

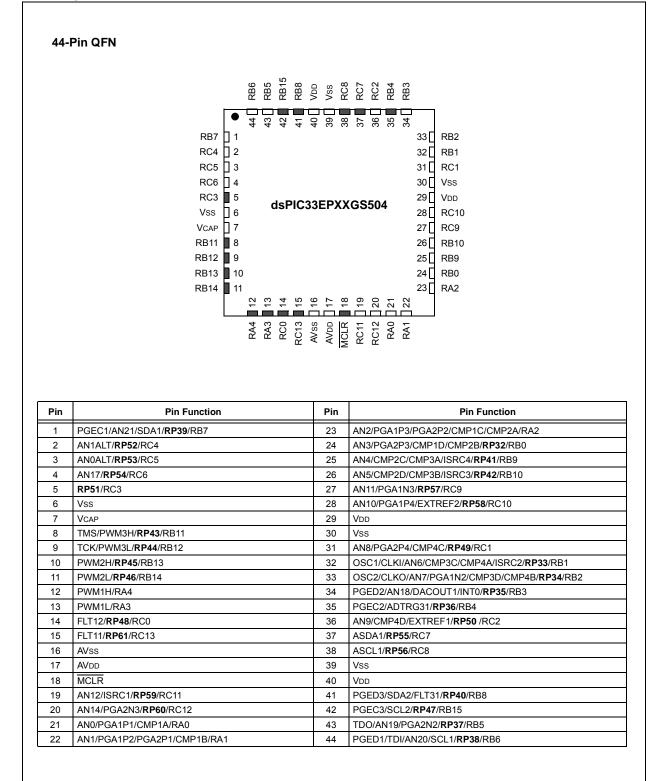
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XEI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs506t-e-pt

Email: info@E-XFL.COM

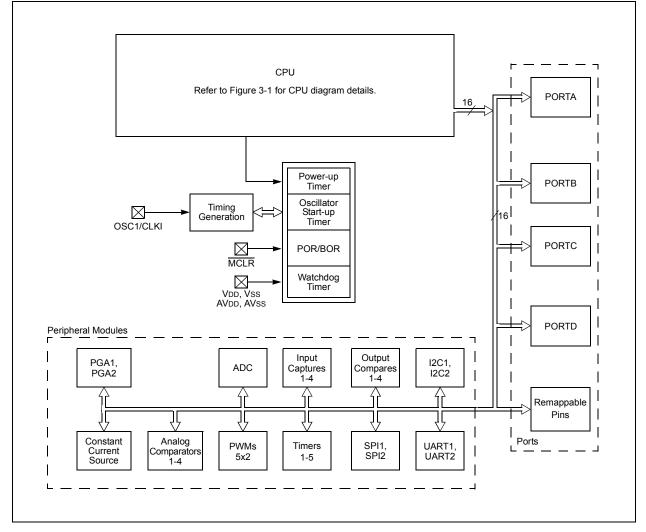
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

1.0 DEVICE OVERVIEW

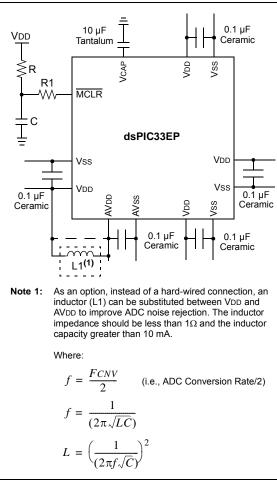

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXGS50X Digital Signal Controller (DSC) devices.

dsPIC33EPXXGS50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXGS50X FAMILY BLOCK DIAGRAM


TABLE 1-1: PINOUT I/O DESCRIPTIONS

Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description
AN0-AN21 AN0ALT-AN1ALT		Analog Analog	No No	Analog input channels. Alternate analog input channels.
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
CLKO	0	—	No	Always associated with OSC2 pin function.
OSC1	I	ST/ CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	I/O	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
REFCLKO	0	_	Yes	Reference clock output.
IC1-IC4	1	ST	Yes	Capture Inputs 1 through 4.
OCFA	1	ST	Yes	Compare Fault A input (for compare channels).
OC1-OC4	Ó	_	Yes	Compare Outputs 1 through 4.
INT0	1	ST	No	External Interrupt 0.
INT1	I	ST	Yes	External Interrupt 1.
INT2	I	ST	Yes	External Interrupt 2.
INT4	Ι	ST	No	External Interrupt 4.
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.
RC0-RC15	I/O	ST	No	PORTC is a bidirectional I/O port.
RD0-RD15	I/O	ST	No	PORTD is a bidirectional I/O port.
T1CK	1	ST	Yes	Timer1 external clock input.
T2CK		ST	Yes	Timer2 external clock input.
T3CK	İ	ST	Yes	Timer3 external clock input.
T4CK	I	ST	No	Timer4 external clock input.
T5CK	I.	ST	No	Timer5 external clock input.
U1CTS	I	ST	Yes	UART1 Clear-to-Send.
U1RTS	0	_	Yes	UART1 Request-to-Send.
U1RX	I	ST	Yes	UART1 receive.
U1TX	0	—	Yes	UART1 transmit.
BCLK1	0	ST	Yes	UART1 IrDA [®] baud clock output.
U2CTS	I	ST	Yes	
U2RTS	0	—		UART2 Request-to-Send.
U2RX		ST		UART2 receive.
U2TX	0		Yes	UART2 transmit.
BCLK2	0	ST	Yes	UART2 IrDA baud clock output.
SCK1	1/0	ST	Yes	Synchronous serial clock input/output for SPI1.
SDI1		ST	Yes	SPI1 data in.
SDO1 SS1	0 I/O	ST	Yes Yes	SPI1 data out. SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2	1	ST	Yes	SPI2 data in.
SDO2	0		Yes	SPI2 data ini. SPI2 data out.
<u>SS2</u>	1/0	ST	Yes	SPI2 slave synchronization or frame pulse I/O.
Legend: CMOS = C	_			
ST = Schm PPS = Peri	itt Trigg	er input v	vith CN	

1: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

2: These pins are dedicated on 64-pin devices.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

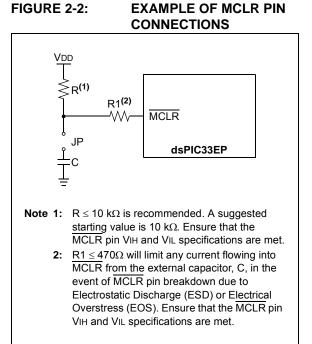
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (<0.5 Ω) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μF (10 μF is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 26.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 23.4 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:

- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the \overline{MCLR} pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP64GS50X DEVICES

7	GOTO Instruction	0x000000
	Reset Address	0x000002
Ð	Interrupt Vector Table	0x000004 0x0001FE
User Memory Space	User Program Flash Memory (22,207 instructions)	0x000200 0x00AF7E
er Mem	Device Configuration	0x00AF80 0x00AFFE
Use		0x00B000
	Unimplemented	
	(Read '0's)	
	Reserved	0x7FFFFE 0x800000 0x800E46
	Calibration Data	0x800E48
	Reserved	0x800E78 0x800E7A 0x800EFE
Configuration Memory Space	UDID	0x800F00 0x800F08 0x800F0A
nory S	Reserved	0x800F7E
n Mer	User OTP Memory	0x800F80 0x800FFC
Iratio	Reserved	0x801000
onfigu	Write Latches	0xF9FFFE 0xFA0000
ŏ		0xFA0002 0xFA0004
	Reserved	
	DEVID	0xFEFFFE 0xFF0000
	Reserved	0xFF0002 0xFF0004
_		0xFFFFFE

Note: Memory areas are not shown to scale.

TABLE 4-16: ADC REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON1L	0300	ADON	_	ADSIDL	_	_	_	_	_	_	_	_	_	_	-	-	_	0000
ADCON1H	0302	1	-	-	-	_	-	-	-	FORM	SHRRES1	SHRRES0	-	-	-	-	-	0060
ADCON2L	0304	REFCIE	REFERCIE	-	EIEN	_	SHREISEL2	SHREISEL1	SHREISEL0	_	SHRADCS6	SHRADCS5	SHRADCS4	SHRADCS3	SHRADCS2	SHRADCS1	SHRADCS0	0000
ADCON2H	0306	REFRDY	REFERR		_	_	-	SHRSAMC9	SHRSAMC8	SHRSAMC7	SHRSAMC6	SHRSAMC5	SHRSAMC4	SHRSAMC3	SHRSAMC2	SHRSAMC1	SHRSAMC0	0000
ADCON3L	0308	REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH	SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSEL0	0000
ADCON3H	030A	CLKSEL1	CLKSEL0	CLKDIV5	CLKDIV4	CLKDIV3	CLKDIV2	CLKDIV1	CLKDIV0	SHREN		_		C3EN	C2EN	C1EN	COEN	0000
ADCON4L	030C	-	—		-	SYNCTRG3	SYNCTRG2	SYNCTRG1	SYNCTRG0	-		_		SAMC3EN	SAMC2EN	SAMC1EN	SAMC0EN	0000
ADCON4H	030E	-	_	-	—	_	-	-	—	C3CHS1	C3CHS0	C2CHS1	C2CHS0	C1CHS1	C1CHS0	C0CHS1	C0CHS0	0000
ADMOD0L	0310	DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF3	SIGN4	DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0	0000
ADMOD0H	0312	DIFF15 ⁽¹⁾	SIGN15 ⁽¹⁾	DIFF14 ⁽²⁾	SIGN14 ⁽²⁾	DIFF13 ⁽¹⁾	SIGN13 ⁽¹⁾	DIFF12 ⁽²⁾	SIGN12 ⁽²⁾	DIFF11 ⁽²⁾	SIGN11 ⁽²⁾	DIFF10 ⁽²⁾	SIGN10 ⁽²⁾	DIFF9 ⁽²⁾	SIGN9 ⁽²⁾	DIFF8 ⁽²⁾	SIGN8 ⁽²⁾	0000
ADMOD1L	0314		_	-	-	DIFF21	SIGN21	DIFF20	SIGN20	DIFF19	SIGN19	DIFF18	SIGN18	DIFF17 ⁽²⁾	SIGN17 ⁽²⁾	DIFF16 ⁽¹⁾	SIGN16 ⁽¹⁾	0000
ADIEL	0320	IE15 ⁽¹⁾	IE14 ⁽²⁾	IE13 ⁽¹⁾	IE12 ⁽²⁾	IE11 ⁽²⁾	IE10 ⁽²⁾	IE9 ⁽²⁾	IE8 ⁽²⁾	IE7	IE6	IE5	IE4	IE3	IE2	IE1	IE0	0000
ADIEH	0322	-	_	-	-	-	-	-	-	-	-	IE21	IE20	IE19	IE18	IE17 ⁽²⁾	IE16 ⁽¹⁾	0000
ADSTATL	0330	AN15RDY(1)	AN14RDY(2)	AN13RDY(1)	AN12RDY(2)	AN11RDY ⁽²⁾	AN10RDY(2)	AN9RDY ⁽²⁾	AN8RDY ⁽²⁾	AN7RDY	AN6RDY	AN5RDY	AN4RDY	AN3RDY	AN2RDY	AN1RDY	ANORDY	0000
ADSTATH	0332	_	—	_	_	_	_	-	-	_	_	AN21RDY	AN20RDY	AN19RDY	AN18RDY	AN17RDY ⁽²⁾	AN16RDY ⁽¹⁾	0000
ADCMP0ENL	0338	CMPEN15(1)	CMPEN14(2)	CMPEN13(1)	CMPEN12(2)	CMPEN11(2)	CMPEN10(2)	CMPEN9(2)	CMPEN8(2)	CMPEN7	CMPEN6	CMPEN5	CMPEN4	CMPEN3	CMPEN2	CMPEN1	CMPEN0	0000
ADCMP0ENH	033A	_	—	_	_	_	_	-	-	_	_	CMPEN21	CMPEN20	CMPEN19	CMPEN18	CMPEN17(2)	CMPEN16(1)	0000
ADCMP0LO	033C							AD	C Comparator) Low Value Re	egister							0000
ADCMP0HI	033E							AD	C Comparator () High Value R	egister							0000
ADCMP1ENL	0340	CMPEN15(1)	CMPEN14(2)	CMPEN13(1)	CMPEN12(2)	CMPEN11(2)	CMPEN10(2)	CMPEN9(2)	CMPEN8(2)	CMPEN7	CMPEN6	CMPEN5	CMPEN4	CMPEN3	CMPEN2	CMPEN1	CMPEN0	0000
ADCMP1ENH	0342	_	_	_	_	_	_	_	_	_	_	CMPEN21	CMPEN20	CMPEN19	CMPEN18	CMPEN17(2)	CMPEN16(1)	0000
ADCMP1LO	0344							A	DC Comparator	1 Low Value Re	gister							0000
ADCMP1HI	0346							A	DC Comparator	1 High Value Re	egister							0000
ADFLDAT	0368								ADC Filter 0 Re	sults Data Regi	ster							0000
ADFL1CON	036A	FLEN	MODE1	MODE0	OVRSAM2	OVRSAM1	OVRSAM0	IE	RDY	_	_	_	FLCHSEL4	FLCHSEL3	FLCHSEL2	FLCHSEL1	FLCHSEL0	0000
ADFL1DAT	0368								ADC Filter 1 Re	sults Data Reg	ister							0000
ADFL0CON	036A	FLEN	MODE1	MODE0	OVRSAM2	OVRSAM1	OVRSAM0	IE	RDY	_	_	_	FLCHSEL4	FLCHSEL3	FLCHSEL2	FLCHSEL1	FLCHSEL0	0000
ADTRIG0L	0380	-	_	_			TRGSRC1<4:0)>		_	_	_			TRGSRC0<4:0	>		0000
ADTRIG0H	0382	_	_	-			TRGSRC3<4:0)>		_	-	—			TRGSRC2<4:0	>		0000
ADTRIG1L	0384	_	_	-			TRGSRC5<4:0)>		_	_	_			TRGSRC4<4:0	>		0000
ADTRIG1H	0386	_	_	_			TRGSRC7<4:0)>		_	_	_			TRGSRC6<4:0	>		0000
ADTRIG2L	0388	_	_	-			TRGSRC9<4:0)>		_	_	_			TRGSRC8<4:0	>		0000
ADTRIG2H	038A	_	_	_			TRGSRC11<4:	0>		_	_	_		T	RGSRC10<4:0	>		0000
ADTRIG3L	038C	_	_	_			TRGSRC13<4:	0>		_	_	_		T	RGSRC12<4:0	>		0000
ADTRIG3H	038E	_	_	_			TRGSRC15<4:	0>		_	_	_		T	RGSRC14<4:0	>		0000
ADTRIG4L	0390	_	_	_			TRGSRC17<4:	0>		_	_	_		T	RGSRC16<4:0	>		0000
ADTRIG4H	0392	_	_	_			TRGSRC19<4:			_	_	_			RGSRC18<4:0			0000
ADTRIG5L	0394	_	_	_			TRGSRC21<4:	-		_	_	_			RGSRC20<4:0			0000
ADCMP0CON	03A0	_	_	_	CHNL4	CHNL3	CHNL2	CHNL1	CHNL0	CMPEN	IE	STAT	BTWN	HIHI	HILO	LOHI	LOLO	0000
					1		-					-		1	-			<u></u>

dsPIC33EPXXGS50X FAMILY

--- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1:

Implemented on dsPIC33EPXXGS506 devices only. Implemented on dsPIC33EPXXGS504/505 and dsPIC33EPXXGS506 devices only. 2:

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD		—	ADCMD	0000
PMD2	0762		—	—	-	IC4MD	IC3MD	IC2MD	IC1MD	-		—	-	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	Ι	_	_	_	_	CMPMD	_	_	_	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	Ι	_	_	_	_	_	_	_	_	_	_	_	REFOMD	_	_	_	0000
PMD6	076A	Ι	_	_	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
PMD7	076C	Ι	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_	PGA1MD	_	0000
PMD8	076E	_	—	_	—	_	PGA2MD	ABGMD	_	_	_	—	_	_	_	CCSMD		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: CONSTANT-CURRENT SOURCE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ISRCCON	0500	ISRCEN	_		_		OUTSEL2	OUTSEL1	OUTSEL0	_	_	ISRCCAL5	ISRCCAL4	ISRCCAL3	ISRCCAL2	ISRCCAL1	ISRCCAL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: PROGRAMMABLE GAIN AMPLIFIER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PGA1CON	0504	PGAEN	PGAOEN	SELPI2	SELPI1	SELPI0	SELNI2	SELNI1	SELNI0	_	_				GAIN2	GAIN1	GAIN0	0000
PGA1CAL	0506	_	—	—	—	_	—	_	_	—	—			PGACA	L<5:0>			0000
PGA2CON	0508	PGAEN	PGAOEN	SELPI2	SELPI1	SELPI0	SELNI2	SELNI1	SELNI0	—	—	_	—	_	GAIN2	GAIN1	GAIN0	0000
PGA2CAL	050A	_	—	—	—	_	—	_	_	—	—			PGACA	L<5:0>			0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 8-7: LFSR: LINEAR FEEDBACK SHIFT REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				LFSR<14:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LFS	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15 Unimplemented: Read as '0'

bit 14-0 LFSR<14:0>: Pseudorandom Data bits

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	_	<u> </u>			
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-13	Unimplement	ted: Read as '0)'				
bit 12	PWM5MD: P\	WM5 Module D	isable bit				
		odule is disable	-				
		odule is enable	-				
bit 11	PWM4MD: P\	VM4 Module D	isable bit				
		odule is disable					
	0 = PWM4 mo	odule is enable	d				
	0 = PWM4 mo PWM3MD: P\	odule is enable VM3 Module D	d isable bit				
	0 = PWM4 mo PWM3MD: P\ 1 = PWM3 mo	odule is enable	d isable bit d				
bit 10 bit 9	0 = PWM4 mc PWM3MD: P\ 1 = PWM3 mc 0 = PWM3 mc	odule is enable WM3 Module D odule is disable	d isable bit d				
bit 10	0 = PWM4 mc PWM3MD : PV 1 = PWM3 mc 0 = PWM3 mc PWM2MD : PV	odule is enable WM3 Module D odule is disable odule is enable	d isable bit d d isable bit				
bit 10	0 = PWM4 mc PWM3MD : PV 1 = PWM3 mc 0 = PWM3 mc PWM2MD : PV 1 = PWM2 mc	odule is enable WM3 Module D odule is disable odule is enable WM2 Module D	d isable bit d d isable bit d				
bit 10	0 = PWM4 mc PWM3MD : PV 1 = PWM3 mc 0 = PWM3 mc PWM2MD : PV 1 = PWM2 mc 0 = PWM2 mc	odule is enable WM3 Module D odule is disable odule is enable WM2 Module D odule is disable	d isable bit d d isable bit d d				
bit 10 bit 9	0 = PWM4 mo PWM3MD: PV 1 = PWM3 mo 0 = PWM3 mo PWM2MD: PV 1 = PWM2 mo 0 = PWM2 mo 0 = PWM2 mo PWM1MD: PV 1 = PWM1 mo	odule is enable WM3 Module D odule is disable odule is enable WM2 Module D odule is disable odule is enable WM1 Module D odule is disable	d isable bit d isable bit d d isable bit d				
bit 10 bit 9	0 = PWM4 mo PWM3MD: PV 1 = PWM3 mo 0 = PWM3 mo PWM2MD: PV 1 = PWM2 mo 0 = PWM2 mo 0 = PWM1 mo 0 = PWM1 mo 0 = PWM1 mo	odule is enable WM3 Module D odule is disable odule is enable WM2 Module D odule is disable odule is enable WM1 Module D	d isable bit d isable bit d d isable bit d d				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15			·				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U1RXR7	U1RXR6	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0
<u> </u>							
Legend:							
R = Readable		W = Writable		•	nented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 7-0	10110100 = • • 00000001 = 00000000 =	Input tied to RF Input tied to RF Input tied to RF Input tied to Vs : Assign UART	2180 21 35	1RX) to the Co	rresponding RF	n Pin bits	

REGISTER 10-10: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

R/W-0	R/W-0	R/W-0	R/W-0		5444.0		
			10,00-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT6R7	FLT6R6	FLT6R5	FLT6R4	FLT6R3	FLT6R2	FLT6R1	FLT6R0
bit 15		·		·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT5R7	FLT5R6	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-0	10110100 = • • • • • • • • • • • • • • • • • • •	Input tied to RI Input tied to RI Input tied to RI Input tied to Vs Assign PWM Input tied to RI	⊃180 ⊃1 SS Fault 5 (FLT5)) to the Corresp	oonding RPn Pi	n bits	
	• •	Input tied to RI					

REGISTER 10-18: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42

12.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare modules (Timer2 and Timer3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1. T3CON and T5CON are shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 12-2.

12.1 Timer Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

12.1.1 KEY RESOURCES

- **"Timers"** (DS70362) in the *"dsPIC33/PIC24 Family Reference Manual"*
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

13.2 Input Capture Registers

REGISTER 13-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

REGISTER 13-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1										
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R-0, HC, HS	R-0, HC, HS	R/W-0	R/W-0	R/W-0			
	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0			
bit 7							bit			
Legend:		HC = Hardward	- Cloarable bit	US - Hardwa	re Settable bit					
∟ egenu. R = Readab	lo hit					d as '0'				
-n = Value a		W = Writable bit '1' = Bit is set		U = Unimplemented bit, read as '0' = Bit is cleared x		x = Bit is unl	nown			
	IL FOR	I - DILIS SEL			areu		(IIOWII			
bit 15-14	Unimplemer	nted: Read as '0	,							
bit 13	-		in Idle Control bi	t						
		oture will halt in (-						
			e to operate in C	PU Idle mode						
bit 12-10	ICTSEL<2:0>: Input Capture x Timer Select bits									
	111 = Peripheral clock (FP) is the clock source of the ICx									
	110 = Reserved									
	101 = Reserved									
	100 = T1CLK is the clock source of the ICx (only the synchronous clock is supported) 011 = T5CLK is the clock source of the ICx									
	011 = 130 LK is the clock source of the ICx									
	001 = T2CLK is the clock source of the ICx									
		K is the clock so								
bit 9-7	Unimplemer	nted: Read as '0	3							
oit 6-5	ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111									
	11 = Interrupt on every fourth capture event									
	 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 									
	00 = Interrupt on every second capture event									
bit 4	ICOV: Input Capture x Overflow Status Flag bit (read-only)									
	1 = Input capture buffer overflow has occurred									
	0 = No input capture buffer overflow has occurred									
bit 3	ICBNE: Input Capture x Buffer Not Empty Status bit (read-only)									
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty 									
bit 2-0	ICM<2:0>: Input Capture x Mode Select bits									
	111 = Input Capture x functions as an interrupt pin only in CPU Sleep and Idle modes (rising edge									
	detect only, all other control bits are not applicable)									
	110 = Unused (module is disabled)									
	101 = Capture mode, every 16th rising edge (Prescaler Capture mode) 100 = Capture mode, every 4th rising edge (Prescaler Capture mode)									
	•	•	•••	•	,					
		 011 = Capture mode, every rising edge (Simple Capture mode) 010 = Capture mode, every falling edge (Simple Capture mode) 								
			sing and falling ed			>, is not used	in this mode			
		Canture v is turn		3- (0 00000		,				

001 = Capture mode, every fising an000 = Input Capture x is turned off

16.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on \overline{SSx} .

Note:	This	ensures	that	the	first	fr	ame
	transmission		after	initializa	ation	is	not
	shifted or corrupted.						

- 2. In Non-Framed 3-Wire mode (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.
- **Note:** This will ensure that during power-up and initialization, the master/slave will not lose synchronization due to an errant SCKx transition that would cause the slave to accumulate data shift errors for both transmit and receive, appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the frame sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. Refer to the SPIx specifications in Section 26.0 "Electrical Characteristics" for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPIx data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

16.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

16.2.1 KEY RESOURCES

- "Serial Peripheral Interface (SPI)" (DS70005185) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
	—	_	—	—		—	—						
bit 15							bit 8						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN						
bit 7					1		bit						
Legend:													
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'							
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown						
bit 15-7	-	nted: Read as '		2									
bit 6	•		•	I ² C Slave mode	only)								
	1 = Enables interrupt on detection of Stop condition												
	0 = Stop detection interrupts are disabled												
bit 5	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)												
	1 = Enables interrupt on detection of Start or Restart conditions												
bit 4	 0 = Start detection interrupts are disabled BOEN: Buffer Overwrite Enable bit (I²C Slave mode only) 												
DIL 4													
	1 = I2CxRCV is updated and ACK is generated for a received address/data byte, ignoring the state of the I2COV only if the RBF bit = 0												
	0 = I2CxRCV is only updated when I2COV is clear												
bit 3	SDAHT: SDAx Hold Time Selection bit												
	1 = Minimum of 300 ns hold time on SDAx after the falling edge of SCLx												
	0 = Minimum of 100 ns hold time on SDAx after the falling edge of SCLx												
bit 2	SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only)												
	1 = Enables slave bus collision interrupts												
	0 = Slave bus collision interrupts are disabled												
	If the rising edge of SCLx and SDAx is sampled low when the module is in a high state, the BCL bit i												
	set and the bus goes Idle. This Detection mode is only valid during data and ACK transmit sequences												
bit 1	AHEN: Address Hold Enable bit (I ² C Slave mode only)												
	1 = Following the 8th falling edge of SCLx for a matching received address byte, the SCLREI (I2CxCONL<12>) bit will be cleared and SCLx will be held low												
	0 = Address holding is disabled												
	0 = Address	s noiuing is uisa	bieu		DHEN: Data Hold Enable bit (I ² C Slave mode only)								
bit 0		-		ode only)									
bit 0	DHEN: Data	Hold Enable bi	t (I ² C Slave mo		d data byte. the	e slave hardwa	are clears th						
bit 0	DHEN: Data 1 = Followin	Hold Enable bi	t (I ² C Slave mo g edge of SCL	x for a received	d data byte, the	e slave hardwa	are clears th						

REGISTER 17-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

19.0 HIGH-SPEED, 12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (DS70005213) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33EPXXGS50X devices have a high-speed, 12-bit Analog-to-Digital Converter (ADC) that features a low conversion latency, high resolution and oversampling capabilities to improve performance in AC/DC, DC/DC power converters.

19.1 Features Overview

The High Speed, 12-Bit Multiple SARs Analog-to-Digital Converter (ADC) includes the following features:

- Five ADC Cores: Four Dedicated Cores and One Shared (Common) Core
- User-Configurable Resolution of up to 12 Bits for each Core
- Up to 3.25 Msps Conversion Rate per Channel at 12-Bit Resolution
- Low-Latency Conversion
- Up to 22 Analog Input Channels, with a Separate 16-Bit Conversion Result Register for each Input
- Conversion Result can be Formatted as Unsigned or Signed Data, on a per Channel Basis, for All Channels
- Single-Ended and Pseudodifferential Conversions are available on All ADC Cores

- Simultaneous Sampling of up to 5 Analog Inputs
- Channel Scan Capability
- Multiple Conversion Trigger Options for each Core, including:
 - PWM1 through PWM5 (primary and secondary triggers, and current-limit event trigger)
 - PWM Special Event Trigger
 - Timer1/Timer2 period match
 - Output Compare 1 and event trigger
 - External pin trigger event (ADTRG31)
 - Software trigger
- Two Integrated Digital Comparators with Dedicated Interrupts:
 - Multiple comparison options
 - Assignable to specific analog inputs
- Two Oversampling Filters with Dedicated Interrupts:
 - Provide increased resolution
 - Assignable to a specific analog input

The module consists of five independent SAR ADC cores. Simplified block diagrams of the Multiple SARs 12-Bit ADC are shown in Figure 19-1, Figure 19-2 and Figure 19-3.

The analog inputs (channels) are connected through multiplexers and switches to the Sample-and-Hold (S&H) circuit of each ADC core. The core uses the channel information (the output format, the measurement mode and the input number) to process the analog sample. When conversion is complete, the result is stored in the result buffer for the specific analog input, and passed to the digital filter and digital comparator if they were configured to use data from this particular channel.

The ADC module can sample up to five inputs at a time (four inputs from the dedicated SAR cores and one from the shared SAR core). If multiple ADC inputs request conversion on the shared core, the module will convert them in a sequential manner, starting with the lowest order input.

The ADC provides each analog input the ability to specify its own trigger source. This capability allows the ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

REGISTER 19-12: ADCORExH: DEDICATED ADC CORE x CONTROL REGISTER HIGH (x = 0 to 3)⁽¹⁾

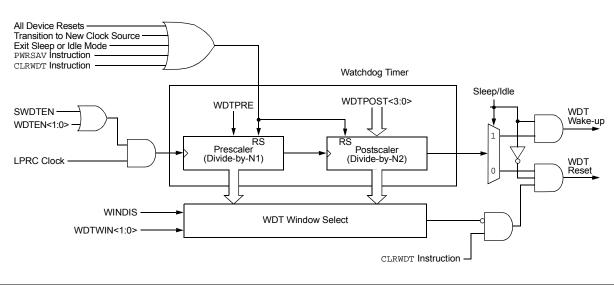
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1				
_	—	_	EISEL2	EISEL1	EISEL0	RES1	RES0				
bit 15							bit 8				
	DAMO	DAMO	DAMA	DAMA	DANIO	DAMA	DANA				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0				
bit 7							bit (
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	-	ted: Read as '									
bit 12-10		ADC Core x Ea	•								
		111 = Early interrupt is set and an interrupt is generated 8 TADCORE clocks prior to when the data is read									
	110 = Early in	110 = Early interrupt is set and an interrupt is generated 7 TADCORE clocks prior to when the data is read									
		101 = Early interrupt is set and an interrupt is generated 6 TADCORE clocks prior to when the data is read									
	100 = Early in	100 = Early interrupt is set and an interrupt is generated 5 TADCORE clocks prior to when the data is read									
		011 = Early interrupt is set and an interrupt is generated 4 TADCORE clocks prior to when the data is read									
	010 = Early interrupt is set and an interrupt is generated 3 TADCORE clocks prior to when the data is read										
	001 = Early interrupt is set and an interrupt is generated 2 TADCORE clocks prior to when the data is ready										
	000 = Early interrupt is set and an interrupt is generated 1 TADCORE clock prior to when the data is read										
bit 9-8	RES<1:0>: ADC Core x Resolution Selection bits										
	11 = 12-bit resolution										
	10 = 10-bit resolution										
	01 = 8-bit resolution										
	00 = 6-bit resolution										
bit 7	Unimplemented: Read as '0'										
bit 6-0	ADCS<6:0>: ADC Core x Input Clock Divider bits										
	These bits determine the number of Source Clock Periods (TCORESRC) for one Core Clock Period										
	(TADCORE).										
	1111111 = 254 Source Clock Periods										
	•										
	•										
	•										
	0000011 = 6 Source Clock Periods										
	0000010 = 4 Source Clock Periods										
	0000001 = 2 Source Clock Periods										
	0000000 = 2 Source Clock Periods										
	For the 6-bit ADC not valid and sho										

settings, '110' and '111', are not valid and should not be used.

23.6 Watchdog Timer (WDT)

For dsPIC33EPXXGS50X family devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

23.6.1 PRESCALER/POSTSCALER


The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Time-out Period (TWDT), as shown in Parameter SY12 in Table 26-23.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods, ranges from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

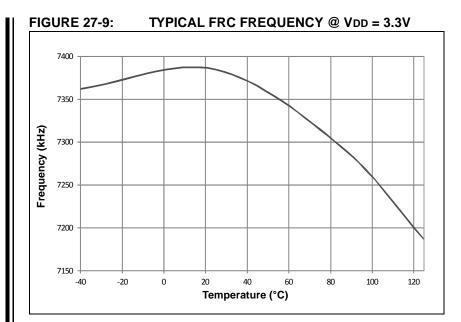
FIGURE 23-2: WDT BLOCK DIAGRAM

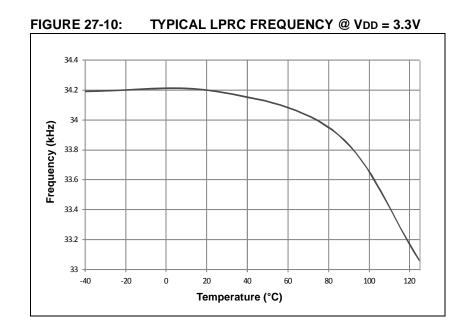
23.6.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3:2>) needs to be cleared in software after the device wakes up.

23.6.3 ENABLING WDT

The WDT is enabled or disabled by the WDTEN<1:0> Configuration bits in the FWDT Configuration register. When the WDTEN<1:0> Configuration bits have been programmed to '0b11', the WDT is always enabled.


The WDT can be optionally controlled in software when the WDTEN<1:0> Configuration bits have been programmed to '0b10'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disables the WDT during non-critical segments for maximum power savings.


The WDT Time-out flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

23.6.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode, enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<7>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window select bits (WDTWIN<1:0>).

NOTES:

