

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs502-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKI	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, read	l as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** NVM Key Register bits (write-only)

REGISTER 5-5: NVMSRCADR: NVM SOURCE DATA ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRO	CADR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSR	CADR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared			x = Bit is unkr	nown			

bit 15-0 NVMSRCADR<15:0>: NVM Source Data Address bits

The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

8.1 **CPU Clocking System**

The dsPIC33EPXXGS50X family of devices provides six system clock options:

- · Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (FRCPLL)
- · FRC Oscillator with Postscaler
- · Primary (XT, HS or EC) Oscillator
- · Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator

0.8 MHz < FPLLI⁽¹⁾ < 8.0 MHz FPLLO⁽¹⁾ ≤ 120 MHz @ +125℃ 120 MHz < Fvco⁽¹⁾ < 340 MHz FPLLO⁽¹⁾ ≤ 140 MHz @ +85°C FPLL ÷N1 **Fvco** Fosc PFD VCO ÷ N2 PLLPRE<4:0> PLLPOST<1:0> ÷Μ PLLDIV<8:0> Note 1: This frequency range must be met at all times.

FIGURE 8-2: PLL BLOCK DIAGRAM

Instruction execution speed or device operating frequency, FCY, is given by Equation 8-1.

EQUATION 8-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

Figure 8-2 is a block diagram of the PLL module. Equation 8-2 provides the relationship between Input Frequency (FIN) and Output Frequency (FPLLO). Equation 8-3 provides the relationship between Input Frequency (FIN) and VCO Frequency (FVCO).

EQUATION 8-2: FPLLO CALCULATION

$$FPLLO = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{PLLDIV < 8:0 > + 2}{(PLLPRE < 4:0 > + 2) \times 2(PLLPOST < 1:0 > + 1)}\right)$$

Where: N1 = PLLPRE < 4:0 > +2

N2 = 2 x (PLLPOST < 1:0 > +1)M = PLLDIV < 8:0 > +2

EQUATION 8-3: Fvco CALCULATION

$$F_{VCO} = F_{IN} \times \left(\frac{M}{N1}\right) = F_{IN} \times \left(\frac{PLLDIV < 8:0 > +2}{(PLLPRE < 4:0 > +2)}\right)$$

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

bit 4-0

PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler) 11111 = Input divided by 33

•

00001 = Input divided by 3

00000 = Input divided by 2 (default)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - **2:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
_	—	—	—		—	_	PLLDIV8			
bit 15			•				bit 8			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
			PLLDI	V<7:0>						
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	= Writable bit U = Unimplemented bit, read as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-9	Unimplemen	ted: Read as 'd	כי							
bit 8-0	PLLDIV<8:0>	. PLL Feedbac	k Divisor bits (also denoted a	is 'M', PLL mult	iplier)				
	111111111	= 513	·			• •				
	•									
	•									
	•									
	000110000=	= 50 (default)								
	•	. ,								
	•									
	•									
	000000010 =	= 4								

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

000000001 = 3 000000000 = 2

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

9.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

9.5.1 KEY RESOURCES

- "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 10-14: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SCK2INR7	SCK2INR6	SCK2INR5	SCK2INR4	SCK2INR3	SCK2INR2	SCK2INR1	SCK2INR0
bit 15			·				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15-8 bit 7-0	SCK2INR<7:0>: Assign SPI2 Clock Input 10110101 = Input tied to RP181 10110100 = Input tied to RP180 • </td <td>(SCK2) to the</td> <td>Corresponding</td> <td>RPn Pin bits Pin bits</td> <td></td>			(SCK2) to the	Corresponding	RPn Pin bits Pin bits	

REGISTER 10-30: R	RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10
-------------------	---

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP53R<5:0>: Peripheral Output Function is Assigned to RP53 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP52R<5:0>: Peripheral Output Function is Assigned to RP52 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-31: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0
bit 15	-	-					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP55R<5:0>:** Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP54R<5:0>:** Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 0

NOTES:

11.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be Operated in Asynchronous Counter mode from an External Clock Source
- The External Clock Input (T1CK) can Optionally be Synchronized to the Internal Device Clock and the Clock Synchronization is Performed after the Prescaler
- A block diagram of Timer1 is shown in Figure 11-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:

- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit settings for different operating modes are provided in Table 11-1.

Mode	TCS	TGATE	TSYNC						
Timer	0	0	х						
Gated Timer	0	1	х						
Synchronous Counter	1	x	1						
Asynchronous Counter	1	x	0						

TABLE 11-1: TIMER MODE SETTINGS

REGISTER 15-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER^(1,2)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPI	ER<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				ad as '0'			
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown

bit 15-0 **PTPER<15:0>:** Primary Master Time Base (PMTMR) Period Value bits

Note 1: The PWMx time base has a minimum value of 0x0010 and a maximum value of 0xFFF8.

2: Any period value that is less than 0x0028 must have the Least Significant 3 bits set to '0', thus yielding a period resolution at 8.32 ns (at fastest auxiliary clock rate).

REGISTER 15-4: SEVTCMP: PWMx SPECIAL EVENT COMPARE REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	SEVTCMP<12:5>										
bit 15							bit 8				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	S	SEVTCMP<4:0	>		—	—	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-3 SEVTCMP<12:0>: Special Event Compare Count Value bits

bit 2-0 Unimplemented: Read as '0'

Note 1: One LSB = 1.04 ns (at fastest auxiliary clock rate); therefore, the minimum SEVTCMP resolution is 8.32 ns.

REGISTER 15-24: LEBCONX: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER (x = 1 to 5)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0		
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, reac	l as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15	bit 15 PHR: PWMxH Rising Edge Trigger Enable bit								
	1 = Rising edg	ge of PWMxH v	vill trigger the l	_eading-Edge	Blanking counte	er			
	0 = Leading-E	dge Blanking i	gnores the risi	ng edge of PW	MxH				
bit 14 PHF: PWMxH Falling Edge Trigger Enable bit									
	1 = Falling edge of PWMxH will trigger the Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores the falling edge of PWMxH								
bit 13	PLR: PWMxL Rising Edge Trigger Enable bit								
	1 = Rising edg	ge of PWMxL w	/ill trigger the L	.eading-Edge E	Blanking counte	er			
	0 = Leading-E	dge Blanking i	gnores the risi	ng edge of PW	MxL				
bit 12	PLF: PWMxL	Falling Edge T	rigger Enable	bit					
	1 = Falling ed	ge of PWMxL v	vill trigger the l	_eading-Edge E	Blanking counte	er			
bit 11			ling Edgo Blar	hig edge of PW					
	1 = Leading-F	dae Blanking i	s applied to the		t input				
	0 = Leading-E	dge Blanking i	s not applied to the	the selected F	ault input				
bit 10	CLLEBEN: C	urrent-Limit Lea	ading-Edge Bla	anking Enable I	oit				
	1 = Leading-E 0 = Leading-E	dge Blanking i dge Blanking i	s applied to the s not applied to	e selected curre the selected o	ent-limit input current-limit inp	ut			
bit 9-6	Unimplement	ted: Read as '0)'						
bit 5	BCH: Blankin	g in Selected B	lanking Signal	High Enable b	it ⁽¹⁾				
	1 = State blan 0 = No blankir	king (of current	-limit and/or Fa	ault input signa signal is high	ls) when the se	elected blanking	g signal is high		
bit 4	BCL: Blanking	a in Selected B	lanking Signal	Low Enable bit	(1)				
	1 = State blan	king (of curren	t-limit and/or F	ault input signa	ls) when the se	elected blanking	g signal is low		
	0 = No blankir	ng when the se	lected blanking	g signal is low					
bit 3	BPHH: Blanki	ng in PWMxH	High Enable bi	t					
	1 = State blan 0 = No blankir	king (of curren ng when the PV	t-limit and/or F VMxH output is	ault input signa s high	ls) when the P	WMxH output i	s high		
bit 2	BPHL: Blanki	ng in PWMxH l	ow Enable bit						
	1 = State blan 0 = No blankir	king (of curren ng when the PV	t-limit and/or F VMxH output is	ault input signa s low	ls) when the P	WMxH output i	s low		

Note 1: The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.

17.0 INTER-INTEGRATED CIRCUIT (I²C)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit (I²C)" (DS70000195) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family of devices contains two Inter-Integrated Circuit (I 2 C) modules: I2C1 and I2C2.

The I^2C module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx/ASCLx pin is clock
- · The SDAx/ASDAx pin is data

The I²C module offers the following key features:

- I²C Interface Supporting Both Master and Slave modes of Operation
- I²C Slave mode Supports 7 and 10-Bit Addressing
- I²C Master mode Supports 7 and 10-Bit Addressing
- I²C Port allows Bidirectional Transfers between Master and Slaves
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates accordingly
- System Management Bus (SMBus) Support
- Alternate I²C Pin Mapping (ASCLx/ASDAx)

17.1 I²C Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

17.1.1 KEY RESOURCES

- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	—	—			
bit 15					•		bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN			
bit 7							bit 0			
Legend:	Legend: P = Peadable bit $W = Writable bit$ $U = Unimplemented bit read as '0'$									
n = Value at		'1' = Rit is set	JIL	0° – Dhimplen	rod	as U				
	FUR	I – DILIS SEL			areu		IOWIT			
bit 15-7	Unimplemen	ted: Read as '0)'							
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit (I	² C Slave mode	only)					
	1 = Enables i	nterrupt on dete	ection of Stop of	condition						
	0 = Stop detection interrupts are disabled									
bit 5	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)									
	1 = Enables ii 0 = Start dete	nterrupt on dete	ection of Start o are disabled	or Restart condi	tions					
bit 4	BOEN: Buffer	Overwrite Ena	ble bit (I ² C Sla	ve mode only)						
	1 = I2CxRCV	is updated and	ACK is gener	rated for a receiv	ved address/da	ata byte, ignorin	ig the state of			
	the I2CO	V only if the RE	F bit = 0				•			
	0 = 12CxRCV	is only update	d when I2COV	is clear						
bit 3	SDAHT: SDA	x Hold Time Se	lection bit							
	$\perp = Minimum$ 0 = Minimum	of 100 ns hold	time on SDAX	after the failing	edge of SCLX					
bit 2	SBCDE: Slav	e Mode Bus Co	Ilision Detect	Enable bit (I ² C \$	Slave mode on	lv)				
	1 = Enables s	lave bus collisi	on interrupts			57				
	0 = Slave bus	collision interru	upts are disabl	ed						
	If the rising ec	dge of SCLx an	d SDAx is sam	pled low when	the module is in during data ar	n a high state, t	the BCL bit is			
bit 1	AHEN: Addre	ess Hold Enable	bit (I ² C Slave	mode only)	a dannig data ai		it bequences.			
	1 = Following	g the 8th fallin	g edge of SC	Lx for a match	ning received a	address byte,	the SCLREL			
	(I2CxCO 0 = Address	NL<12>) bit wil holding is disab	l be cleared a	nd SCLx will be	held low	•				
bit 0	DHEN: Data I	Hold Enable bit	(I ² C Slave mo	de only)						
	1 = Following	g the 8th falling	edge of SCL	x for a received	d data byte, the	e slave hardwa	are clears the			
		(I2CxCONL<1	2>) bit and SC	Lx is held low						
	v = Data not	ang is disabled								

REGISTER 17-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

REGISTER 19-34: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HSC				
FLEN	MODE1	MODE0	OVRSAM2	OVRSAM1	OVRSAM0	IE	RDY				
bit 15							bit				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	_	_	FLCHSEL4	FLCHSEL3	FLCHSEL2	FLCHSEL1	FLCHSELU				
							DIL				
Legend:		U = Unimplei	mented bit, read	d as '0'							
R = Readab	le bit	W = Writable	bit	HSC = Hardw	/are Settable/Cl	earable bit					
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	nown				
bit 15	FLEN: Filter	Enable bit									
	1 = Filter is e	enabled	RDV hit is cle	arad							
hit 14-13		• Filter Mode bi	ts	areu							
	11 = Averagi	ing mode									
	10 = Reserv	ed									
	01 = Reserv	ed									
	00 = Oversa	mpling mode									
bit 12-10	OVRSAM<2	:0>: Filter Aver	aging/Oversam	pling Ratio bits							
	$\frac{\text{If MODE}<1:0>=00:}{111=129} \text{ (16 bit result in the ADEL (DAT register is in 12.4 formul)}$										
	111 = 128x (111 = 128X (16-bit result in the ADFLXDAT register is in 12.4 format)									
	110 = 32X(1)	bit result in the		gister is in 12	.3 IOIIIIa()						
	101 = 0x (14) 100 = 2x (13)	B-bit result in the	e ADFLxDAT re	aister is in 12.1	format)						
	011 = 256x ((16-bit result in	the ADFLxDAT	register is in 1	2.4 format)						
	010 = 64x (1	15-bit result in th	ne ADFLxDAT r	egister is in 12	.3 format)						
	001 = 16x (1	4-bit result in th	ne ADFLxDAT r	egister is in 12	.2 format)						
	000 = 4x (13)	3-bit result in the $3 = 11 (12 - bit)$	e ADFLXDAT re	gister is in 12.1	l tormat) er in all instance	<i>ve).</i>					
	111 = 256x			I EXD/(I Togiot		<u>, , , , , , , , , , , , , , , , , , , </u>					
	110 = 128x										
	101 = 64x										
	100 = 32x										
	011 = 10x 010 = 8x										
	001 = 4x										
	000 = 2x										
bit 9	IE: Filter Cor	mmon ADC Inte	errupt Enable bi	t							
	1 = Commor 0 = Commor	n ADC interrupt n ADC interrupt	will be generate will not be gene	ed when the fill erated for the fi	ter result will be ilter	ready					
bit 8	RDY: Oversa	ampling Filter D	ata Ready Flad	bit							
	This bit is cle	eared by hardware he ADFLxDAT	are when the re register is ready	sult is read from	m the ADFLxDA	AT register.					
h:+ 7 5		-LXDAT register	nas been read	and new data	in the ADFLXD	A register is n	iot ready				
C-1 JIU	Unimpiemei	mea: Read as	U								

22.0 CONSTANT-CURRENT SOURCE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The constant-current source module is a precision current generator and is used in conjunction with the ADC module to measure the resistance of external resistors connected to device pins.

22.1 Features Overview

The constant-current source module offers the following major features:

- Constant-Current Generator (10 µA nominal)
- Internal Selectable Connection to One of Four Pins
- Enable/Disable Bit

22.2 Module Description

Figure 22-1 shows a functional block diagram of the constant-current source module. It consists of a precision current generator with a nominal value of 10 μ A. The module can be enabled and disabled using the ISRCEN bit in the ISRCCON register. The output of the current generator is internally connected to a device pin. The dsPIC33EPXXGS50X family can have up to 4 selectable current source pins. The OUTSEL<2:0> bits in the ISRCCON register allow selection of the target pin.

The current source is calibrated during testing.

FIGURE 22-1: CONSTANT-CURRENT SOURCE MODULE BLOCK DIAGRAM

FIGURE 26-2: EXTERNAL CLOCK TIMING

AC CHA	AC CHARACTERISTICS		Standard Ope (unless other	erating C wise stat	onditions: 3.0 ed)	/ to 3.6V		
			Operating tem	perature	-40°C \leq IA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended			
Param No.	Symb	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	60	MHz	EC	
		Oscillator Crystal Frequency	3.5 10	_	10 40	MHz MHz	XT HS	
OS20	Tosc	Tosc = 1/Fosc	8.33	_	DC	ns	+125°C	
		Tosc = 1/Fosc	7.14	—	DC	ns	+85°C	
OS25	TCY	Instruction Cycle Time ⁽²⁾	16.67	—	DC	ns	+125°C	
		Instruction Cycle Time ⁽²⁾	14.28	_	DC	ns	+85°C	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.2	—	ns		
OS41	TckF	CLKO Fall Time ^(3,4)	—	5.2	—	ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	—	mA/V	HS, VDD = 3.3V, TA = +25°C	
			_	6	—	mA/V	XT, VDD = 3.3V, TA = +25°C	

TABLE 26-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized but not tested in manufacturing.

TABLE 26-23:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

	AC CHARACTERISTICS		Standa (unless	rd Operatin s otherwise	g Con stated	ditions)	: 3.0V to 3.6V	
	AKACIEKI	51105	$\begin{array}{ll} \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SY00	Τρυ	Power-up Period		400	600	μS		
SY10	Tost	Oscillator Start-up Time		1024 Tosc			Tosc = OSC1 period	
SY12	Twdt	Watchdog Timer Time-out Period	0.81	_	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 26-21) at +85°C	
			3.25	_	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 26-21) at +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS		
SY20	TMCLR	MCLR Pulse Width (low)	2	—	_	μS		
SY30	TBOR	BOR Pulse Width (low)	1	—	_	μS		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μS	-40°C to +85°C	
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	—	_	30	μS		
SY37	TOSCDFRC	FRC Oscillator Start-up Delay	—	48	—	μS		
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	—	—	70	μS		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

FIGURE 26-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

TABLE 26-28: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
OC10	TccF	OCx Output Fall Time	—	—	_	ns	See Parameter DO32		
OC11	TccR	OCx Output Rise Time	— — — ns See Parameter DO31						

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 26-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 26-29: OCx/PWMx MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
OC15	TFD	Fault Input to PWMx I/O Change	_	_	Tcy + 20	ns		
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		44		
Pitch	е		0.65 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E		8.00 BSC		
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D		8.00 BSC		
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30 0.40 0.			
Terminal-to-Exposed-Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2