

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs502-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP64GS50X DEVICES (DUAL PARTITION) 0x000000 GOTO Instruction 0x000002 Reset Address 0x000004 Interrupt Vector Table 0x0001FE 0x000200 Active Program Flash Memory (10,944 instructions) **Active Partition** 0x00577E 0x005780 **Device Configuration** 0x0057FE 0x005800 User Memory Space Unimplemented (Read '0's) 0x3FFFFE 0x400000 GOTO Instruction 0x400002 Reset Address 0x400004 Interrupt Vector Table 0x4001FE 0x400200 **Inactive Partition** Inactive Program Flash Memory (10,944 instructions) 0x40577E 0x405780 **Device Configuration** 0x4057FE 0x405800 Unimplemented (Read '0's) 0x7FFFFE 0x800000 Reserved 0x800E46 0x800E48 Calibration Data 0x800E78 0x800E7A Reserved 0x800EFE Configuration Memory Space 0x800F00 UDID 0x800F08 0x800F0A Reserved 0x800F7E 0x800F80 User OTP Memory 0x800FFC 0x801000 Reserved 0xF9FFFE 0xFA0000 Write Latches 0xFA0002 0xFA0004 Reserved **0xFEFFFE** 0xFF0000 DEVID 0xFF0002 0xFF0004 Reserved 0xFFFFFE Note: Memory areas are not shown to scale.

TABLE 4-11: PWM GENERATOR 4 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON4	0C80	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	-	-	MTBS	CAM	XPRES	IUE	0000
IOCON4	0C82	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON4	0C84	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC4	0C86							PWM4 Ger	nerator Duty C	ycle Registe	er (PDC4<18	5:0>)						0000
PHASE4	0C88					F	PWM4 Primary	Phase-Shift c	r Independen	t Time Base	Period Reg	ister (PHASE	4<15:0>)					0000
DTR4	0C8A	_	_						PWM4 D	Dead-Time F	Register (DT	R4<13:0>)						0000
ALTDTR4	0C8C	_	—					P	WM4 Alternat	e Dead-Tim	e Register (ALTDTR4<13	:0>)					0000
SDC4	0C8E							PWM4 Sec	ondary Duty C	ycle Registe	er (SDC4<1	5:0>)						0000
SPHASE4	0C90							PWM4 Secon	dary Phase-Sl	nift Register	(SPHASE4-	<15:0>)						0000
TRIG4	0C92					PWM4 Pr	imary Trigger (Compare Value	e Register (TF	GCMP<12:	0>)				_	_	_	0000
TRGCON4	0C94	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	DTM	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG4	0C96					PWM4 Seco	ondary Trigger	Compare Valu	ie Register (S	TRGCMP<1	2:0>)				_	_	_	0000
PWMCAP4	0C98					PWM4 F	Primary Time E	Base Capture F	Register (PWN	/ICAP<12:0>	>)				_	—	_	0000
LEBCON4	0C9A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	-	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY4	0C9C	_	_	_	— PWM4 Leading-Edge Blanking Delay Register (LEB<8:0>)						_	_	0000					
AUXCON4	0C9E	HRPDIS	HRDDIS	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: PWM GENERATOR 5 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON5	0CA0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	—	-	MTBS	CAM	XPRES	IUE	0000
IOCON5	0CA2	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON5	0CA4	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC5	0CA6							PWM5 Ger	nerator Duty C	ycle Registe	er (PDC5<1	5:0>)						0000
PHASE5	0CA8					F	PWM5 Primary	Phase-Shift o	or Independen	t Time Base	Period Reg	ister (PHASE	5<15:0>)					0000
DTR5	0CAA	—	—						PWM5 E	ead-Time F	Register (DT	R5<13:0>)						0000
ALTDTR5	0CAC	_	PWM5 Alternate Dead-Time Register (ALTDTR5<13:0>) 00								0000							
SDC5	0CAE							PWM5 Sec	ondary Duty C	ycle Regist	er (SDC5<1	5:0>)						0000
SPHASE5	0CB0							PWM5 Secon	dary Phase-S	hift Register	(SPHASE5	<15:0>)						0000
TRIG5	0CB2					PWM5 Pri	mary Trigger (Compare Value	e Register (TF	GCMP<12:	0>)				_	_	_	0000
TRGCON5	0CB4	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	—	—			DTM	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG5	0CB6					PWM5 Seco	ndary Trigger	Compare Valu	e Register (S	TRGCMP<1	2:0>)				_	_	—	0000
PWMCAP5	0CB8					PWM5 F	Primary Time E	Base Capture F	Register (PWN	ICAP<12:0	>)				_	_	_	0000
LEBCON5	0CBA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY5	0CBC	_	PWM5 Leading-Edge Blanking Delay Register (LEB<8:0>)							_	_	0000						
AUXCON5	0CBE	HRPDIS	HRDDIS	_		BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0		—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-39: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

5.2 RTSP Operation

The dsPIC33EPXXGS50X family Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a single page (8 rows or 512 instructions) of memory at a time and to program one row at a time. It is possible to program two instructions at a time as well.

The page erase and single row write blocks are edgealigned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively. Figure 26-14 in **Section 26.0 "Electrical Characteristics"** lists the typical erase and programming times.

Row programming is performed by loading 192 bytes into data memory and then loading the address of the first byte in that row into the NVMSRCADR register. Once the write has been initiated, the device will automatically load the write latches and increment the NVMSRCADR and the NVMADR(U) registers until all bytes have been programmed. The RPDF bit (NVMCON<9>) selects the format of the stored data in RAM to be either compressed or uncompressed. See Figure 5-2 for data formatting. Compressed data helps to reduce the amount of required RAM by using the upper byte of the second word for the MSB of the second instruction.

The basic sequence for RTSP word programming is to use the TBLWTL and TBLWTH instructions to load two of the 24-bit instructions into the write latches found in configuration memory space. Refer to Figure 4-1 through Figure 4-4 for write latch addresses. Programming is performed by unlocking and setting the control bits in the NVMCON register.

All erase and program operations may optionally use the NVM interrupt to signal the successful completion of the operation. For example, when performing Flash write operations on the Inactive Partition in Dual Partition mode, where the CPU remains running, it is necessary to wait for the NVM interrupt before programming the next block of Flash program memory.

FIGURE 5-2: UNCOMPRESSED/ COMPRESSED FORMAT

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000000, 0x000004, 0x000008, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change. For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator Module" (DS70005131) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family oscillator system provides:

- On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- · Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Configuration bits for clock source selection
- Auxiliary PLL for ADC and PWM

A simplified diagram of the oscillator system is shown in Figure 8-1.

REGISTER 9-7: PMD8: PERIPHERAL MODULE DISABLE CONTROL REGISTER 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0			
	—	—	_	—	PGA2MD	ABGMD				
bit 15					•	· · · ·	bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
			—		<u> </u>	CCSMD	—			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable I	emented bit, read as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own			
bit 15-11	Unimpleme	nted: Read as 'o)'							
bit 10	PGA2MD: P	GA2 Module Dis	able bit							
	1 = PGA2 m	odule is disabled	t							
	0 = PGA2 m	odule is enabled	l							
bit 9	ABGMD: Ba	nd Gap Referen	ce Voltage Dis	sable bit						
	1 = Band ga	p reference volta	age is disabled	1						
	0 = Band ga	p reference volta	age is enabled							
bit 8-2	Unimpleme	nted: Read as '0)'							
bit 1	CCSMD: Co	nstant-Current S	Source Module	Disable bit						
	1 = Constant	t-current source	module is disa	abled						
	0 = Constant	t-current source	module is ena	bled						
bit 0	Unimpleme	Unimplemented: Read as '0'								

10.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-19). Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 10-2 illustrates remappable pin selection for the U1RX input.

FIGURE 10-2: REMAPPABLE INPUT FOR U1RX

10.4.4.1 Virtual Connections

The dsPIC33EPXXGS50X devices support six virtual RPn pins (RP176-RP181), which are identical in functionality to all other RPn pins, with the exception of pinouts. These six pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP176 and the PWM Fault input can be configured for RP176 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2CTSR7	U2CTSR6	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15	•	•	•			•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2RXR7	U2RXR6	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown
bit 15-8 bit 7-0	U2CTSR<7:0 10110101 = 10110100 =	>: Assign UAR Input tied to Rf Input tied to Rf Input tied to Vs : Assign UART Input tied to Rf Input tied to Rf Input tied to Rf	2T2 Clear-to-S 2181 2180 21 35 2 Receive (U2 2181 2180 21 35	end (U2CTS) t	to the Correspo	nding RPn Pin Pn Pin bits	bits

REGISTER 10-11: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCI1R7	SYNCI1R6	SYNCI1R5	SYNCI1R4	SYNCI1R3	SYNCI1R2	SYNCI1R1	SYNCI1R0
bit 15						•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—			—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	SYNCI1R<7:	0>: Assign PW	M Synchroniz	ation Input 1 to	the Correspon	ding RPn Pin b	oits
	10110101 =	Input tied to RI	P181				
	10110100 =	Input tied to RF	P180				
	•						
	•						
	•						
	0000001=	Input tied to RI	P1				
	00000000 =	Input tied to Vs	SS				
bit 7-0	Unimplemen	ted: Read as '	0'				

REGISTER 10-16: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

REGISTER 10-32: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-14	Unimplement	ted: Read as '	כי				
bit 13-8 RP57R<5:0>: Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 10-2 for peripheral function numbers)							

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP56R<5:0>:** Peripheral Output Function is Assigned to RP56 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-33: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unkr				
bit 15-14	Unimplemen	ted: Read as '	כ'					
bit 13-8	RP59R<5:0>:	Peripheral Ou	tput Function	is Assigned to	RP59 Output P	in bits		

(see Table 10-2 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP58R<5:0>:** Peripheral Output Function is Assigned to RP58 Output Pin bits (see Table 10-2 for peripheral function numbers)

NOTES:

REGISTER 15-10: MDC: PWMx MASTER DUTY CYCLE REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			MDC	2<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			MD	C<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-0 MDC<15:0>: PWMx Master Duty Cycle Value bits

Note 1: The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

2: As the duty cycle gets closer to 0% or 100% of the PWMx period (0 to 40 ns, depending on the mode of operation), PWMx duty cycle resolution will increase from 1 to 3 LSBs.

REGISTER 15-11: PWMKEY: PWMx PROTECTION LOCK/UNLOCK KEY REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PWMKE	Y<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PWMK	EY<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PWMKEY<15:0>:** PWMx Protection Lock/Unlock Key Value bits

REGISTER 15-20: IOCONX: PWMx I/O CONTROL REGISTER (x = 1 to 5) (CONTINUED)

bit 3-2	CLDAT<1:0>: State for PWMxH and PWMxL Pins if CLMOD is Enabled bits ⁽²⁾
	IFLTMOD (FCLCONx<15>) = 0: Normal Fault Mode:
	If current limit is active, then CLDAT1 provides the state for the PWMxH pin.
	If current limit is active, then CLDAT0 provides the state for the PWMxL pin.
	IFLTMOD (FCLCONx<15>) = 1: Independent Fault Mode:
	CLDAT<1:0> bits are ignored.
bit 1	SWAP: SWAP PWMxH and PWMxL Pins bit
	 1 = PWMxH output signal is connected to the PWMxL pins; PWMxL output signal is connected to the PWMxH pins
	0 = PWMxH and PWMxL pins are mapped to their respective pins
bit 0	OSYNC: Output Override Synchronization bit
	 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWMx time base 0 = Output overrides via the OVRDAT<1:0> bits occur on the next CPU clock boundary

- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: State represents the active/inactive state of the PWMx depending on the POLH and POLL bits settings.

REGISTER 15-21: TRIGX: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER (x = 1 to 5)

r											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	TRGCMP<12:5>										
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
		TRGCMP<4:0>	•		—	_	—				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown					
•											

bit 15-3 **TRGCMP<12:0>:** Trigger Compare Value bits When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADC module.

bit 2-0 Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF4	SIGN4
bit 15		•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0
bit 7		•					bit 0

REGISTER 19-19: ADMOD0L: ADC INPUT MODE CONTROL REGISTER 0 LOW

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1(odd) **DIFF<7:0>:** Differential-Mode for Corresponding Analog Inputs bits

1 = Channel is differential

- 0 = Channel is single-ended
- bit 14-0 (even) **SIGN<7:0>:** Output Data Sign for Corresponding Analog Inputs bits
 - 1 = Channel output data is signed
 - 0 = Channel output data is unsigned

REGISTER 19-20: ADMOD0H: ADC INPUT MODE CONTROL REGISTER 0 HIGH

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| DIFF15 | SIGN15 | DIFF14 | SIGN14 | DIFF13 | SIGN13 | DIFF12 | SIGN12 |
| bit 15 | | | | | | | bit 8 |

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF11	SIGN11	DIFF10	SIGN10	DIFF9	SIGN9	DIFF8	SIGN8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1(odd) DIFF<15:8>: Differential-Mode for Corresponding Analog Inputs bits

- 1 = Channel is differential
- 0 = Channel is single-ended

bit 14-0 (even) SIGN<15:8>: Output Data Sign for Corresponding Analog Inputs bits

- 1 = Channel output data is signed
- 0 = Channel output data is unsigned

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	—	_	0.4	V	$V_{DD} = 3.3V,$ $I_{OL} \le 6 \text{ mA}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C},$ $I_{OL} \le 5 \text{ mA}, +85^{\circ}\text{C} < T_{A} \le +125^{\circ}\text{C}$
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_		0.4	V	V_{DD} = 3.3V, IOL \leq 12 mA, -40°C \leq TA \leq +85°C, IOL \leq 8 mA, +85°C $<$ TA \leq +125°C
DO20	Voh	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		—	V	Іон ≥ -10 mA, VDD = 3.3V
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	-	—	V	Іон ≥ -15 mA, VDD = 3.3V
DO20A	VoH1	Output High Voltage	1.5(1)	_			$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
		4x Source Driver Pills	2.0 ⁽¹⁾	_		V	$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
			3.0(1)	_			$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		Output High Voltage	1.5 ⁽¹⁾	_			$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
			2.0 ⁽¹⁾	_	—	V	$IOH \ge -18 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			3.0(1)	_	—	1	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$

TABLE 26-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes RA0-RA2, RB0-RB1, RB9-RB10, RC1-RC2, RC9-RC10, RC12 and RD7 pins.

3: Includes all I/O pins that are not 4x driver pins (see **Note 2**).

TABLE 26-13: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. ⁽²⁾ Typ. Max. Units Conditions					
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65		2.95	V	VDD (Notes 2 and 3)	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, PGAs and comparators) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

TABLE 26-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS	Standard Op (unless othe Operating ter	erating erwise s mperatur	Condition tated) ⁻e -40°C ≤ -40°C ≤	s: 3.0V 1 ≤ Ta ≤ +8 ≤ Ta ≤ +1	:o 3.6V 5°C for Industrial 25°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCKx Input Frequency	_		Lesser of: FP or 11	MHz	(Note 3)
SP72	TscF	SCKx Input Fall Time	—	_	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCKx Input Rise Time	—	_	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDOx Data Output Fall Time	—	_	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	-	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	—	ns	
SP50	TssL2scH, TssL2scL	$\frac{SSx}{Input} \downarrow \text{ to SCKx} \uparrow \text{ or SCKx} \downarrow$	120		—	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10		50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	—	ns	(Note 4)
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

48-Lead Thin Quad Flatpack (Y8) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Leads	Ν		48			
Lead Pitch	е		0.50 BSC			
Overall Height	А	-	-	1.20		
Standoff	A1	0.05	-	0.15		
Molded Package Thickness	A2	0.95	1.00	1.05		
Foot Length	L	0.45 0.60 0.75				
Footprint	L1	1.00 REF				
Foot Angle	¢	0°	3.5°	7°		
Overall Width	E		9.00 BSC			
Overall Length	D		9.00 BSC			
Molded Package Width	E1		7.00 BSC			
Molded Package Length	D1		7.00 BSC			
Lead Thickness	С	0.09 - 0.16				
Lead Width	b	0.17 0.22 0.27				
Mold Draft Angle Top	α	11° 12° 13°				
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A-B and D to be determined at center line between leads where leads exit plastic body at datum plane H

Microchip Technology Drawing C04-300-Y8 Rev A Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

	Ν	IILLIMETER	S			
Dimension	Limits	MIN	NOM	MAX		
Number of Leads	Ν		64			
Lead Pitch	е		0.50 BSC			
Overall Height	Α	-	-	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45 0.60 0.75				
Footprint	L1	1.00 REF				
Foot Angle	¢	0°	3.5°	7°		
Overall Width	E		12.00 BSC			
Overall Length	D		12.00 BSC			
Molded Package Width	E1		10.00 BSC			
Molded Package Length	D1		10.00 BSC			
Lead Thickness	С	0.09 - 0.20				
Lead Width	b	0.17 0.22 0.27				
Mold Draft Angle Top	α	11° 12° 13°				
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Tradema Architecture — Flash Memory Fam Program Memory S Product Group — Pin Count — Tape and Reel Flag Temperature Range Package Pattern	dsPIC 33 EP 64 GS5 04 T - 1 / PT XXX rk	Examples: dsPIC33EP64GS504-I/PT: dsPIC33, Enhanced Performance, 64-Kbyte Program Memory, SMPS, 44-Pin, Industrial Temperature, TQFP Package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Flash Memory Family:	EP = Enhanced Performance	
Product Group:	GS = SMPS Family	
Pin Count:	02 = 28-pin 04 = 44-pin 05 = 48-pin 06 = 64-pin	
Temperature Range:	$ \begin{array}{rcl} I &=& -40^{\circ} C \text{ to } +85^{\circ} C \text{ (Industrial)} \\ E &=& -40^{\circ} C \text{ to } +125^{\circ} C \text{ (Extended)} \end{array} $	
Package:	2N=Ultra Thin Quad Flat, No Lead - (28-pin) 6x6 mm (UQFN)ML=Plastic Quad Flat, No Lead - (44-pin) 8x8 mm body (QFN)MM=Plastic Quad Flat, No Lead - (28-pin) 6x6 mm body (QFN-S)PT=Plastic Thin Quad Flatpack - (44-pin) 10x10 mm body (TQFP)PT=Plastic Thin Quad Flatpack - (64-pin) 10x10 mm body (TQFP)SO=Plastic Small Outline, Wide - (28-pin) 7.50 mm body (SOIC)Y8=Thin Quad Flatpack - (48-pin) 7x7 mm (TQFP)	