICNT	0052	DISICNT<13:0>											0000					
TBLPAG	0054	4 TBLPAG<7:0>											0000					
CTXTSTAT	005A	—	_	—	_	—	CCTXI2	CCTXI1	CCTXI0	—	_	—	—	—	MCTXI2	MCTXI1	MCTXI0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The contents of this register should never be modified. The DSWPAG must always point to the first page.

TABLE 4-33: PORTA REGISTER MAP FOR dsPIC33EPXXGS506 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	—	_	_	—	_	—	_	—		—		-	TRISA<4:0>	>		001F
PORTA	0E02	_	_	_	_	_	_	_	_	_	_	_			RA<4:0>			0000
LATA	0E04	_	_	_	_	_	_	_	_	_	_	_			LATA<4:0>			0000
ODCA	0E06	_	_	_	_	_	_	_	_	_	_	_			ODCA<4:0>	>		0000
CNENA	0E08	_	_	_	_	_	_	_	_	_	_	_		(CNIEA<4:0	>		0000
CNPUA	0E0A	_	_	_	_	_	_	_	_	_	_	_		C	NPUA<4:0	>		0000
CNPDA	0E0C	_	_	_	_	_	_	_	_	_	_	_		C	NPDA<4:0	>		0000
ANSELA	0E0E	_	—	_	_	—	_	—	_	_		—		—		ANSA<2:0>	•	0007

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PORTB REGISTER MAP FOR dsPIC33EPXXGS506 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10		TRISB<15:0> F											FFFF				
PORTB	0E12		RB<15:0> xx										xxxx					
LATB	0E14		LATB<15:0> xxx									xxxx						
ODCB	0E16		ODCB<15:0> 01									0000						
CNENB	0E18								CNIEB<1	5:0>								0000
CNPUB	0E1A								CNPUB<	15:0>								0000
CNPDB	0E1C		CNPDB<15:0> 000									0000						
ANSELB	0E1E		_	—	—	—	ANSB<	:10:9>	—		ANSB<7:5>	•	_		ANSE	3<3:0>		06EF

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: PORTC REGISTER MAP FOR dsPIC33EPXXGS506 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20								TRISC<1	5:0>								FFFF
PORTC	0E22								RC<15	:0>								xxxx
LATC	0E24								LATC<1	5:0>								xxxx
ODCC	0E26								ODCC<1	5:0>								0000
CNENC	0E28								CNIEC<1	5:0>								0000
CNPUC	0E2A								CNPUC<	15:0>								0000
CNPDC	0E2C		CNPDC<15:0> 00								0000							
ANSELC	0E2E	_	_	—		ANSC<	<12:9>		—	—		ANSC<6:4	>	_		ANSC<2:0>	•	1E77

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: PORTD REGISTER MAP FOR dsPIC33EPXXGS506 DEVICES

										-								
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E30								TRISD<15	0>								FFFF
PORTD	0E32		RD<15:0> xxx										xxxx					
LATD	0E34		LATD<15:0> xxx										xxxx					
ODCD	0E36								ODCD<15	0>								0000
CNEND	0E38								CNIED<15	:0>								0000
CNPUD	0E3A								CNPUD<15	:0>								0000
CNPDD	0E3C		CNPDD<15:0> 0000									0000						
ANSELD	0E3E	_	_	ANSD13	—	_	_	_	_	ANSD7	_	_	_		ANSD2	_	_	6084

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/SO-0	⁽¹⁾ R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	R/C-0	R-0	R/W-0	R/C-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	SFTSWP ⁽⁶⁾	P2ACTIV ⁽⁶⁾	RPDF	URERR
bit 15		•	•		-	•	bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_			—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^(3,4)
bit 7							bit 0
Legend:		C = Clearab	le bit	SO = Settable	Only bit		
R = Read	able bit	W = Writable	e bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is se	et	'0' = Bit is clea	ired	x = Bit is unkr	iown
		(4)					
bit 15	WR: Write Co	ontrol bit()					
	1 = Initiates a cleared b	a ⊢lash mem ov hardware c	ory program o	r erase operati	on; the operation	on is self-timed	and the bit is
	0 = Program	or erase ope	ration is compl	ete and inactive	e		
bit 14	WREN: Write	Enable bit ⁽¹⁾					
	1 = Enables	Flash prograi	m/erase operat	ions			
	0 = Inhibits F	lash program	n/erase operatio	ons			
bit 13	WRERR: Writ	te Sequence	Error Flag bit()			
	1 = An improj	per program c	or erase sequen	ce attempt, or te	ermination has o	ccurred (bit is se	et automatically
	0 = The prog	ram or erase	operation com	pleted normally	/		
bit 12	NVMSIDL: N	VM Stop in Id	lle Control bit ⁽²⁾)			
	1 = Flash vol	tage regulato	or goes into Sta	ndby mode dur	ing Idle mode		
	0 = Flash vol	tage regulato	or is active durin	ng Idle mode			
bit 11	SFTSWP: Pa	rtition Soft Sv	wap Status bit ^{(c}	») 			
	1 = Partitions	s have been s	successfully sw artition swap us	apped using th	e BOOTSWP inst	truction (soft sw	/ap) t will determine
	the Active	e Partition ba	sed on FBTSE				
bit 10	P2ACTIV: Pa	rtition 2 Activ	e Status bit ⁽⁶⁾				
	1 = Partition	2 Flash is ma	apped into the a	active region			
	0 = Partition	1 Flash is ma	apped into the a	active region			
bit 9	RPDF: Row F	Programming	Data Format b	oit .			
	\perp = Row data 0 = Row data	a to be stored a to be stored	in RAM in con	ompressed forma	nat		
Note 1:	These bits can on	ly be reset or	n a POR.				1
2:	delay (TVREG) bef	ore Flash me	morv becomes	operational.	DLE) and upon (exiting late mod	le, there is a
3:	All other combinat	ions of NVM	OP<3:0> are ur	nimplemented.			
4:	Execution of the P	WRSAV instru	ction is ignored	d while any of th	ne NVM operati	ons are in prog	ress.
5:	Two adjacent word	ds on a 4-wor	rd boundary are	e programmed	during executio	n of this operat	ion.
6:	Only available on	dsPIC33EP6	4GS50X device	es operating in	Dual Partition r	node. For all ot	her devices,
7.	The specific Root	ı. mode denen:	ds on hite<1.05	of the program	med data.		
	11 = Single Partiti	on Flash mod	de	or the program			
	10 = Dual Partition	n Flash mode)				
	01 = Protected Du	ual Partition F	lash mode				

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

	Vector	IRQ		Inte	errupt Bit Lo	ocation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
PWM Secondary Special Event Match	81	73	0x0000A6	IFS4<9>	IEC4<9>	IPC18<6:4>
Reserved	82-101	74-93	0x0000A8-0x0000CE		—	
PWM1 – PWM1 Interrupt	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM2 Interrupt	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM3 Interrupt	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
PWM4 – PWM4 Interrupt	105	97	0x0000D6	IFS6<1>	IEC6<1>	IPC24<6:4>
PWM5 – PWM5 Interrupt	106	98	0x0000D8	IFS6<2>	IEC6<2>	IPC24<10:8>
Reserved	106-110	99-102	0x0000DA-0x0000E0		—	—
CMP2 – Analog Comparator 2 Interrupt	111	103	0x0000E2	IFS6<7>	IEC6<7>	IPC25<14:12>
CMP3 – Analog Comparator 3 Interrupt	112	104	0x0000E4	IFS6<8>	IEC6<8>	IPC26<2:0>
CMP4 – Analog Comparator 4 Interrupt	113	105	0x0000E6	IFS6<9>	IEC6<9>	IPC26<6:4>
Reserved	114-117	106-109	0x0000E8-0x0000EE	_	—	—
AN0 Conversion Done	118	110	0x0000F0	IFS6<14>	IEC6<14>	IPC27<10:8>
AN1 Conversion Done	119	111	0x0000F2	IFS6<15>	IEC6<15>	IPC27<14:12>
AN2 Conversion Done	120	112	0x0000F4	IFS7<0>	IEC7<0>	IPC28<2:0>
AN3 Conversion Done	121	113	0x0000F6	IFS7<1>	IEC7<1>	IPC28<6:4>
AN4 Conversion Done	122	114	0x0000F8	IFS7<2>	IEC7<2>	IPC28<10:8>
AN5 Conversion Done	123	115	0x0000FA	IFS7<3>	IEC7<3>	IPC28<14:12>
AN6 Conversion Done	124	116	0x0000FC	IFS7<4>	IEC7<4>	IPC29<2:0>
AN7 Conversion Done	125	117	0x0000FE	IFS7<5>	IEC7<5>	IPC29<6:4>
Reserved	126-149	118-141	0x000100-0x00012E	-	—	—
ICD – ICD Application	150	142	0x000130	IFS8<14>	IEC8<14>	IPC35<10:8>
JTAG – JTAG Programming	151	143	0x000132	IFS8<15>	IEC8<15>	IPC35<14:12>
Reserved	152-158	144-150	0x000134-0x000140	_	—	—
AN8 Conversion Done	159	151	0x000142	IFS9<7>	IEC9<7>	IPC37<14:12>
AN9 Conversion Done	160	152	0x000144	IFS9<8>	IEC9<8>	IPC38<2:0>
AN10 Conversion Done	161	153	0x000146	IFS9<9>	IEC9<9>	IPC38<6:4>
AN11 Conversion Done	162	154	0x000148	IFS9<10>	IEC9<10>	IPC38<10:8>
AN12 Conversion Done	163	155	0x00014A	IFS9<11>	IEC9<11>	IPC38<14:12>
AN13 Conversion Done	164	156	0x00014C	IFS9<12>	IEC9<12>	IPC39<2:0>
AN14 Conversion Done	165	157	0x00014E	IFS9<13>	IEC9<13>	IPC39<6:4>
AN15 Conversion Done	166	158	0x000150	IFS9<14>	IEC9<14>	IPC39<10:8>
AN16 Conversion Done	167	159	0x000152	IFS9<15>	IEC9<15>	IPC39<14:12>
AN17 Conversion Done	168	160	0x000154	IFS10<0>	IEC10<0>	IPC40<2:0>
AN18 Conversion Done	169	161	0x000156	IFS10<1>	IEC10<1>	IPC40<6:4>
AN19 Conversion Done	170	162	0x000158	IFS10<2>	IEC10<2>	IPC40<10:8>
AN20 Conversion Done	171	163	0x00015A	IFS10<3>	IEC10<3>	IPC40<14:12>
AN21 Conversion Done	172	164	0x00015C	IFS10<4>	IEC10<4>	IPC41<2:0>
Reserved	173-180	165-172	0x00015C-0x00016C		—	—
I2C1 – I2C1 Bus Collision	181	173	0x00016E	IFS10<13>	IEC10<13>	IPC43<6:4>
I2C2 – I2C2 Bus Collision	182	174	0x000170	IFS10<14>	IEC10<14>	IPC43<10:8>
Reserved	183-184	175-176	0x000172-0x000174		—	—
ADCMP0 – ADC Digital Comparator 0	185	177	0x000176	IFS11<1>	IEC11<1>	IPC44<6:4>
ADCMP1 – ADC Digital Comparator 1	186	178	0x000178	IFS11<2>	IEC11<2>	IPC44<10:8>
ADFLTR0 – ADC Filter 0	187	179	0x00017A	IFS11<3>	IEC11<3>	IPC44<14:12>
ADFLTR1 – ADC Filter 1	188	180	0x00017C	IFS11<4>	IEC11<4>	IPC45<2:0>
Reserved	189-253	181-245	0x00017E-0x0001FE	_	_	—

© 2013-2017 Microchip Technology Inc.

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7		•					bit 0
l egend.		C = Clearable	hit				

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10)

- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-3: INT	CON1: INTERRUPT	CONTROL	REGISTER	1
-------------------	-----------------	---------	----------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE					
bit 15							bit 8					
1												
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0					
SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—					
bit 7							bit 0					
Logondi												
R = Readable	hit	M = M/ritable	hit	II = I Inimplem	ented hit read	ae 'N'						
-n = Value at F	POR	'1' = Bit is set	bit	0' = Bit is clea	ired	x = Bit is unknown						
		1 Bit io oot				X Dit io unit						
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit									
	1 = Interrupt	nesting is disa	bled									
	0 = Interrupt nesting is enabled											
bit 14	OVAERR: A	ccumulator A (Overflow Trap F	lag bit								
	1 = Trap was 0 = Trap was	s caused by ov s not caused by	erflow of Accur	mulator A								
bit 13	OVBERR: A	ccumulator B (Overflow Trap F	Flag bit								
2.1.10	1 = Trap was	s caused by ov	erflow of Accur	mulator B								
	0 = Trap was	s not caused by	y overflow of A	ccumulator B								
bit 12	COVAERR:	Accumulator A	Catastrophic (Overflow Trap F	lag bit							
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumu	lator A							
bit 11	COVBERR	Accumulator F	y calastrophic (Catastrophic (Overflow Tran F	lan hit							
Sit II	1 = Trap was	s caused by ca	tastrophic over	flow of Accumu	lator B							
	0 = Trap was	s not caused b	y catastrophic of	overflow of Accu	umulator B							
bit 10	OVATE: Acc	cumulator A Ov	erflow Trap En	able bit								
	1 = Trap ove 0 = Trap is d	erflow of Accun lisabled	nulator A									
bit 9	OVBTE: Acc	cumulator B Ov	verflow Trap En	able bit								
	1 = Trap ove	erflow of Accun	nulator B									
bit 8	COVTE: Cat	lisableu tastrophic Over	flow Tran Enal	ole hit								
bit o	1 = Trap on	catastrophic over	verflow of Accu	mulator A or B i	s enabled							
	0 = Trap is d	lisabled										
bit 7	SFTACERR	: Shift Accumu	lator Error State	us bit								
	1 = Math err 0 = Math err	or trap was car or trap was no	used by an inva t caused by an	alid accumulator invalid accumul	r shift lator shift							
bit 6	DIVOERR: D	ivide-by-Zero	Error Status bit									
	1 = Math err 0 = Math err	or trap was cau or trap was no	used by a divide t caused by a d	e-by-zero livide-by-zero								
bit 5	Unimpleme	nted: Read as	'0'									
bit 4	MATHERR:	Math Error Sta	tus bit									
	1 = Math err	or trap has occ	occurred									
hit 3		Address Frror	Tran Status hit									
Situ	1 = Address	error trap has	occurred									
	0 = Address	error trap has	not occurred									

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
FLT6R7	FLT6R6	FLT6R5	FLT6R4	FLT6R3	FLT6R2	FLT6R1	FLT6R0		
bit 15					•	•	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
FLT5R7	FLT5R6	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0		
bit 7					·		bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	Unimplemented bit, read as '0' Bit is cleared x = Bit is unknown				
-n = Value at I	POR	'1' = Bit is set	:	'0' = Bit is cleared		x = Bit is unknown			
bit 15-8 bit 7-0	FLT6R<7:0>: 10110101 = 10110100 = 000000001 = 00000000 = FLT5R<7:0>: 10110101 = 10110100 = 00000001 = 00000001 =	Assign PWM Input tied to RI Input tied to RI	Fault 6 (FLT6) P181 P180 P1 SS Fault 5 (FLT5) P181 P180 P1) to the Corres	ponding RPn Pir	n bits			

REGISTER 10-18: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42

REGISTER 13-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—	—	IC32
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾		SYNCSEL4(4)	SYNCSEL3(4)	SYNCSEL2(4)	SYNCSEL1(4)	SYNCSEL0(4)
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

hit 15-9	Unimplemented: Read as '0'
DIL 13-3	Unimplemented. Read as 0

bit 8 **IC32:** Input Capture x 32-Bit Timer Mode Select bit (Cascade mode)

- 1 = Odd ICx and even ICx form a single 32-bit input capture module⁽¹⁾
- 0 = Cascade module operation is disabled

bit 7 ICTRIG: Input Capture x Trigger Operation Select bit⁽²⁾

- 1 = Input source is used to trigger the input capture timer (Trigger mode)
- 0 = Input source is used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear
- bit 5 Unimplemented: Read as '0'
- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.

REGISTER 13-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0 S

- **SYNCSEL<4:0>:** Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾ 11111 = No sync or trigger source for ICx
- 11110 = Reserved
- 11101 = Reserved
- 11100 = Reserved
- 11011 = CMP4 module synchronizes or triggers $ICx^{(5)}$
- 11010 = CMP3 module synchronizes or triggers $ICx^{(5)}$
- 11001 = CMP2 module synchronizes or triggers $ICx^{(5)}$
- 11000 = CMP1 module synchronizes or triggers $ICx^{(5)}$
- 10111 = Reserved
- 10110 = Reserved
- 10101 = Reserved
- 10100 = Reserved
- 10011 = IC4 module interrupt synchronizes or triggers ICx
- 10010 = IC3 module interrupt synchronizes or triggers ICx
- 10001 = IC2 module interrupt synchronizes or triggers ICx
- 10000 = IC1 module interrupt synchronizes or triggers ICx
- 01111 = Timer5 synchronizes or triggers ICx
- 01110 = Timer4 synchronizes or triggers ICx
- 01101 = Timer3 synchronizes or triggers ICx (default)
- 01100 = Timer2 synchronizes or triggers ICx
- 01011 = Timer1 synchronizes or triggers ICx
- 01010 = Reserved
- 01001 = Reserved
- 01000 = IC4 module synchronizes or triggers ICx
- 00111 = IC3 module synchronizes or triggers ICx
- 00110 = IC2 module synchronizes or triggers ICx
- 00101 = IC1 module synchronizes or triggers ICx
- 00100 = OC4 module synchronizes or triggers ICx
- 00011 = OC3 module synchronizes or triggers ICx
- 00010 = OC2 module synchronizes or triggers ICx
- 00001 = OC1 module synchronizes or triggers ICx
- 00000 = No sync or trigger source for ICx
- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXGS50X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps in 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps in 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit Mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 18-1. The UARTx module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UARTX SIMPLIFIED BLOCK DIAGRAM

REGISTER 19-10: ADCON5H: ADC CONTROL REGISTER 5 HIGH

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	—	—	WARMTIME3	WARMTIME2	WARMTIME1	WARMTIME0	
bit 15							bit 8	
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
SHRCIE	—	—	—	C3CIE	C2CIE	C1CIE	COCIE	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	k = Bit is unknown	
DIT 15-12	Unimplemen	ted: Read as						
DIT 11-8		<3:0>: ADC De		x Power-up Del	ay Dits	an Cleak Daria		
	for all ADC co	res	wer-up delay		i the Core Sour	Ce Clock Perio	us (ICORESRC)	
	1111 = 3276	8 Source Cloc	<pre>< Periods</pre>					
	1110 = 1638	4 Source Clock	<pre>< Periods</pre>					
	1101 = 8192	Source Clock	Periods					
	1100 = 4096	Source Clock	Periods					
	1011 = 2048	Source Clock	Periods					
	1010 = 1024 1001 = 512 S	Source Clock F	Periods					
	1000 = 256 \$	Source Clock F	Periods					
	0111 = 128 \$	Source Clock F	eriods					
	0110 = 64 Sc	ource Clock Pe	eriods					
	0101 = 32 So	ource Clock Pe	eriods					
	0100 = 16 Sc 00xx = 16 Sc	ource Clock Pe	eriods					
bit 7	SHRCIE: Sha	ared ADC Core	Ready Comr	non Interrupt Er	nable bit			
	1 = Common	interrupt will b	e generated w	hen ADC core	is powered and	ready for oper	ation	
	0 = Common	interrupt is dis	abled for an A	DC core ready	event			
bit 6-4	Unimplemen	ted: Read as	ʻ0'					
bit 3	C3CIE: Dedic	cated ADC Cor	e 3 Ready Co	mmon Interrupt	Enable bit			
	1 = Common	interrupt will b	e generated w	hen ADC Core	3 is powered a	nd ready for op	eration	
h :# 0				DC Core 3 read	uy event			
DIL 2		interrunt will h	e z Ready Co			nd roady for on	aration	
	1 = Common 0 = Common	interrupt will b	abled for an A	DC Core 2 rea	dv event	nu ready for op	eration	
bit 1	C1CIE: Dedic	cated ADC Cor	e 1 Ready Co	mmon Interrupt	Enable bit			
	1 = Common	interrupt will b	e generated w	hen ADC Core	1 is powered a	nd ready for on	eration	
	0 = Common	interrupt is dis	abled for an A	DC Core 1 read	dy event	, - -		
bit 0	COCIE: Dedic	cated ADC Cor	e 0 Ready Co	mmon Interrupt	Enable bit			
	1 = Common	interrupt will b	e generated w	hen ADC Core	0 is powered a	nd ready for op	peration	
	0 = Common interrupt is disabled for an ADC Core 0 ready event							

REGISTER 20-1: CMPxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

bit 5	EXTREF: Enable External Reference bit
	 1 = External source provides reference to DACx (maximum DAC voltage is determined by the external voltage source)
	0 = AVDD provides reference to DACx (maximum DAC voltage is AVDD)
bit 4	HYSPOL: Comparator Hysteresis Polarity Select bit
	 1 = Hysteresis is applied to the falling edge of the comparator output 0 = Hysteresis is applied to the rising edge of the comparator output
bit 3	CMPSTAT: Comparator Current State bit
	Reflects the current output state of Comparator x, including the setting of the CMPPOL bit.
bit 2	ALTINP: Alternate Input Select bit
	1 = INSEL<1:0> bits select alternate inputs
	0 = INSEL<1:0> bits select comparator inputs
bit 1	CMPPOL: Comparator Output Polarity Control bit
	1 = Output is inverted
	0 = Output is non-inverted
bit 0	RANGE: DACx Output Voltage Range Select bit
	1 = AVDD is the maximum DACx output voltage
	0 = Unimplemented, do not use

Note 1: DACOUTx can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DACx output by setting their respective DACOE bit.

TABLE 26-25: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CH	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale Value (1, 8, 64, 256)
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale Value (1, 8, 64, 256)
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—	—	ns	N = Prescale Value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40	_	1.75 Tcy + 40	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 26-26: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Ope (unless other Operating tem	erating (wise sta perature	Conditions: 3.0 ated) $e -40^{\circ}C \le TA \le -40^{\circ}C \le -40^$	0V to 3. 0 ≤ +85°C ≤ +125°0	6V for Industrial C for Extended
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TC10	TtxH	TxCK High Time	Synchronous	Tcy + 20	_	—	ns	Must also meet Parameter TC15
TC11	TtxL	TxCK Low Time	Synchronous	Tcy + 20	—	—	ns	Must also meet Parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous with Prescaler	2 Tcy + 40	—	—	ns	N = Prescale Value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from Ex Clock Edge to Increment	ternal TxCK Timer	0.75 Tcy + 40	—	1.75 Tcy + 40	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 26-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V						
AC CHA	ARACTERIS	TICS	(unless otherwise stated) Operating temperature 40° C < Ta < +85^{\circ}C for industrial						
			-40 °C \leq TA \leq +125 °C for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SP70	FscP	Maximum SCKx Input Frequency	_	—	Lesser of: FP or 15	MHz	(Note 3)		
SP72	TscF	SCKx Input Fall Time	—	_	—	ns	See Parameter DO32 (Note 4)		
SP73	TscR	SCKx Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDOx Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	—	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	—	ns			
SP50	TssL2scH, TssL2scL	$\frac{SSx}{Input} \downarrow \text{ to SCKx} \uparrow \text{ or SCKx} \downarrow$	120	—	—	ns			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	(Note 4)		
SP52	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	(Note 4)		
SP60	TssL2doV	SDOx Data Output Valid After SSx Edge	—	—	50	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 26-38:SPix SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

АС СНА				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency	—	—	11	MHz	(Note 3)	
SP72	TscF	SCKx Input Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCKx Input Rise Time	—		—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—		_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge		6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns		
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \uparrow or SCKx \downarrow Input	120	Ι	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge	1.5 Tcy + 40	—		ns	(Note 4)	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

28-Lead SOIC (.300")

Example

28-Lead UQFN	(6x6x0.55 mm)
--------------	---------------

28-Lead QFN-S (6x6x0.9 mm)

Example

Legend	I: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	

28.1 Package Marking Information (Continued)

44-Lead TQFP (10x10x1 mm)

44-Lead QFN (8x8 mm)

48-Lead TQFP (7x7x1.0 mm)

64-Lead TQFP (10x10x1 mm)

Example

Example

Example

