

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

Betuils	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs502-e-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXGS50X family requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

TABLE 4	4-4:	TIME	R1 THR	OUGH .	TIMER5	REGIST	FER MA	Р										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								xxxx
PR1	0102								Period R	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_		TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								xxxx
TMR3HLD	0108						Timer	3 Holding F	Register (for	32-bit time	r operations	only)						xxxx
TMR3	010A								Timer3	Register								xxxx
PR2	010C		Period Register 2							FFFF								
PR3	010E								Period R	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	—	0000
TMR4	0114								Timer4	Register								xxxx
TMR5HLD	0116						Tir	ner5 Holdin	g Register ((for 32-bit o	perations or	ıly)						xxxx
TMR5	0118								Timer5	Register								xxxx
PR4	011A								Period R	Register 4								FFFF
PR5	011C								Period R	Register 5								FFFF
T4CON	011E	TON	_	TSIDL	—	_	—	_	_	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_		TGATE	TCKPS1	TCKPS0		_	TCS	_	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXGS50X FAMILY

TABLE 4-15: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	—	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	—	—	_	_	_	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPI1 Tra	nsmit and R	eceive Buff	er Registe	r						0000
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	—	—	_	_	_	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268		SPI2 Transmit and Receive Buffer Register									0000						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.6 Control Registers

Five SFRs are used to write and erase the program Flash memory: NVMCON, NVMKEY, NVMADR, NVMADRU and NVMSRCADR/H.

The NVMCON register (Register 5-1) selects the operation to be performed (page erase, word/row program, Inactive Partition erase), initiates the program or erase cycle and is used to determine the Active Partition in Dual Partition modes.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations, or the selected page for erase operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

For row programming operation, data to be written to program Flash memory is written into data memory space (RAM) at an address defined by the NVMSRCADR register (location of first element in row programming data).

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/SO-0(¹⁾ R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	R/C-0	R-0	R/W-0	R/C-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	SFTSWP ⁽⁶⁾	P2ACTIV ⁽⁶⁾	RPDF	URERR
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^(3,4)
bit 7							bit 0
Legend:		C = Clearab	le bit	SO = Settable	Only bit		
R = Reada	able bit	W = Writable	e bit	U = Unimplem	ented bit, read a	as '0'	
-n = Value	at POR	'1' = Bit is se	et	'0' = Bit is clea	red	x = Bit is unkn	own
bit 15	WR: Write Co						
					on; the operation	on is self-timed	and the bit is
				tion is complete ete and inactive			
bit 14	WREN: Write	-	-		-		
			m/erase operat	ions			
			/erase operation				
bit 13			Error Flag bit ⁽¹				
				ce attempt, or te	rmination has o	ccurred (bit is se	et automatically
	•	et attempt of the second se		pleted normally	,		
bit 12			le Control bit ⁽²⁾				
				ndby mode dur	ing Idle mode		
		• •	or is active duri	•	0		
bit 11	SFTSWP: Pa	artition Soft Sv	vap Status bit ^{(€}	5)			
					e BOOTSWP inst		
			artition swap us sed on FBTSE		P instruction or	a device Reset	will determine
bit 10	P2ACTIV: Pa			C .			
			apped into the a	active region			
			apped into the a	•			
bit 9	RPDF: Row F	Programming	Data Format b	it			
				npressed forma			
	0 = Row data	a to be stored	in RAM in und	ompressed forr	nat		
Note 1:	These bits can on	ly be reset or	a POR.				
2:	If this bit is set, po				DLE) and upon e	exiting Idle mod	e, there is a
•	delay (TVREG) bef		-	-			
	All other combinat			•		ana ara in prag	~~~~
4: 5:	Execution of the I Two adjacent wor		-	-	-		
5. 6:	Only available on		-		-	-	
0.	this bit is reserved						
7:	The specific Boot			of the program	med data:		
	11 = Single Partitio						
	10 = Dual Partitio 01 = Protected Du						
	00 = Reserved						

REGISTER 9-7: PMD8: PERIPHERAL MODULE DISABLE CONTROL REGISTER 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0			
_	_	—	_	_	PGA2MD	ABGMD	_			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
—	—	—	—	_	—	CCSMD	—			
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable b	pit	U = Unimplemented bit, read as '0'						
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own			
bit 15-11	Unimplemer	nted: Read as '0	,							
bit 10	PGA2MD: P	GA2 Module Dis	able bit							
		odule is disabled	-							
	0 = PGA2 m	odule is enabled								
bit 9	ABGMD: Ba	nd Gap Referen	ce Voltage Dis	able bit						
		p reference volta								
		p reference volta	-							
bit 8-2	Unimplemen	nted: Read as '0	,							
bit 1	CCSMD: Co	CCSMD: Constant-Current Source Module Disable bit								
		t-current source								
bit 0										
DILU	Unimpiemer	nted: Read as '0								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0
bit 7							bit (
Legend:							
R = Readable		W = Writable		•	nented bit, rea		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-0	10110100 = 000000001 = 00000000 = FLT1R<7:0>: 10110101 =	Input tied to RI Input tied to RI Input tied to RI Input tied to Vs Assign PWM Input tied to RI Input tied to RI	⊃180 ⊃1 SS Fault 1 (FLT1) ⊃181	to the Corresp	oonding RPn Pi	in bits	
		Input tied to RI Input tied to Ve					

REGISTER 10-8: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

REGISTER 10-17: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SYNCI2R7 | SYNCI2R6 | SYNCI2R5 | SYNCI2R4 | SYNCI2R3 | SYNCI2R2 | SYNCI2R1 | SYNCI2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 SYNCI2R<7:0>: Assign PWM Synchronization Input 2 to the Corresponding RPn Pin bits 10110101 = Input tied to RP181 10110100 = Input tied to RP180 •

• 00000001 = Input tied to RP1 00000000 = Input tied to Vss

REGISTER 10-36: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0
bit 15	- -					•	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 13-8	RP177R<5:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits
	(see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP176R<5:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits

(see Table 10-2 for peripheral function numbers)

REGISTER 10-37: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0
bit 15							bit 8
							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP179R<5:0>:** Peripheral Output Function is Assigned to RP179 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits (see Table 10-2 for peripheral function numbers)

13.0 INPUT CAPTURE

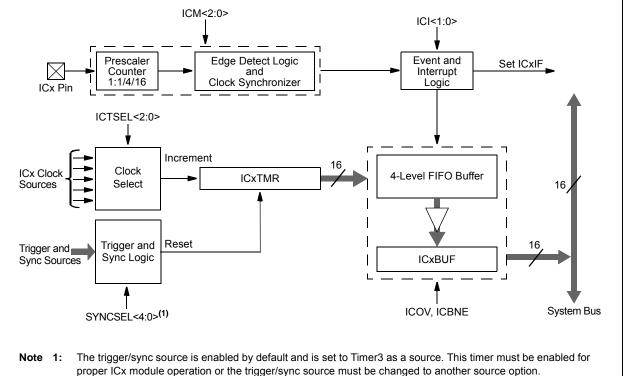
- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70000352) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurements. The dsPIC33EPXXGS50X family devices support four input capture channels.

Key features of the input capture module include:

 Hardware-Configurable for 32-Bit Operation in All modes by Cascading Two Adjacent Modules

- Synchronous and Trigger modes of Output Compare Operation, with up to 21 User-Selectable Trigger/Sync Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to Six Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter


13.1 Input Capture Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

13.1.1 KEY RESOURCES

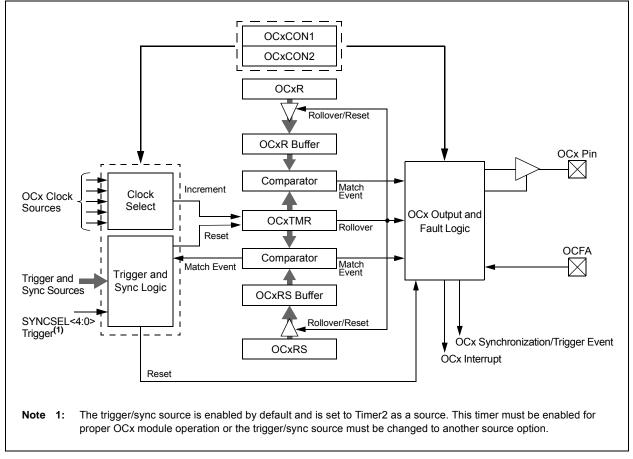
- "Input Capture" (DS70000352) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

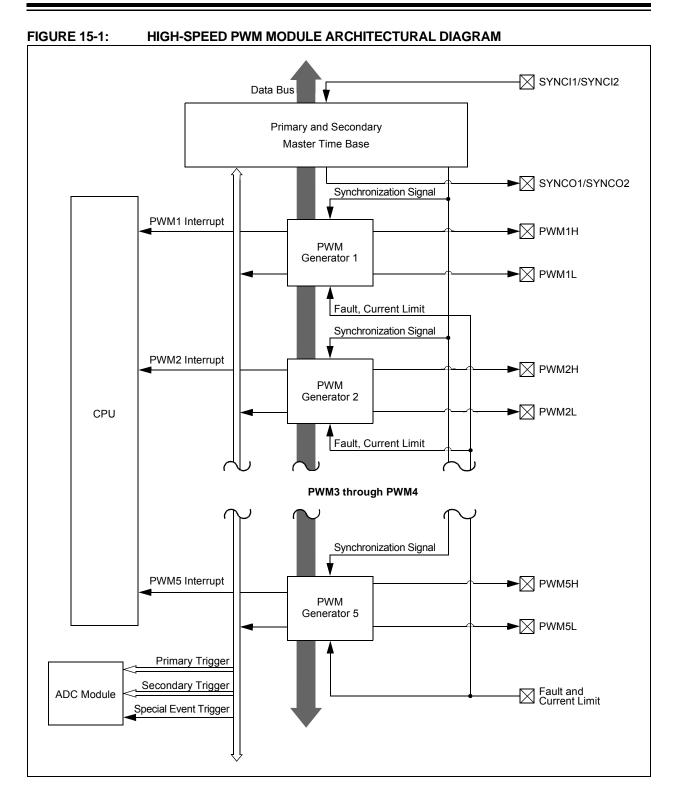
FIGURE 13-1: INPUT CAPTURE x MODULE BLOCK DIAGRAM

14.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Output Compare with Dedicated Timer" (DS70005159) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select one of six available clock sources for its time base. The module compares the value of the timer with the value of one or two Compare registers, depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.


14.1 Output Compare Resources


Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

14.1.1 KEY RESOURCES

- "Output Compare with Dedicated Timer" (DS70005159) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

FIGURE 14-1: OUTPUT COMPARE x MODULE BLOCK DIAGRAM

x = Bit is unknown

REGISTER 15-15: PHASEX: PWMx PRIMARY PHASE-SHIFT REGISTER (x = 1 to 5)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHASE	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplen	nented bit. read	l as '0'	

bit 15-0 **PHASEx<15:0>:** PWMx Phase-Shift Value or Independent Time Base Period for the PWMx Generator bits

Note 1: If PWMCONx<9> = 0, the following applies based on the mode of operation:

'1' = Bit is set

- Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs
- True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Phase-shift value for PWMxH only
- When the PHASEx/SPHASEx registers provide the phase shift with respect to the master time base; therefore, the valid range is 0x0000 through period

'0' = Bit is cleared

- **2:** If PWMCONx<9> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant, and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL
 - True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Independent time base period value for PWMxH only
 - When the PHASEx/SPHASEx registers provide the local period, the valid range is 0x0000 through 0xFFF8

-n = Value at POR

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
pit 15	•			•			bit
		DAMO	DAMO			DAMO	
R/W-0 OVRDAT1	R/W-0	R/W-0 FLTDAT1 ⁽²⁾	R/W-0 FLTDAT0 ⁽²⁾	R/W-0 CLDAT1 ⁽²⁾	R/W-0 CLDAT0 ⁽²⁾	R/W-0	R/W-0
• • • • • • •	OVRDATU	FLIDAI	FLIDAI0-	CLDATI	CLDATU-7	SWAP	OSYNC
oit 7							bit
_egend:							
R = Readabl	e bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
ait 1 <i>5</i>							
bit 15	1 = PWMx mo	KH Output Pin C odule controls the dule controls the	ne PWMxH pir	1			
oit 14		L Output Pin O					
		odule controls the					
bit 13		kH Output Pin P	olarity bit				
		oin is active-low oin is active-high	ı				
bit 12 POLL: P		L Output Pin Po	plarity bit				
	0 = PWMxL p	in is active-low in is active-high					
oit 11-10		PWMx I/O Pin I					
	10 = PWMx I/ 01 = PWMx I/	O pin pair is in f O pin pair is in f O pin pair is in f O pin pair is in f	the Push-Pull the Redundan	Output mode t Output mode			
oit 9	OVRENH: Ov	erride Enable fo	or PWMxH Pin	bit			
		1 provides data nerator provides			I		
oit 8	OVRENL: Ov	erride Enable fo	or PWMxL Pin	bit			
) provides data nerator provides	•				
bit 7-6	OVRDAT<1:0	>: Data for PW	MxH, PWMxL	Pins if Override	e is Enabled bi	ts	
		= 1, OVRDAT1 = 1, OVRDAT0					
oit 5-4	FLTDAT<1:0>	State for PWN	MxH and PWN	IxL Pins if FLTN	MOD<1:0> are	Enabled bits ⁽²⁾	
	If Fault is activ	LCONx<15>) = ve, then FLTDA ve, then FLTDA	T1 provides th	e state for the I	•		
	IFLTMOD (FC	LCONx<15>) =	1: Independe	nt Fault Mode:	or the PWMxH	nin	

2: State represents the active/inactive state of the PWMx depending on the POLH and POLL bits settings.

REGISTER 19-21: ADMOD1L: ADC INPUT MODE CONTROL REGISTER 1 LOW

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	DIFF21	SIGN21	DIFF20	SIGN20
bit 15		•	•				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF19	SIGN19	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16
bit 7			•				bit 0
Legend:	Legend:						
<u> </u>	,						

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-1(odd) DIFF<21:16>: Differential-Mode for Corresponding Analog Inputs bits

1 = Channel is differential

0 = Channel is single-ended

bit 10-0 (even) SIGN<21:16>: Output Data Sign for Corresponding Analog Inputs bits

1 = Channel output data is signed

0 = Channel output data is unsigned

REGISTER 19-26: ADTRIGXL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW (x = 0 to 5)

	•	,					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			TF	RGSRC(4x+1)<4:	0>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—		Т	RGSRC(4x)<4:0	>	
bit 7							bit 0

Legend:

•				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 TRGSRC(4x+1)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits

11111 = ADTRG31
11110 = Reserved
11101 = Reserved
11100 = PWM Generator 5 current-limit trigger
11011 = PWM Generator 4 current-limit trigger
11010 = PWM Generator 3 current-limit trigger
11001 = PWM Generator 2 current-limit trigger
11000 = PWM Generator 1 current-limit trigger
10111 = Output Compare 2 trigger
10110 = Output Compare 1 trigger
10101 = Reserved
10100 = Reserved
10011 = PWM Generator 5 secondary trigger
10010 = PWM Generator 4 secondary trigger
10001 = PWM Generator 3 secondary trigger
10000 = PWM Generator 2 secondary trigger
01111 = PWM Generator 1 secondary trigger
01110 = PWM secondary Special Event Trigger
01101 = Timer2 period match
01100 = Timer1 period match
01011 = Reserved
01010 = Reserved
01001 = PWM Generator 5 primary trigger
01000 = PWM Generator 4 primary trigger
00111 = PWM Generator 3 primary trigger
00110 = PWM Generator 2 primary trigger
00101 = PWM Generator 1 primary trigger
00100 = PWM Special Event Trigger
00011 = Reserved
00010 = Level software trigger
00001 = Common software trigger
00000 = No trigger is enabled
Unimplemented: Read as '0'

bit 7-5 Unimplemented: Read as '0'

REGISTER 20-2: CMPxDAC: COMPARATOR x DAC CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	_	—		CMREF	-<11:8>	
bit 15				•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CMRE	F<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-12	Unimplemen	ted: Read as 'd)'				
bit 11-0	CMREF<11:0	>: Comparator	Reference Vo	oltage Select bi	ts		
	11111111111	.11					
	•						
	•						
	•	= ([CMREF	<11:0>] * (AV	DD)/4096) volts	s (EXTREF = 0)	
	•	or ([CMRI	EF<11:0>] * (EXTREF)/409	6) volts (EXTRE	EF = 1)	
	•						
	•						

TABLE 23-2: CONFIGURATION BITS DESCRIPTION

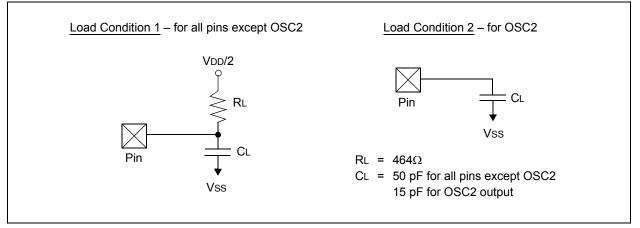
Bit Field	Description
BSS<1:0>	Boot Segment Code-Protect Level bits
	11 = Boot Segment is not code-protected other than BWRP
	10 = Standard security
BSEN	0x = High security Boot Segment Control bit
DSEN	1 = No Boot Segment is enabled
	0 = Boot Segment size is determined by the BSLIM<12:0> bits
BWRP	Boot Segment Write-Protect bit
	1 = Boot Segment can be written 0 = Boot Segment is write-protected
BSLIM<12:0>	Boot Segment Flash Page Address Limit bits
	Contains the last active Boot Segment page. The value to be programmed is the inverted page address, such that programming additional '0's can only increase the Boot Segment size (i.e., 0x1FFD = 2 Pages or 1024 IW).
GSS<1:0>	General Segment Code-Protect Level bits
	11 = User program memory is not code-protected
	10 = Standard security 0x = High security
GWRP	General Segment Write-Protect bit
owna	1 = User program memory is not write-protected
	0 = User program memory is write-protected
CWRP	Configuration Segment Write-Protect bit
	1 = Configuration data is not write-protected0 = Configuration data is write-protected
CSS<2:0>	Configuration Segment Code-Protect Level bits
	111 = Configuration data is not code-protected
	110 = Standard security 10x = Enhanced security
	0xx = High security
BTSWP	BOOTSWP Instruction Enable/Disable bit
	1 = BOOTSWP instruction is disabled
	0 = BOOTSWP instruction is enabled
BSEQ<11:0>	Boot Sequence Number bits (Dual Partition modes only)
	Relative value defining which partition will be active after device Reset; the partition containing a lower boot number will be active.
IBSEQ<11:0>	Inverse Boot Sequence Number bits (Dual Partition modes only)
	The one's complement of BSEQ<11:0>; must be calculated by the user and written for
	device programming. If BSEQx and IBSEQx are not complements of each other, the Boot Sequence Number is considered to be invalid.
AIVTDIS ⁽¹⁾	Alternate Interrupt Vector Table bit
	1 = Alternate Interrupt Vector Table is disabled
IESO	0 = Alternate Interrupt Vector Table is enabled if INTCON2<8> = 1
IESU	Two-Speed Oscillator Start-up Enable bit 1 = Starts up device with FRC, then automatically switches to the user-selected oscillator
	source when ready
	0 = Starts up device with the user-selected oscillator source
PWMLOCK	PWMx Lock Enable bit
	1 = Certain PWMx registers may only be written after a key sequence
	0 = PWMx registers may be written without a key sequence

Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.

TABLE 24-2:	INSTRUCTION SET OVERVIEW	(CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
26	CTXTSWP	CTXTSWP	#lit3	Switch CPU register context to context defined by lit3	1	2	None
		CTXTSWP	Wn	Switch CPU register context to context defined by Wn	1	2	None
27	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
28	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = $f - 1$	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
29	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = $f - 2$	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
30	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
31	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
32	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
33	DO	DO	#lit15,Expr	Do code to PC + Expr, lit15 + 1 time	2	2	None
	20	DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 time	2	2	None
34	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB,
				· · · · ·	1	1	SA,SB,SAB OA,OB,OAB,
35	EDAC	EDAC Wm*Wm, Acc, Wx, Wy, Wxd Euclidean Distance				SA,SB,SAB	
36	EXCH	EXCH Wns, Wnd Swap Wns with Wnd		1	1	None	
37	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side		1	С
38	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
39	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
40	GOTO	GOTO	Expr	Go to address	2	4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
41	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
42	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
43	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
44	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
45	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
46	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
-	-	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
47	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB	Multiply and Accumulate	1	1	OA,OB,OAB,
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	SA,SB,SAB OA,OB,OAB, SA,SB,SAB

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.


26.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EPXXGS50X family AC characteristics and timing parameters.

TABLE 26-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended
	Operating voltage VDD range as described in Section 26.1 "DC Characteristics ".

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Cio	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		_	400	pF	In I ² C mode