

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs506-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

28-Pin QFN-S, UQFN

Pin	Pin Function	Pin	Pin Function
1	AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2	15	PGEC1/AN21/SDA1/RP39/RB7
2	AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0	16	Vss
3	AN4/CMP2C/CMP3A/ISRC4/RP41/RB9	17	VCAP
4	AN5/CMP2D/CMP3B/ISRC3/RP42/RB10	18	TMS/PWM3H/ RP43 /RB11
5	Vss	19	TCK/PWM3L/ RP44/R B12
6	OSC1/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1	20	PWM2H/ RP45 /RB13
7	OSC2/CLKO/AN7/PGA1N2/CMP3D/CMP4B/RP34/RB2	21	PWM2L/ RP46 /RB14
8	PGED2/AN18/DACOUT1/INT0/ RP35 /RB3	22	PWM1H/RA4
9	PGEC2/ADTRG31/EXTREF1/RP36/RB4	23	PWM1L/RA3
10	VDD	24	AVss
11	PGED3/SDA2/FLT31/RP40/RB8	25	AVdd
12	PGEC3/SCL2/ RP47 /RB15	26	MCLR
13	TDO/AN19/PGA2N2/ RP37 /RB5	27	AN0/PGA1P1/CMP1A/RA0
14	PGED1/TDI/AN20/SCL1/RP38/RB6	28	AN1/PGA1P2/PGA2P1/CMP1B/RA1

Legend: Shaded pins are up to 5 VDC tolerant. RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33EP64GS50X DEVICES

TABLE	4-4:	TIME	R1 THR	OUGH	TIMER5	REGIS	TER MA	Ρ										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								xxxx
PR1	0102								Period R	Register 1								FFFF
T1CON	0104	TON	—	TSIDL	—	—	_	_			TGATE	TCKPS1	TCKPS0		TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								xxxx
TMR3HLD	0108						Time	r3 Holding F	Register (for	32-bit time	r operations	s only)						xxxx
TMR3	010A	Timer3 Register xxxx									xxxx							
PR2	010C	Period Register 2									FFFF							
PR3	010E								Period R	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	—	_	_	_			TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T3CON	0112	TON	_	TSIDL	—	_	_	_			TGATE	TCKPS1	TCKPS0		—	TCS	—	0000
TMR4	0114								Timer4	Register								xxxx
TMR5HLD	0116						Tir	mer5 Holdin	g Register ((for 32-bit o	perations or	nly)						xxxx
TMR5	0118								Timer5	Register								xxxx
PR4	011A		Period Register 4 FFFF								FFFF							
PR5	011C		Period Register 5 FFF							FFFF								
T4CON	011E	TON	—	TSIDL	—	_	—	—	—	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXGS50X FAMILY

5.6 Control Registers

Five SFRs are used to write and erase the program Flash memory: NVMCON, NVMKEY, NVMADR, NVMADRU and NVMSRCADR/H.

The NVMCON register (Register 5-1) selects the operation to be performed (page erase, word/row program, Inactive Partition erase), initiates the program or erase cycle and is used to determine the Active Partition in Dual Partition modes.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations, or the selected page for erase operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

For row programming operation, data to be written to program Flash memory is written into data memory space (RAM) at an address defined by the NVMSRCADR register (location of first element in row programming data).

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device has been in Idle mode0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 7-3: INT	CON1: INTERRUPT	CONTROL	REGISTER	1
-------------------	-----------------	---------	----------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
1							
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
Logondi							
R = Readable	hit	M = M/ritable	hit	II = I Inimplem	ented hit read	ae 'N'	
-n = Value at F	POR	'1' = Bit is set	bit	0' = Bit is clea	ired	x = Bit is unk	nown
		1 Bit io oot				X Dit io unit	
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit				
	1 = Interrupt	nesting is disa	bled				
	0 = Interrupt	nesting is ena	bled				
bit 14	OVAERR: A	ccumulator A (Overflow Trap F	lag bit			
	1 = Trap was 0 = Trap was	s caused by ov s not caused by	erflow of Accur	mulator A			
bit 13	OVBERR: A	ccumulator B (Overflow Trap F	Flag bit			
2.1.10	1 = Trap was	s caused by ov	erflow of Accur	mulator B			
	0 = Trap was	s not caused by	y overflow of A	ccumulator B			
bit 12	COVAERR:	Accumulator A	Catastrophic (Overflow Trap F	lag bit		
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumu	lator A		
bit 11	COVBERR	Accumulator F	y calastrophic (Catastrophic (Overflow Tran F	lan hit		
Sit II	1 = Trap was	s caused by ca	tastrophic over	flow of Accumu	lator B		
	0 = Trap was	s not caused b	y catastrophic of	overflow of Accu	umulator B		
bit 10	OVATE: Acc	cumulator A Ov	erflow Trap En	able bit			
	1 = Trap ove 0 = Trap is d	erflow of Accum lisabled	nulator A				
bit 9	OVBTE: Acc	cumulator B O	verflow Trap En	able bit			
	1 = Trap ove	erflow of Accun	nulator B				
bit 8	COVTE: Cat	lisableu tastrophic Over	flow Tran Enal	ole hit			
bit o	1 = Trap on	catastrophic over	verflow of Accu	mulator A or B i	s enabled		
	0 = Trap is d	lisabled					
bit 7	SFTACERR	: Shift Accumu	lator Error State	us bit			
	1 = Math err 0 = Math err	or trap was car or trap was no	used by an inva t caused by an	alid accumulator invalid accumul	r shift lator shift		
bit 6	DIVOERR: D	ivide-by-Zero	Error Status bit				
	1 = Math err 0 = Math err	or trap was cau or trap was no	used by a divide t caused by a d	e-by-zero livide-by-zero			
bit 5	Unimpleme	nted: Read as	'0'				
bit 4	MATHERR:	Math Error Sta	tus bit				
	1 = Math err	or trap has occ	occurred				
hit 3		Address Frror	Tran Status hit				
Situ	1 = Address	error trap has	occurred				
	0 = Address	error trap has	not occurred				

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select x (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select x registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

10.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

10.6.1 KEY RESOURCES

- "I/O Ports" (DS70000598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

REGISTER 19-3: ADCON2L: ADC CONTROL REGISTER 2 LOW

R/W-0	R/W-0	r-0	R/W-0	r-0	R/W-0	R/W-0	R/W-0
REFCIE	REFERCIE	_	EIEN	—	SHREISEL2(1)	SHREISEL1(1)	SHREISEL0 ⁽¹⁾
bit 15							bit 8

U-0	R/W-0						
_	SHRADCS6	SHRADCS5	SHRADCS4	SHRADCS3	SHRADCS2	SHRADCS1	SHRADCS0
bit 7							bit 0

Legend:		r = Reserved bit		
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	REFCIE: E	Band Gap and Reference	/oltage Ready Common Inter	rupt Enable bit
	1 = Comm	on interrupt will be generation interrupt in disabled for	ted when the band gap will be	ecome ready
hit 1/		E: Band Gan or Reference	Voltage Error Common Inter	runt Enable bit
	1 = Comm	on interrunt will be genera	ted when a band dap or refer	ence voltage error is detected
	0 = Comm	ion interrupt is disabled for	the band gap and reference	voltage error event
bit 13	Reserved	: Maintain as '0'		
bit 12	EIEN: Ear	ly Interrupts Enable bit		
	1 = The ea 0 = The ine	arly interrupt feature is ena dividual interrupts are gen	bled for the input channel inte erated when conversion is do	errupts (when the EISTATx flag is set) ne (when the ANxRDY flag is set)
bit 11	Reserved	: Maintain as '0'		
bit 10-8	SHREISE	L<2:0>: Shared Core Early	y Interrupt Time Selection bits	(1)
	111 = Earl 110 = Earl 101 = Earl 011 = Earl 010 = Earl 001 = Earl 000 = Earl	ly interrupt is set and intern ly interrupt is set and intern	rupt is generated 8 TADCORE (rupt is generated 7 TADCORE (rupt is generated 6 TADCORE (rupt is generated 5 TADCORE (rupt is generated 4 TADCORE (rupt is generated 3 TADCORE (rupt is generated 2 TADCORE (rupt is generated 1 TADCORE (clocks prior to when the data is ready clocks prior to when the data is ready
bit 7	Unimplem	nented: Read as '0'		
bit 6-0	SHRADCS	S<6:0>: Shared ADC Core	Input Clock Divider bits	
	These bits Clock Peri	determine the number of od).	TCORESRC (Source Clock Pe	riods) for one shared TADCORE (Core
	•	= 254 Source Clock Period	15	
	•			
	•	- C Course Cleak Dariada		
	0000011:	= 6 Source Clock Periods = 4 Source Clock Periods		
	0000001:	= 2 Source Clock Periods		
	0000000	= 2 Source Clock Periods		

Note 1: For the 6-bit shared ADC core resolution (SHRRES<1:0> = 00), the SHREISEL<2:0> settings, from '100' to '111', are not valid and should not be used. For the 8-bit shared ADC core resolution (SHRRES<1:0> = 01), the SHREISEL<2:0> settings, '110' and '111', are not valid and should not be used.

REGISTER 19-28: ADCAL0L: ADC CALIBRATION REGISTER 0 LOW

R-0, HSC	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0
CAL 1RDY	_	_	_		CAL 1DIFF	CALIEN	CALIRUN
bit 15					0/1210111	O, LE I EI I	bit 8
R-0, HSC	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0
CALORDY	_	_	—	_	CAL0DIFF	CAL0EN	CALORUN
bit 7						1	bit 0
Legend:		r = Reserved	bit	U = Unimplem	nented bit, read	l as '0'	
R = Readable	e bit	W = Writable	oit	HSC = Hardw	are Settable/C	learable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	CAL1RDY: De	edicated ADC	Core 1 Calibrat	tion Status Flag) bit		
	1 = Dedicated	ADC Core 1 c	alibration is fin	ished			
	0 = Dedicated	ADC Core 1 c	alibration is in	progress			
bit 14-12	Unimplement	ted: Read as 'o)'				
bit 11	Reserved: Mu	ust be written a	s '0'				
bit 10	CAL1DIFF: D	edicated ADC	Core 1 Differer	ntial-Mode Cali	bration bit		
	1 = Dedicated	ADC Core 1 v	vill be calibrate	d in Differential	I Input mode		
h # 0			/III be calibrate	a in Single-End	iea input mode		
DIT 9	CALIEN: Dec		ore 1 Calibratio				
	⊥ = Dedicated	ADC Core I C	alibration bits ((CALXRD I, CA		ALXRUN) can b	e accessed by
	0 = Dedicated	d ADC Core 1	calibration bits	are disabled			
bit 8	CAL1RUN: D	edicated ADC	Core 1 Calibra	tion Start bit			
	1 = If this bit	is set by soft	ware, the dedi	cated ADC Co	ore 1 calibratio	n cycle is star	ted; this bit is
	automatic	ally cleared by	hardware				
	0 = Software	can start the n	ext calibration	cycle			
bit 7	CALORDY: De	edicated ADC	Core 0 Calibrat	tion Status Flag	j bit		
	1 = Dedicated		alibration is fin	IShed			
bit 6-4		rADC Cole o c)'	progress			
bit 3	Reserved: M	ist be written a	, s '∩'				
bit 2		edicated ADC	Core () Differer	ntial-Mode Calil	bration bit		
Sitz	1 = Dedicated	ADC Core 0 v	vill be calibrate	d in Differential	I Input mode		
	0 = Dedicated	ADC Core 0 v	vill be calibrate	d in Single-End	led Input mode		
bit 1	CALOEN: Dec	dicated ADC C	ore 0 Calibratio	on Enable bit			
	1 = Dedicated	d ADC Core 0 d	alibration bits ((CALxRDY, CA	LxDIFF and CA	ALxRUN) can b	e accessed by
	software						
h:1 0				are disabled			
DITU		edicated ADC	Lore U Calibra	tion Start bit		n avala ia at	tody this hit !-
	⊥ = II THIS DIT	ally cleared by	ware, the dedi hardware		Die U calibratio	n cycle is star	teu; this dit is
	0 = Software	can start the n	ext calibration	cycle			

21.0 PROGRAMMABLE GAIN AMPLIFIER (PGA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programmable Gain Amplifier (PGA)" (DS70005146) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family devices have two Programmable Gain Amplifiers (PGA1, PGA2). The PGA is an op amp-based, non-inverting amplifier with user-programmable gains. The output of the PGA can be connected to a number of dedicated Sample-and-Hold inputs of the Analog-to-Digital Converter and/or to the high-speed analog comparator module. The PGA has five selectable gains and may be used as a ground referenced amplifier (single-ended) or used with an independent ground reference point.

Key features of the PGA module include:

- Single-Ended or Independent Ground Reference
- Selectable Gains: 4x, 8x, 16x, 32x and 64x
- High Gain Bandwidth
- Rail-to-Rail Output Voltage
- Wide Input Voltage Range

23.3 User OTP Memory

dsPIC33EPXXGS50X family devices contain 64 words of User One-Time-Programmable (OTP) memory, located at addresses, 0x800F80 through 0x800FFE. The User OTP Words can be used for storing checksum, code revisions, product information, such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information. These words can only be written once at program time and not at run time; they can be read at run time.

23.4 On-Chip Voltage Regulator

All the dsPIC33EPXXGS50X family devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXGS50X family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 23-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 26-5, located in **Section 26.0 "Electrical Characteristics"**.

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the VCAP
	pin.

FIGURE 23-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

23.5 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse which resets the device. The BOR selects the clock source based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an Oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 26-23 of **Section 26.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33EPXXGS50X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXGS50X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(3)}$	-0.3V to +3.6V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sunk/sourced by any 4x I/O pin	15 mA
Maximum current sunk/sourced by any 8x I/O pin	25 mA
Maximum current sunk by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.

26.1 DC Characteristics

TABLE 26-1: OPERATING MIPS vs. VOLTAGE

Charactoristic	VDD Range	Temperature Range	Maximum MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33EPXXGS50X Family		
	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70		
_	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, PGAs and comparators) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 26-13 for the minimum and maximum BOR values.

TABLE 26-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (I/VDD - VOH) x IOH) + \Sigma (VOL x IOL)$	PD	Pint + Pi/o		W	
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJA			W

TABLE 26-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin TQFP 10x10x1 mm	θJA	49.0		°C/W	1
Package Thermal Resistance, 48-Pin TQFP 7x7x1.0 mm	θJA	63.0	—	°C/W	1
Package Thermal Resistance, 44-Pin QFN 8x8 mm	θJA	29.0	—	°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10x1 mm	θJA	50.0	—	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S 6x6x0.9 mm	θJA	30.0	—	°C/W	1
Package Thermal Resistance, 28-Pin UQFN 6x6x0.5 mm	θJA	26.0	—	°C/W	1
Package Thermal Resistance, 28-Pin SOIC 7.50 mm	θJA	70.0	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 26-25: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CH	ARACTERIS	STICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Charae	cteristic ⁽¹⁾	Min.	Тур.	Units	Conditions	
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	—	ns	Must also meet Parameter TB15, N = Prescale Value (1, 8, 64, 256)
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale Value (1, 8, 64, 256)
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—	—	ns	N = Prescale Value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40	_	1.75 Tcy + 40	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 26-26: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min. Typ. Max. Units Condition				Conditions
TC10	TtxH	TxCK High Time	Synchronous	Tcy + 20	_	—	ns	Must also meet Parameter TC15
TC11	TtxL	TxCK Low Time	Synchronous	Tcy + 20	—	—	ns	Must also meet Parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous with Prescaler	2 Tcy + 40	—	—	ns	N = Prescale Value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.75 Tcy + 40	—	1.75 Tcy + 40	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 26-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Leads	Ν		44		
Lead Pitch	е		0.80 BSC		
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Overall Width E 12.00 BSC					
Molded Package Width	E1	10.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	θ	0° 3.5° 7°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

48-Lead Thin Quad Flatpack (Y8) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensio	Dimension Limits		NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		8.40	
Contact Pad Spacing	C2		8.40	
Contact Pad Width (X48)	X1			0.30
Contact Pad Length (X48)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2300-Y8 Rev A

APPENDIX A: REVISION HISTORY

Revision A (June 2013)

This is the initial released version of the document.

Revision B (May 2015)

Adds dsPIC33EPXXGS505 (48-pin) devices to the document:

- Amends the table on page 2 to add the three new devices of this group
- Adds the 48-pin TQFP pin diagram on page 7
- Amends Table 26-3 to include thermal packaging characteristics for 48-pin packages
- Updates Section 28.1 "Package Marking Information" to include package marking details for 48-pin TQFP devices
- Updates Section 28.2 "Package Details" to include Microchip Drawings C04-183A and C04-2183A (7x7x1.0 mm 48-lead TQFP)

Changes all references to Dual Boot Flash Program Memory throughout the text to "Dual Partition Flash Program Memory". In addition, all accompanying references to "panels" and "Boot modes" are changed to "partitions" and "Partition modes". This includes, but is not limited, to:

- Section 4.1 "Program Address Space"
- Section 5.4 "Dual Partition Flash Configuration", and Register 5-1
- Section 23.10 "Code Protection and CodeGuard™ Security", and Table 23-2

Replaces the high-speed pipeline A/D Converter present in pre-production samples with a high-speed, multiple SAR A/D Converter in production devices:

- Replaces Section 19.0 "High-Speed, 12-Bit Analog-to-Digital Converter (ADC)" with an entirely new section of the same title, replacing all previous figures and registers
- Updates the summary bullet points under "High-Speed ADC Module" on Page 1 to reflect the feature set of the new module
- Updates Table 4-3 and Table 7-1 to reflect the new module's interrupt structure
- · Replaces Table 4-16 with a new register map
- Removes Table 4-16 ("ADC Calibration Register Map"); subsequent tables are renumbered accordingly
- Updates Section 23.2 "Device Calibration and Identification" and Table 23-3 to remove the ADCAL registers from the Calibration register table
- Removes all references to the internal temperature sensor, including Table 26-44 (Temperature Sensor Specifications) and Figure 27-11 (Typical Temperature Sensor Voltage vs. Current)

Changes the ESR specification of the VCAP filter capacitor from < 4Ω to < $0.5\Omega.$

Removes the internal voltage reference in all occurrences. For analog modules, the internal band gap reference is substituted as a replacement source.

Changes the following register names in all occurrences throughout the text:

- "CMPCONx" to "CMPxCON"
- "CMPDACx" to "CMPxDAC"
- "I2CxCON1" to "I2CxCONL"
- "I2CxCON2" to "I2CxCONH"

Updates the text of **Section 5.4.2 "Dual Partition Modes"** to change "Untrusted Dual Panel mode" to "Privileged Dual Partition mode" and clarifies the mode's code security features.

Changes the BSS2 Configuration bit to "BSEN" throughout the text.

Replaces **Section 23.3 "User OTP Memory"** with new text to describe the 64-word User OTP Memory space; also removes Table 23-4.

Amends Table 24-2 with a footnote indicating an increase of instruction execution cycles for most instructions under certain conditions.

Updates the following tables in **Section 26.0** "**Electrical Characteristics**" (in addition to changes previously noted):

- Table 26-4, with new specification DC12 (and accompanying footnote)
- Table 26-6, with updated Typical and new Maximum data throughout, and the addition of Parameter DC27 (with accompanying footnote)
- Table 26-7, Table 26-8 and Table 26-10 with updated Typical and Maximum data throughout
- Table 26-9 with updated Typical and Maximum data for Parameters DC61a and DC61b
- Footnotes 6 and 7 of Table 26-11 to clarify the behavior of 5V tolerant pins
- The "ADC Accuracy" specifications of Table 26-43
- Table 26-45 (Table 26-45 in Revision A) with updated specifications for Parameter CM15
- Table 26-46 (Table 26-46 in Revision A) with updated specifications for Parameters DA03 through DA06

Clarifies the text of Footnotes 6 and 7 in Table 26-11 (I/O Pin Input Specifications).

Removes the "Reference Inputs" specifications from Table 26-43 in their entirety.

Replaces Figure 27-5 through Figure 27-10 with new characterization graphs to reflect the most current data and removes "TBD" watermarks.

Updates **Section 28.1 "Package Marking Information"** to reflect the removal of redundant temperature and package code information from all package markings; this is in addition to the new 48-pin package markings previously described.

Other minor typographic corrections throughout the document.