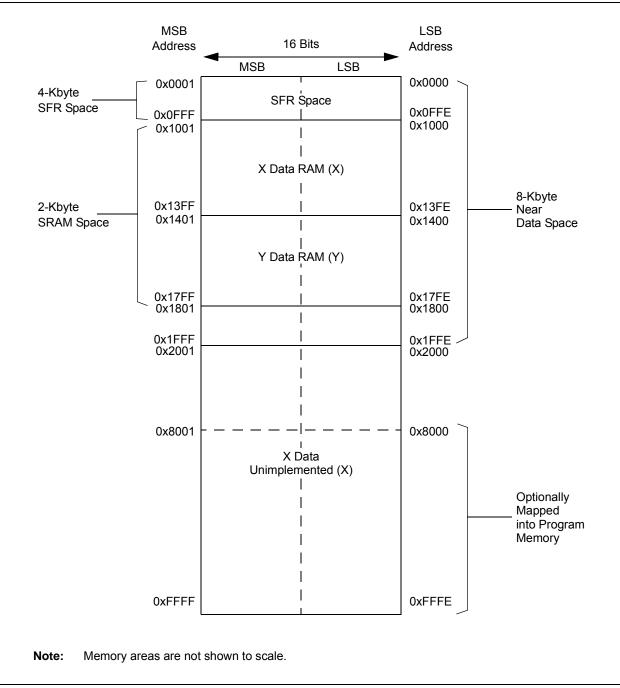


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs502-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-6: DATA MEMORY MAP FOR dsPIC33EP16GS50X DEVICES

TABLE 4-16: ADC REGISTER MAP (CONTINUED)

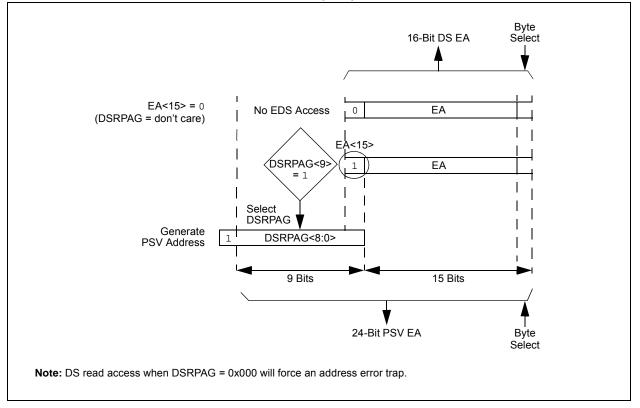
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADLVLTRGL	03D0	LVLEN15 ⁽¹⁾	LVLEN14	LVLEN13 ⁽¹⁾	LVLEN12 ⁽²⁾	LVLEN11 ⁽²⁾	LVLEN10 ⁽²⁾	LVLEN9 ⁽²⁾	LVLEN8 ⁽²⁾	LVLEN7	LVLEN6	LVLEN5	LVLEN4	LVLEN3	LVLEN2	LVLEN1	LVLEN0	0000
ADLVLTRGH	03D2	_		-	_	_		_	_	-		LVLEN21	LVLEN20	LVLEN19	LVLEN18	LVLEN17 ⁽²⁾	LVLEN16 ⁽¹⁾	0000
ADCORE0L	03D4	—		_	_	_						SAMO	C<9:0>					0000
ADCORE0H	03D6	-	-	-	EISEL2	EISEL1	EISEL0	RES1	RES0	-	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
ADCORE1L	03D8	_		-	_	_									0000			
ADCORE1H	03DA	—		_	EISEL2	EISEL1	EISEL0	RES1	RES0	_	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
ADCORE2L	03DC	-	-	-	_	-	_				_	SAMO	C<9:0>					0000
ADCORE2H	03DE	_		-	EISEL2	EISEL1	EISEL0	RES1	RES0	-	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
ADCORE3L	03E0	—		_	_	_						SAMO	C<9:0>					0000
ADCORE3H	03E2	-	-	-	EISEL2	EISEL1	EISEL0	RES1	RES0	-	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
ADEIEL	03F0	EIEN15 ⁽¹⁾	EIEN14 ⁽²⁾	EIEN13 ⁽¹⁾	EIEN12 ⁽²⁾	EIEN11 ⁽²⁾	EIEN10 ⁽²⁾	EIEN9 ⁽²⁾	EIEN8 ⁽²⁾	EIEN7	EIEN6	EIEN5	EIEN4	EIEN3	EIEN2	EIEN1	EIEN0	0000
ADEIEH	03F2	_	_	_	_	_	_	_	_	_	_	EIEN21	EIEN20	EIEN19	EIEN18	EIEN17 ⁽²⁾	EIEN16 ⁽¹⁾	0000
ADEISTATL	03F8	EISTAT15(1)	EISTAT14(2)	EISTAT13(1)	EISTAT12(2)	EISTAT11 ⁽²⁾	EISTAT10(2)	EISTAT9 ⁽²⁾	EISTAT8 ⁽²⁾	EISTAT7	EISTAT6	EISTAT5	EISTAT4	EISTAT3	EISTAT2	EISTAT1	EISTAT0	0000
ADEISTATH	03FA	_	_	_	_	_	_	_	_	_	_	EISTAT21	EISTAT20	EISTAT19	EISTAT18	EISTAT17(2)	EISTAT16 ⁽¹⁾	0000
ADCON5L	0400	SHRRDY	_	-	_	C3RDY	C2RDY	C1RDY	CORDY	SHRPWR	_	-	-	C3PWR	C2PWR	C1PWR	C0PWR	0000
ADCON5H	0402	_	_	_	_	WARMTIME3	WARMTIME2	WARMTIME1	WARMTIME0	SHRCIE	_	_	_	C3CIE	C2CIE	C1CIE	C0CIE	0000
ADCALOL	0404	CAL1RDY	_	_	_	_	CAL1DIFF	CAL1EN	CAL1RUN	CALORDY	_	_	_	_	CAL0DIFF	CAL0EN	CALORUN	0000
ADCAL0H	0406	CAL3RDY	_	_	_	_	CAL3DIFF	CAL3EN	CAL3RUN	CAL2RDY	_	_	_	_	CAL2DIFF	CAL2EN	CAL2RUN	0000
ADCAL1H	040A	CSHRRDY	-	_	_	_	CSHRDIFF	CSHREN	CSHRRUN	—	-	_	—	_	_	_	—	0000
ADCBUF0	040C								ADC Da	ta Buffer 0								0000
ADCBUF1	040E								ADC Da	ta Buffer 1								0000
ADCBUF2	0410								ADC Da	ta Buffer 2								0000
ADCBUF3	0412								ADC Da	ta Buffer 3								0000
ADCBUF4	0414								ADC Da	ta Buffer 4								0000
ADCBUF5	0416								ADC Da	ta Buffer 5								0000
ADCBUF6	041B								ADC Da	ta Buffer 6								0000
ADCBUF7	041A								ADC Da	ta Buffer 7								0000
ADCBUF8	041C								ADC Da	ta Buffer 8								0000
ADCBUF9	041E								ADC Da	ta Buffer 9								0000
ADCBUF10	0420								ADC Dat	a Buffer 10								0000
ADCBUF11	0422								ADC Dat	a Buffer 11								0000
ADCBUF12	0424								ADC Dat	a Buffer 12								0000
ADCBUF13	0426									a Buffer 13								0000
ADCBUF14	0428								ADC Dat	a Buffer 14								0000
ADCBUF15	042A								ADC Dat	a Buffer 15								0000
ADCBUF16	042C									a Buffer 16								0000
ADCBUF17	042E									a Buffer 17								0000
ADCBUF18	0430								ADC Dat	a Buffer 18								0000
ADCBUF19	0432									a Buffer 19								0000
ADCBUF20	0434								ADC Dat	a Buffer 20								0000
ADCBUF21	0436									a Buffer 21								0000

dsPIC33EPXXGS50X FAMILY

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1:

Implemented on dsPIC33EPXXGS506 devices only.
 Implemented on dsPIC33EPXXGS504/505 and dsPIC33EPXXGS506 devices only.


4.5.1 PAGED MEMORY SCHEME

The dsPIC33EPXXGS50X architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the base Data Space address is used in conjunction with the Data Space Page (DSRPAG) register to form the Program Space Visibility (PSV) address.

The Data Space Page (DSRPAG) register is located in the SFR space. Construction of the PSV address is shown in Figure 4-9. When DSRPAG<9> = 1 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit PSV read address. The paged memory scheme provides access to multiple 32-Kbyte windows in the PSV memory. The Data Space Page (DSRPAG) register, in combination with the upper half of the Data Space address, can provide up to 8 Mbytes of PSV address space. The paged data memory space is shown in Figure 4-10.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG.

FIGURE 4-9: PROGRAM SPACE VISIBILITY (PSV) READ ADDRESS GENERATION

4.7 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

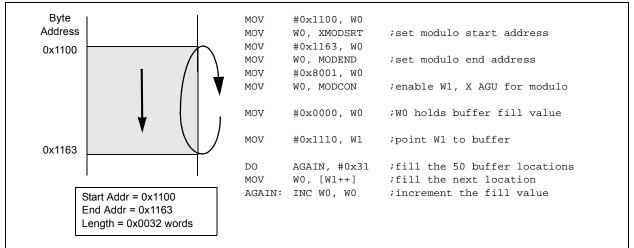
4.7.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-2).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word-sized data (LSb of
	every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.7.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags, as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W (XWM) register, to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-2). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W (YWM) register, to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit (MODCON<14>) is set.

FIGURE 4-12: MODULO ADDRESSING OPERATION EXAMPLE

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

| R-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| VECNUM7 | VECNUM6 | VECNUM5 | VECNUM4 | VECNUM3 | VECNUM2 | VECNUM1 | VECNUM0 |
| bit 7 | • | | | | | · | bit 0 |

Legend:										
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit	read as '0'						
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15-12	Unimple	mented: Read as '0'								
bit 11-8	ILR<3:0>	New CPU Interrupt Priority	Level bits							
	1111 = CPU Interrupt Priority Level is 15									
	•									
	•									
	•									
		PU Interrupt Priority Level is								
	0000 = CPU Interrupt Priority Level is 0									
bit 7-0	VECNUM<7:0>: Vector Number of Pending Interrupt bits									
	11111111 = 255, Reserved; do not use									
	•									
	•									
	•									
	00001001 = 9, IC1 – Input Capture 1									
	00001000 = 8, INT0 – External Interrupt 0 00000111 = 7, Reserved; do not use									
	00000111 = 7, Reserved, do not use 00000110 = 6. Generic soft error trap									
	00000101 = 5, Reserved; do not use									
	00000100 = 4, Math error trap									
	0000011 = 3, Stack error trap									
	0000001	0 = 2, Generic hard trap								
		1 = 1, Address error trap								
	0000000	0 = 0, Oscillator fail trap								

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33EPXXGS50X family devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into Sleep mode
PWRSAV #IDLE_MODE ; Put the device into Idle mode

9.1 Clock Frequency and Clock Switching

The dsPIC33EPXXGS50X family devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXGS50X family devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

	REGISTER 9-2:	PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2
--	---------------	--

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
—			—	IC4MD	IC3MD	IC2MD	IC1MD					
pit 15					I		bit 8					
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	_	_	—	OC4MD	OC3MD	OC2MD	OC1MD					
bit 7		·					bit (
Legend:												
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, rea	ıd as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown					
bit 15-12	Unimplom	nted. Dood oo '	.,									
bit 15-12	-	ented: Read as '0 out Capture 4 Moo		i+								
	•	apture 4 module i		iit.								
		apture 4 module i										
oit 10	IC3MD: Inp	IC3MD: Input Capture 3 Module Disable bit										
	1 = Input Capture 3 module is disabled											
	0 = Input Ca	apture 3 module i	s enabled									
bit 9	IC2MD: Inp	ut Capture 2 Moc	lule Disable b	it								
		apture 2 module i										
		apture 2 module i										
bit 8	-	IC1MD: Input Capture 1 Module Disable bit										
		apture 1 module i apture 1 module i										
bit 7-4		ented: Read as '(
bit 3	•	utput Compare 4		ole hit								
		Compare 4 modu										
		Compare 4 modu										
bit 2	OC3MD: O	OC3MD: Output Compare 3 Module Disable bit										
		Compare 3 modu Compare 3 modu										
bit 1	•	utput Compare 2		ole bit								
		Compare 2 modu Compare 2 modu										
bit 0		utput Compare 1		ole bit								
	1 = Output											

Function	RPnR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U1RTS	000010	RPn tied to UART1 Request-to-Send
U2TX	000011	RPn tied to UART2 Transmit
U2RTS	000100	RPn tied to UART2 Request-to-Send
SDO1	000101	RPn tied to SPI1 Data Output
SCK1	000110	RPn tied to SPI1 Clock Output
SS1	000111	RPn tied to SPI1 Slave Select
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
ACMP1	011000	RPn tied to Analog Comparator 1 Output
ACMP2	011001	RPn tied to Analog Comparator 2 Output
ACMP3	011010	RPn tied to Analog Comparator 3 Output
SYNCO1	101101	RPn tied to PWM Primary Master Time Base Sync Output
SYNCO2	101110	RPn tied to PWM Secondary Master Time Base Sync Output
REFCLKO	110001	RPn tied to Reference Clock Output
ACMP4	110010	RPn tied to Analog Comparator 4 Output
PWM4H	110011	RPn tied to PWM Output Pins Associated with PWM Generator 4
PWM4L	110100	RPn tied to PWM Output Pins Associated with PWM Generator 4
PWM5H	110101	RPn tied to PWM Output Pins Associated with PWM Generator 5
PWM5L	110110	RPn tied to PWM Output Pins Associated with PWM Generator 5

TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0
bit 7							bit (
Legend:							
R = Readable		W = Writable		•	nented bit, rea		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-0	10110100 = 000000001 = 00000000 = FLT1R<7:0>: 10110101 =	Input tied to RI Input tied to RI Input tied to RI Input tied to Vs Assign PWM Input tied to RI Input tied to RI	⊃180 ⊃1 SS Fault 1 (FLT1) ⊃181	to the Corresp	oonding RPn Pi	in bits	
		Input tied to RI Input tied to Ve					

REGISTER 10-8: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

R/W-0							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT8R7	FLT8R6	FLT8R5	FLT8R4	FLT8R3	FLT8R2	FLT8R1	FLT8R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT7R7	FLT7R6	FLT7R5	FLT7R4	FLT7R3	FLT7R2	FLT7R1	FLT7R0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8		Assign PWM	· · ·	to the Corresp	onding RPn Pi	n bits	

REGISTER 10-19: RPINR43: PERIPHERAL PIN SELECT INPUT REGISTER 43

REGISTER 19-26: ADTRIGXL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW (x = 0 to 5)

	•	,					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	-		TF	RGSRC(4x+1)<4:	0>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—		Т	RGSRC(4x)<4:0	>	
bit 7							bit 0

Legend:

•				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 TRGSRC(4x+1)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits

11111 = A	ADTRG31
11110 = F	Reserved
11101 = F	Reserved
11100 = F	PWM Generator 5 current-limit trigger
11011 = F	PWM Generator 4 current-limit trigger
11010 = F	PWM Generator 3 current-limit trigger
11001 = F	PWM Generator 2 current-limit trigger
	PWM Generator 1 current-limit trigger
10111 = (Dutput Compare 2 trigger
	Dutput Compare 1 trigger
10101 = F	
10100 = F	
	PWM Generator 5 secondary trigger
	PWM Generator 4 secondary trigger
	PWM Generator 3 secondary trigger
	PWM Generator 2 secondary trigger
	PWM Generator 1 secondary trigger
	PWM secondary Special Event Trigger
	Timer2 period match
	Fimer1 period match
01011 = F	
01010 = F	
	PWM Generator 5 primary trigger
	PWM Generator 4 primary trigger
	PWM Generator 3 primary trigger
	PWM Generator 2 primary trigger
	PWM Generator 1 primary trigger
	PWM Special Event Trigger
00011 = F	
	Level software trigger
	Common software trigger
	No trigger is enabled
Unimplen	nented: Read as '0'

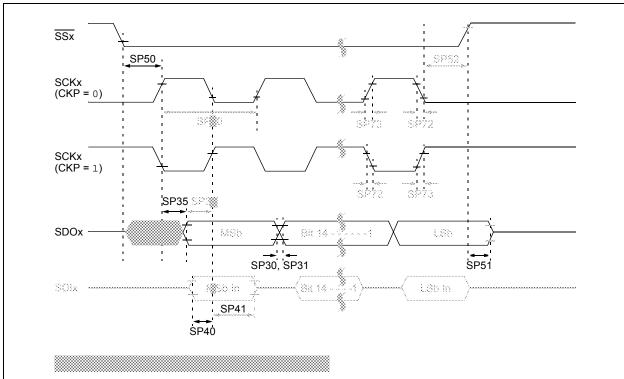
bit 7-5 Unimplemented: Read as '0'

20.0 HIGH-SPEED ANALOG COMPARATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed Analog Comparator Module" (DS70005128) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The high-speed analog comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

20.1 Features Overview


The SMPS comparator module offers the following major features:

- Four Rail-to-Rail Analog Comparators
- Dedicated 12-Bit DAC for each Analog Comparator
- Up to Six Selectable Input Sources per Comparator:
 - Four external inputs
 - Two internal inputs from the PGAx module
- Programmable Comparator Hysteresis
- Programmable Output Polarity
- Up to Two DAC Outputs to Device Pins
- Multiple Voltage References for the DAC:
 External References (EXTREF1 or
 - EXTREF2) - AVDD
- Interrupt Generation Capability
- Functional Support for PWMx:
 - PWMx duty cycle control
 - PWMx period control
 - PWMx Fault detected

TABLE 23-2: CONFIGURATION BITS DESCRIPTION

Bit Field	Description
BSS<1:0>	Boot Segment Code-Protect Level bits
	11 = Boot Segment is not code-protected other than BWRP
	10 = Standard security
BSEN	0x = High security
DSEN	Boot Segment Control bit 1 = No Boot Segment is enabled
	0 = Boot Segment size is determined by the BSLIM<12:0> bits
BWRP	Boot Segment Write-Protect bit
	1 = Boot Segment can be written 0 = Boot Segment is write-protected
BSLIM<12:0>	Boot Segment Flash Page Address Limit bits
	Contains the last active Boot Segment page. The value to be programmed is the inverted page address, such that programming additional '0's can only increase the Boot Segment size (i.e., 0x1FFD = 2 Pages or 1024 IW).
GSS<1:0>	General Segment Code-Protect Level bits
	11 = User program memory is not code-protected
	10 = Standard security 0x = High security
GWRP	General Segment Write-Protect bit
owna	1 = User program memory is not write-protected
	0 = User program memory is write-protected
CWRP	Configuration Segment Write-Protect bit
	1 = Configuration data is not write-protected0 = Configuration data is write-protected
CSS<2:0>	Configuration Segment Code-Protect Level bits
	111 = Configuration data is not code-protected
	110 = Standard security 10x = Enhanced security
	0xx = High security
BTSWP	BOOTSWP Instruction Enable/Disable bit
	1 = BOOTSWP instruction is disabled
	0 = BOOTSWP instruction is enabled
BSEQ<11:0>	Boot Sequence Number bits (Dual Partition modes only)
	Relative value defining which partition will be active after device Reset; the partition containing a lower boot number will be active.
IBSEQ<11:0>	Inverse Boot Sequence Number bits (Dual Partition modes only)
	The one's complement of BSEQ<11:0>; must be calculated by the user and written for
	device programming. If BSEQx and IBSEQx are not complements of each other, the Boot Sequence Number is considered to be invalid.
AIVTDIS ⁽¹⁾	Alternate Interrupt Vector Table bit
	1 = Alternate Interrupt Vector Table is disabled
IESO	0 = Alternate Interrupt Vector Table is enabled if INTCON2<8> = 1
IESU	Two-Speed Oscillator Start-up Enable bit 1 = Starts up device with FRC, then automatically switches to the user-selected oscillator
	source when ready
	0 = Starts up device with the user-selected oscillator source
PWMLOCK	PWMx Lock Enable bit
	1 = Certain PWMx registers may only be written after a key sequence
	0 = PWMx registers may be written without a key sequence

Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.

FIGURE 26-17: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

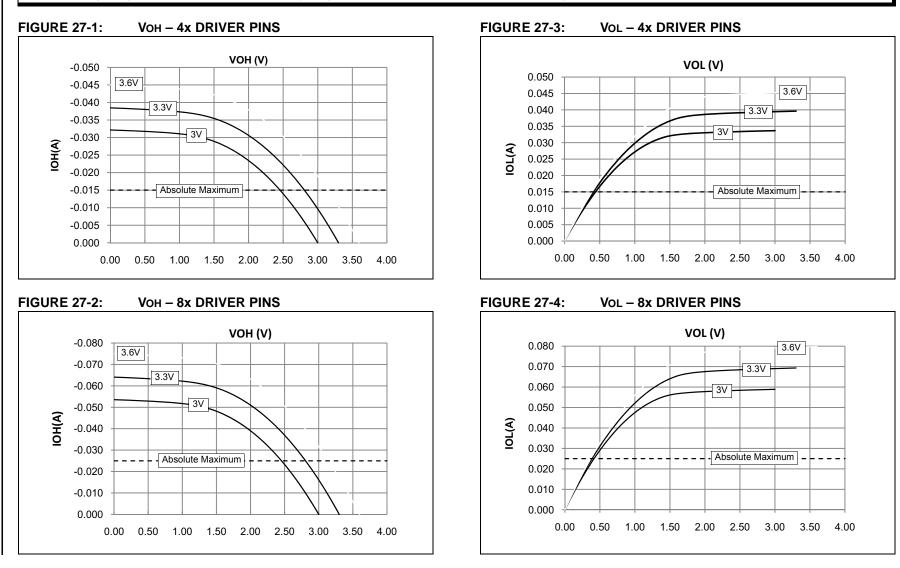
TABLE 26-44: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

AC CHARACTERISTICS ⁽²⁾			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No. Symbol Characteristics		Min.	Тур. ⁽¹⁾	Max.	Units	Conditions			
	Clock Parameters								
AD50 TAD ADC Clock Period		14.28		_	ns				
Throughput Rate									
AD51	AD51 FTP SH0-SH3		—		3.25		70 MHz ADC clock, 12 bits, no pending		
		SH4	_		3.25 Msps conversion at time of t		conversion at time of trigger		

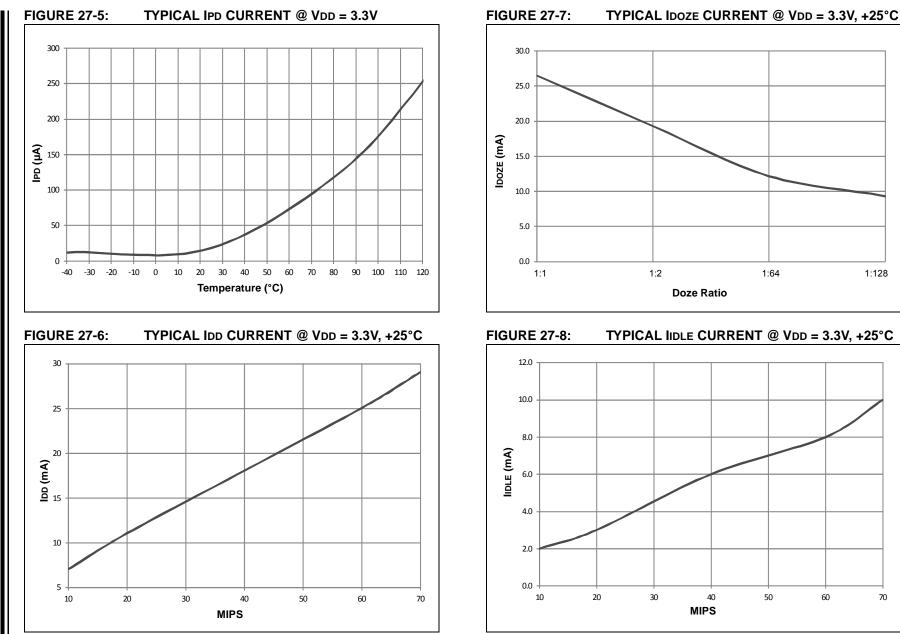
Note 1: These parameters are characterized but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

TABLE 26-45: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS


AC/DC (CHARAC	reristics ⁽²⁾	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No. Symbol Characteristic		Min.	Тур.	Max.	Units	Comments	
CM10	VIOFF	Input Offset Voltage	-35	±5	+35	mV	
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	0	—	AVDD	V	
CM13	CMRR	Common-Mode Rejection Ratio	60	—	_	dB	
CM14	TRESP	Large Signal Response	_	15	_	ns	V+ input step of 100 mV while V- input is held at AVDD/2. Delay measured from analog input pin to PWMx output pin.
CM15	VHYST	Input Hysteresis	5	10	20	mV	Depends on HYSSEL<1:0>
CM16	TON	Comparator Enabled to Valid Output	_	—	1	μs	

Note 1: These parameters are for design guidance only and are not tested in manufacturing.


2: The comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

27.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

28.0 PACKAGING INFORMATION

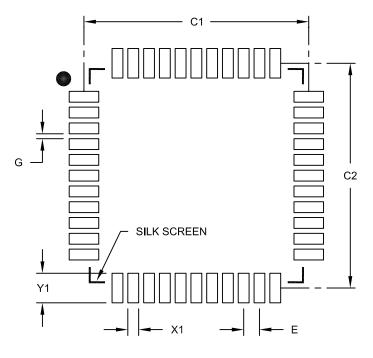
28.1 Package Marking Information

28-Lead SOIC (.300")

Example

28-Lead UQFN	(6x6x0.55 mm)
--------------	---------------

28-Lead QFN-S (6x6x0.9 mm)


Example

Legend	I: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code			
Note:	: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.				

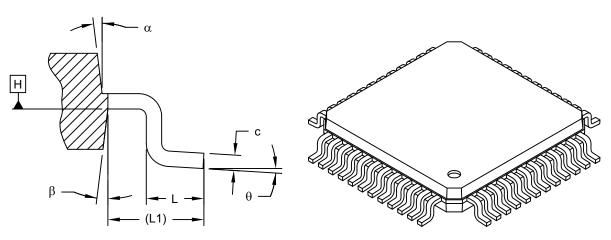
44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX			
Contact Pitch	E		0.80 BSC				
Contact Pad Spacing	C1		11.40				
Contact Pad Spacing	C2		11.40				
Contact Pad Width (X44)	X1			0.55			
Contact Pad Length (X44)	Y1			1.50			
Distance Between Pads	G	0.25					

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

48-Lead Thin Quad Flatpack (Y8) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Leads	Ν		48			
Lead Pitch	е	0.50 BSC				
Overall Height	Α	-	-	1.20		
Standoff	A1	0.05	-	0.15		
Molded Package Thickness	A2	0.95	1.00	1.05		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	¢	0°	3.5°	7°		
Overall Width	E		9.00 BSC			
Overall Length	D		9.00 BSC			
Molded Package Width	E1	7.00 BSC				
Molded Package Length	D1	7.00 BSC				
Lead Thickness	С	0.09	-	0.16		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A-B and D to be determined at center line between leads where leads exit plastic body at datum plane H

Microchip Technology Drawing C04-300-Y8 Rev A Sheet 2 of 2