

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs502-i-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
DI 7-5	<pre>111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority

- Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

TABLE 4-13: I2C1 AND I2C2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1CONL	0200	I2CEN	_	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1CONH	0202	—	_	—	_	_	_	—	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
I2C1STAT	0204	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	0206	_	—	_	_	—	_					I2C1 Addr	ess Register					0000
I2C1MSK	0208	_	—	_	_	—	_				I2C1 SI	ave Mode A	ddress Mask	Register				0000
I2C1BRG	020A							E	Baud Rate	Generator R	legister							0000
I2C1TRN	020C	_	—	_	_	—	_	—	_				I2C1 Transr	nit Register				OOFF
I2C1RCV	020E	_	—	_	_	—	_	—	_				I2C1 Receiv	ve Register				0000
I2C2CON1	0210	I2CEN	—	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2CON2	0212	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
I2C2STAT	0214	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	0216	_	_	_	_	_	_					I2C2 Addr	ess Register					0000
I2C2MSK	0218	_	—	_	_	—	_	I2C2 Slave Mode Address Mask Register 00							0000			
I2C2BRG	021A							E	Baud Rate	Generator R	legister							0000
I2C2TRN	021C	_	—	_	_	—	_	—	_				I2C2 Transr	nit Register				OOFF
I2C2RCV	021E	_	_	-	—	—	_	—	—				I2C2 Receiv	ve Register				0000
Legend:	– unim	plemented	road as '0'	Peact val	ues are sho	we in hove	dooimal	•	-									•

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_	UART1 Transmit Register									xxxx
U1RXREG	0226	_	_	_	_	_	_	_	UART1 Receive Register								0000	
U1BRG	0228	Baud Rate Generator Prescaler Register											0000					
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	—	_				UART2	Fransmit Re	gister				xxxx
U2RXREG	0236	_	_	_	_	_	_	_	UART2 Receive Register									0000
U2BRG	0238	38 Baud Rate Generator Prescaler Register									0000							

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD		—	ADCMD	0000
PMD2	0762		—	—	-	IC4MD	IC3MD	IC2MD	IC1MD	-		—	-	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	Ι	_	_	_	_	CMPMD	_	_	_	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	Ι	_	_	_	_	_	_	_	_	_	_	_	REFOMD	_	_	_	0000
PMD6	076A	Ι	_	_	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
PMD7	076C	Ι	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_	PGA1MD	_	0000
PMD8	076E	_	—	_	—	_	PGA2MD	ABGMD	_	_	_	—	_	_	_	CCSMD		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: CONSTANT-CURRENT SOURCE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ISRCCON	0500	ISRCEN	_		_		OUTSEL2	OUTSEL1	OUTSEL0	_	_	ISRCCAL5	ISRCCAL4	ISRCCAL3	ISRCCAL2	ISRCCAL1	ISRCCAL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: PROGRAMMABLE GAIN AMPLIFIER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PGA1CON	0504	PGAEN	PGAOEN	SELPI2	SELPI1	SELPI0	SELNI2	SELNI1	SELNI0	_	_				GAIN2	GAIN1	GAIN0	0000
PGA1CAL	0506	_	—	—	—	_	—	_	_	—	—			PGACA	L<5:0>			0000
PGA2CON	0508	PGAEN	PGAOEN	SELPI2	SELPI1	SELPI0	SELNI2	SELNI1	SELNI0	—	—	_	—	_	GAIN2	GAIN1	GAIN0	0000
PGA2CAL	050A	_	—	—	—	_	—	_	_	—	—			PGACA	L<5:0>			0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: PORTD REGISTER MAP FOR dsPIC33EPXXGS506 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E30								TRISD<15	:0>								FFFF
PORTD	0E32								RD<15:0	>								xxxx
LATD	0E34		LATD<15:0> 2										xxxx					
ODCD	0E36								ODCD<15	:0>								0000
CNEND	0E38								CNIED<15	:0>								0000
CNPUD	0E3A								CNPUD<18	5:0>								0000
CNPDD	0E3C								CNPDD<15	5:0>								0000
ANSELD	0E3E		_	ANSD13	—	_	—		-	ANSD7		_	_	-	ANSD2	_		6084

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6 Instruction Addressing Modes

The addressing modes shown in Table 4-38 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.6.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.6.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-38: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

7.3.1 KEY RESOURCES

- "Interrupts" (DS70000600) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

7.4 Interrupt Control and Status Registers

dsPIC33EPXXGS50X family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior, contains the Global Interrupt Enable bit (GIE) and the Alternate Interrupt Vector Table Enable bit (AIVTEN).

INTCON3 contains the status flags for the Auxiliary PLL and DO stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap Status bit (SGHT).

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt sources can be assigned to one of seven priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<7:0>) and Interrupt Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP<2:0> bits in the first position of IPC0 (IPC0<2:0>).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2CTSR7	U2CTSR6	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15			·	·		·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2RXR7	U2RXR6	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit (
Legend:	1.11		1.11				
R = Readable		W = Writable		•	nented bit, read		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-0	10110100 = 00000001 = 00000000 = U2RXR<7:0> 10110101 = 10110100 =	Input tied to RI Input tied to RI	2180 21 22 Receive (U2 2181 2180	2RX) to the Co	rresponding RF	Pn Pin bits	
		Input tied to RI Input tied to Va					

REGISTER 10-11: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCI1R7	SYNCI1R6	SYNCI1R5	SYNCI1R4	SYNCI1R3	SYNCI1R2	SYNCI1R1	SYNCI1R0
bit 15						- -	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	SYNCI1R<7:0	0>: Assign PW	M Synchroniz	ation Input 1 to	the Correspon	ding RPn Pin b	oits
	10110101 =	Input tied to RI	P181				
	10110100 =	Input tied to RI	P180				
	•						
	•						
	•						
	0000001 =	Input tied to RI	P1				
		Input tied to Va					
bit 7-0	Unimplemen	ted: Read as '	0'				

REGISTER 10-16: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = OCxRS compare event is used for synchronization
 - 11110 = INT2 pin synchronizes or triggers OCx
 - 11101 = INT1 pin synchronizes or triggers OCx
 - 11100 = Reserved
 - 11011 = CMP4 module synchronizes or triggers OCx
 - 11010 = CMP3 module synchronizes or triggers OCx
 - 11001 = CMP2 module synchronizes or triggers OCx
 - 11000 = CMP1 module synchronizes or triggers OCx
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Reserved
 - 10100 = Reserved
 - 10011 = IC4 input capture interrupt event synchronizes or triggers OCx
 - 10010 = IC3 input capture interrupt event synchronizes or triggers OCx
 - 10001 = IC2 input capture interrupt event synchronizes or triggers OCx
 - 10000 = IC1 input capture interrupt event synchronizes or triggers OCx
 - 01111 = Timer5 synchronizes or triggers OCx
 - 01110 = Timer4 synchronizes or triggers OCx
 - 01101 = Timer3 synchronizes or triggers OCx
 - 01100 = Timer2 synchronizes or triggers OCx (default)
 - 01011 = Timer1 synchronizes or triggers OCx
 - 01010 = Reserved
 - 01001 = Reserved
 - 01000 = IC4 input capture event synchronizes or triggers OCx
 - 00111 = IC3 input capture event synchronizes or triggers OCx
 - 00110 = IC2 input capture event synchronizes or triggers OCx
 - 00101 = IC1 input capture event synchronizes or triggers OCx
 - 00100 = OC4 module synchronizes or triggers $OCx^{(1,2)}$
 - 00011 = OC3 module synchronizes or triggers $OCx^{(1,2)}$
 - 00010 = OC2 module synchronizes or triggers $OCx^{(1,2)}$
 - 00001 = OC1 module synchronizes or triggers $OCx^{(1,2)}$
 - 00000 = No sync or trigger source for OCx
- Note 1: Do not use the OCx module as its own synchronization or trigger source.
 - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

REGISTER 15-24: LEBCONX: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER (x = 1 to 5) (CONTINUED)

 bit 1
 BPLH: Blanking in PWMxL High Enable bit

 1 = State blanking (of current-limit and/or Fault input signals) when the PWMxL output is high

 bit 0
 BPLL: Blanking in PWMxL Low Enable bit

 1 = State blanking (of current-limit and/or Fault input signals) when the PWMxL output is low

 0 = No blanking when the PWMxL low Enable bit

 1 = State blanking (of current-limit and/or Fault input signals) when the PWMxL output is low

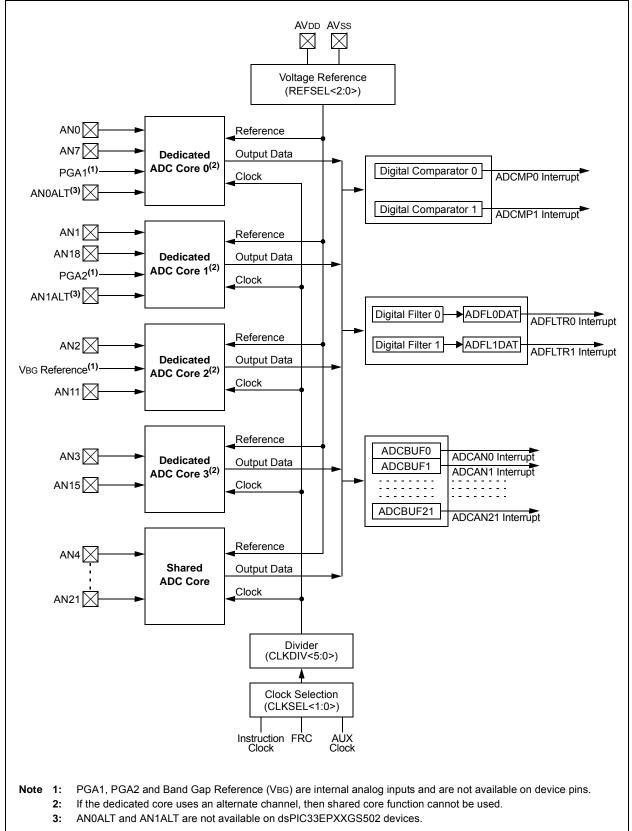
 0 = No blanking when the PWMxL output is low

Note 1: The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.

REGISTER 15-25: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER (x = 1 to 5)

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—		LEB•	<8:5>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		LEB<4:0>			—	—	—
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-3 **LEB<8:0>:** Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits The value is in 8.32 ns increments.

bit 2-0 Unimplemented: Read as '0'

REGISTER 19-5: ADCON3L: ADC CONTROL REGISTER 3 LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HSC	R/W-0	R-0, HSC
REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH
bit 15							bit 8

R/W-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSEL0
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-13 **REFSEL<2:0>:** ADC Reference Voltage Selection bits

Value	VREFH	VREFL
000	AVdd	AVss

001-111 = Unimplemented: Do not use bit 12 SUSPEND: All ADC Cores Triggers Disable bit 1 = All new trigger events for all ADC cores are disabled 0 = All ADC cores can be triggered bit 11 SUSPCIE: Suspend All ADC Cores Common Interrupt Enable bit 1 = Common interrupt will be generated when ADC core triggers are suspended (SUSPEND bit = 1) and all previous conversions are finished (SUSPRDY bit becomes set) 0 = Common interrupt is not generated for suspend ADC cores event bit 10 SUSPRDY: All ADC Cores Suspended Flag bit 1 = All ADC cores are suspended (SUSPEND bit = 1) and have no conversions in progress 0 = ADC cores have previous conversions in progress bit 9 SHRSAMP: Shared ADC Core Sampling Direct Control bit This bit should be used with the individual channel conversion trigger controlled by the CNVRTCH bit. It connects an analog input, specified by the CNVCHSEL<5:0> bits, to the shared ADC core and allows extending the sampling time. This bit is not controlled by hardware and must be cleared before the conversion starts (setting CNVRTCH to '1'). 1 = Shared ADC core samples an analog input specified by the CNVCHSEL<5:0> bits 0 = Sampling is controlled by the shared ADC core hardware bit 8 **CNVRTCH:** Software Individual Channel Conversion Trigger bit 1 = Single trigger is generated for an analog input specified by the CNVCHSEL<5:0> bits; when the bit is set, it is automatically cleared by hardware on the next instruction cycle 0 = Next individual channel conversion trigger can be generated bit 7 SWLCTRG: Software Level-Sensitive Common Trigger bit 1 = Triggers are continuously generated for all channels with the software, level-sensitive common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers 0 = No software, level-sensitive common triggers are generated SWCTRG: Software Common Trigger bit bit 6 1 = Single trigger is generated for all channels with the software, common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers; when the bit is set, it is automatically cleared by hardware on the next instruction cycle 0 = Ready to generate the next software, common trigger CNVCHSEL <5:0>: Channel Number Selection for Software Individual Channel Conversion Trigger bits bit 5-0

These bits define a channel to be converted when the CNVRTCH bit is set.

REGISTER 19-28: ADCAL0L: ADC CALIBRATION REGISTER 0 LOW

R-0, HSC	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0	
CAL1RDY		_	_	_	CAL1DIFF	CAL1EN	CAL1RUN	
bit 15					·		bit 8	
R-0, HSC	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0	
CALORDY	—		—		CAL0DIFF	CAL0EN	CALORUN	
bit 7							bit C	
Legend:		r = Reserved	hit		nented bit, read	ac '0'		
R = Readable	o hit	W = Writable			vare Settable/Cl			
-n = Value at		'1' = Bit is set	on	'0' = Bit is cle		x = Bit is unkr	nown	
bit 15	CAL1RDY:	Dedicated ADC	Core 1 Calibra	tion Status Flag	g bit			
		ed ADC Core 1 d						
	0 = Dedicate	ed ADC Core 1 c	alibration is in	progress				
bit 14-12	Unimpleme	nted: Read as 'o)'					
bit 11	Reserved:	Must be written a	is '0'					
bit 10	CAL1DIFF: Dedicated ADC Core 1 Differential-Mode Calibration bit							
	1 = Dedicated ADC Core 1 will be calibrated in Differential Input mode							
h # 0	 0 = Dedicated ADC Core 1 will be calibrated in Single-Ended Input mode CAL1EN: Dedicated ADC Core 1 Calibration Enable bit 							
bit 9		edicated ADC Core 1 c				l vPLINI) can b	a accessed by	
	software			(CALXEDT, CA			e accessed by	
	0 = Dedicat	ed ADC Core 1	calibration bits	are disabled				
bit 8	CAL1RUN:	Dedicated ADC	Core 1 Calibra	ation Start bit				
		oit is set by soft		icated ADC Co	ore 1 calibratio	n cycle is star	ted; this bit is	
		tically cleared by e can start the n		avela				
bit 7		Dedicated ADC (•	a hit			
		ed ADC Core 0 c			y bit			
		ed ADC Core 0 c						
bit 6-4	Unimpleme	nted: Read as 'o)'					
bit 3	Reserved:	Must be written a	s '0'					
bit 2	CAL0DIFF:	Dedicated ADC	Core 0 Differe	ntial-Mode Cal	ibration bit			
	CALODIFF: Dedicated ADC Core 0 Differential-Mode Calibration bit 1 = Dedicated ADC Core 0 will be calibrated in Differential Input mode 0 = Dedicated ADC Core 0 will be calibrated in Single-Ended Input mode							
	0 = Dedicate							
bit 1			vill be calibrate	ed in Single-En				
bit 1	CAL0EN: D 1 = Dedicat	ed ADC Core 0 v edicated ADC Core 0 c red ADC Core 0 c	vill be calibrate ore 0 Calibrati	ed in Single-En on Enable bit	ded Input mode		e accessed by	
bit 1	CALOEN: D 1 = Dedicat software	ed ADC Core 0 v edicated ADC Co red ADC Core 0 c e	vill be calibrate ore 0 Calibrati calibration bits	ed in Single-En on Enable bit (CALxRDY, CA	ded Input mode		e accessed b	
	CALOEN: D 1 = Dedicat software 0 = Dedicat	ed ADC Core 0 w edicated ADC Core 0 c ed ADC Core 0 c e ed ADC Core 0 c	vill be calibrate ore 0 Calibrati calibration bits calibration bits	ed in Single-En on Enable bit (CALxRDY, CA are disabled	ded Input mode		e accessed by	
bit 1 bit 0	CALOEN: D 1 = Dedicat software 0 = Dedicat CALORUN:	ed ADC Core 0 v edicated ADC Core 0 c ed ADC Core 0 c e ed ADC Core 0 c Dedicated ADC	vill be calibrate ore 0 Calibrati calibration bits calibration bits Core 0 Calibra	ed in Single-En on Enable bit (CALxRDY, CA are disabled ation Start bit	ded Input mode	LxRUN) can b		
	CALOEN: D 1 = Dedicat software 0 = Dedicat CALORUN: 1 = If this b	ed ADC Core 0 w edicated ADC Core 0 c ed ADC Core 0 c e ed ADC Core 0 c	vill be calibrate ore 0 Calibrati calibration bits calibration bits Core 0 Calibra ware, the ded	ed in Single-En on Enable bit (CALxRDY, CA are disabled ation Start bit	ded Input mode	LxRUN) can b		

23.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXGS50X family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

23.1 Configuration Bits

In dsPIC33EPXXGS50X family devices, the Configuration Words are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored at the end of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 23-1 with detailed descriptions in Table 23-2. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration Shadow registers during device Resets.

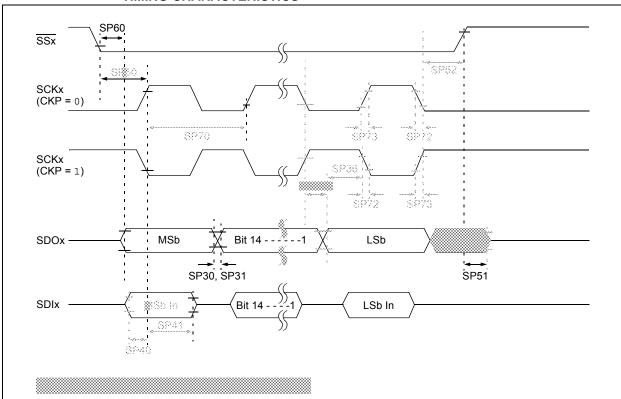
For devices operating in Dual Partition modes, the BSEQx bits (FBTSEQ<11:0>) determine which panel is the Active Partition at start-up and the Configuration Words from that panel are loaded into the Configuration Shadow registers.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Words for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled. Program code executing out of configuration space will cause a device Reset.

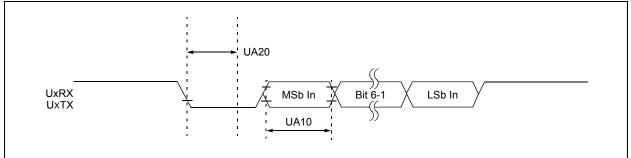
Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words.

TABLE 26-25: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS


AC CH	AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions		
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale Value (1, 8, 64, 256)		
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TB15, N = Prescale Value (1, 8, 64, 256)		
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = Prescale Value (1, 8, 64, 256)		
TB20	TCKEXTMRL	Delay from Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 26-26: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS


AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TC10	TtxH	TxCK High Time	Synchronous	Tcy + 20			ns	Must also meet Parameter TC15
TC11	TtxL	TxCK Low Time	Synchronous	Tcy + 20	_	—	ns	Must also meet Parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous with Prescaler	2 Tcy + 40	_	—	ns	N = Prescale Value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 26-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

FIGURE 26-23: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 26-41: UARTX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
UA10	TUABAUD	UARTx Baud Time	66.67	_	_	ns	
UA11	FBAUD	UARTx Baud Frequency	_	—	15	Mbps	
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	—		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-42: ANALOG CURRENT SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions			Conditions	
AVD01	IDD	Analog Modules Current Consumption	_	9	_	mA	Characterized data with the following modules enabled: APLL, 5 ADC Cores, 2 PGAs and 4 Analog Comparators

Note 1: These parameters are characterized but not tested in manufacturing.

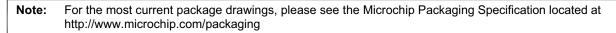
2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

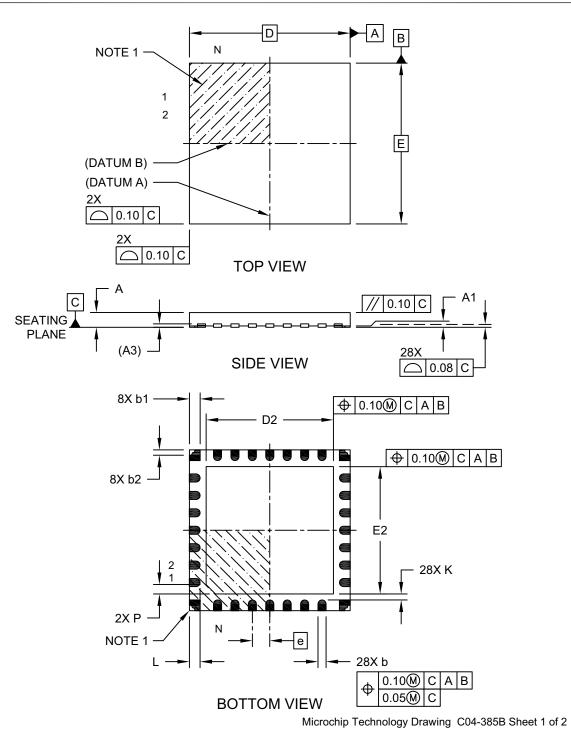
TABLE 26-44: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

AC CH	ARACTE	$\begin{array}{llllllllllllllllllllllllllllllllllll$										
Param No.	Symbol	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions					
Clock Parameters												
AD50	TAD	ADC Clock Period	14.28		_	ns						
Throughput Rate												
AD51	Fтр	SH0-SH3	—		3.25		70 MHz ADC clock, 12 bits, no pending					
		SH4	_		3.25	Msps	conversion at time of trigger					

Note 1: These parameters are characterized but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.


TABLE 26-45: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS


AC/DC CHARACTERISTICS ⁽²⁾			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments			
CM10	VIOFF	Input Offset Voltage	-35	±5	+35	mV				
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	0	—	AVDD	V				
CM13	CMRR	Common-Mode Rejection Ratio	60	—	_	dB				
CM14	TRESP	Large Signal Response	_	15	_	ns	V+ input step of 100 mV while V- input is held at AVDD/2. Delay measured from analog input pin to PWMx output pin.			
CM15	VHYST	Input Hysteresis	5	10	20	mV	Depends on HYSSEL<1:0>			
CM16	TON	Comparator Enabled to Valid Output	_	—	1	μs				

Note 1: These parameters are for design guidance only and are not tested in manufacturing.

2: The comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

NOTES: