

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs502-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP64GS50X DEVICES (DUAL PARTITION) 0x000000 GOTO Instruction 0x000002 Reset Address 0x000004 Interrupt Vector Table 0x0001FE 0x000200 Active Program Flash Memory (10,944 instructions) **Active Partition** 0x00577E 0x005780 **Device Configuration** 0x0057FE 0x005800 User Memory Space Unimplemented (Read '0's) 0x3FFFFE 0x400000 GOTO Instruction 0x400002 Reset Address 0x400004 Interrupt Vector Table 0x4001FE 0x400200 **Inactive Partition** Inactive Program Flash Memory (10,944 instructions) 0x40577E 0x405780 **Device Configuration** 0x4057FE 0x405800 Unimplemented (Read '0's) 0x7FFFFE 0x800000 Reserved 0x800E46 0x800E48 Calibration Data 0x800E78 0x800E7A Reserved 0x800EFE Configuration Memory Space 0x800F00 UDID 0x800F08 0x800F0A Reserved 0x800F7E 0x800F80 User OTP Memory 0x800FFC 0x801000 Reserved 0xF9FFFE 0xFA0000 Write Latches 0xFA0002 0xFA0004 Reserved **0xFEFFFE** 0xFF0000 DEVID 0xFF0002 0xFF0004 Reserved 0xFFFFFE Note: Memory areas are not shown to scale.

								•										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC12	0858	-	-	-	-	-	MI2C2IP2	MI2C2IP1	MI2C2IP0	-	SI2C2IP2	SI2C2IP1	SI2C2IP0	-	-	-	-	0440
IPC13	085A	-	-	-	_	_	INT4IP2	INT4IP1	INT4IP0	-	-	-	_	-	-	-	-	0400
IPC14	085C	-	-	-	_	_	-	-	-	-	PSEMIP2	PSEMIP1	PSEMIP0	-	_	_	_	0040
IPC16	0860	-	-	-	_	-	U2EIP2	U2EIP1	U2EIP0	-	U1EIP2	U1EIP1	U1EIP0	-	-	-	-	0440
IPC18	0864	-	-	-	_	-	-	-	-	-	PSESIP2	PSESIP1	PSESIP0	-	-	-	-	0040
IPC23	086E	-	PWM2IP2	PWM2IP1	PWM2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0	-	—	_	—	-	_	_	_	4400
IPC24	0870	-	-	-	_	-	PWM5IP2	PWM5IP1	PWM5IP0	-	PWM4IP2	PWM4IP1	PWM4IP0	-	PWM3IP2	PWM3IP1	PWM3IP0	0444
IPC25	0872	-	AC2IP2	AC2IP1	AC2IP0	-	-	-	-	-	-	-	-	-	-	-	-	4000
IPC26	0874	_	-	-	_	_	-	-	-	-	AC4IP2	AC4IP1	AC4IP0	-	AC3IP2	AC3IP1	AC3IP0	0044
IPC27	0876	_	ADCAN1IP2	ADCAN1IP1	ADCAN1IP0	-	ADCAN0IP2	ADCAN0IP1	ADCAN0IP0	_	_	_	_	-	_	_	_	4400
IPC28	0878	-	ADCAN5IP2	ADCAN5IP1	ADCAN5IP0	-	ADCAN4IP2	ADCAN4IP1	ADCAN4IP0	-	ADCAN3IP2	ADCAN3IP1	ADCAN3IP0	-	ADCAN2IP2	ADCAN2IP1	ADCAN2IP0	4444
IPC29	087A	-	-	-	_	-	-	-	-	-	ADCAN7IP2	ADCAN7IP1	ADCAN7IP0	-	ADCAN6IP2	ADCAN6IP1	ADCAN6IP0	0044
IPC35	0886	_	JTAGIP2	JTAGIP1	JTAGIP0	-	ICDIP2	ICDIP1	ICDIP0	_	_	_	_	-	_	_	_	4400
IPC37	088A	_	ADCAN8IP2(2)	ADCAN8IP1(2)	ADCAN8IP0(2)		-	_	_	_	_	_	_	-	_	_	_	4000
IPC38	088C	_	ADCAN12IP2(2)	ADCAN12IP1(2)	ADCAN12IP0(2)		ADCAN11IP2(2)	ADCAN11IP1(2)	ADCAN11IP0(2)	—	ADCAN10IP2(2)	ADCAN10IP1(2)	ADCAN10IP0(2)	—	ADCAN9IP2(2)	ADCAN9IP1(2)	ADCAN9IP0(2)	4444
IPC39	088E	_	ADCAN16IP2(1)	ADCAN16IP1(1)	ADCAN16IP0(1)		ADCAN15IP2(1)	ADCAN15IP1 ⁽¹⁾	ADCAN15IP0(1)	—	ADCAN14IP2(2)	ADCAN14IP1 ⁽²⁾	ADCAN14IP0(2)	—	ADCAN13IP2(1)	ADCAN13IP1	ADCAN13IP0	4444
IPC40	0890	_	ADCAN20IP2	ADCAN20IP1	ADCAN20IP0		ADCAN19IP2	ADCAN19IP1	ADCAN19IP0	_	ADCAN18IP2	ADCAN18IP1	ADCAN18IP0	-	ADCAN17IP2(2)	ADCAN17IP1(2)	ADCAN17IP0(2)	4444
IPC41	0892	_	-	_	_	-	_	_	-	_	_	_	_	-	ADCAN21IP2	ADCAN21IP1	ADCAN21IP0	0004
IPC43	0896	_	-	_	_		I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	—	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0	—	—	_	_	0440
IPC44	0898	_	ADFLTR0IP2	ADFLTR0IP1	ADFLTR0IP0		ADCMP1IP2	ADCMP1IP1	ADCMP1IP0	_	ADCMP0IP2	ADCMP0IP1	ADCMP0IP0	-	_	_	_	4440
IPC45	089A	_	-	_	_		-	_	-	_	_	—	_	_	ADFLTR1IP2	ADFLTR1IP1	ADFLTR1IP0	0004
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	-	-	-	AIVTEN	-	-	-	INT4EP	-	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_	_	_	_	NAE	_	_	_	DOOVR	_	_	_	APLL	0000
INTCON4	08C6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SGHT	0000
INTTREG	08C8	_	_	_	_	ILR3	ILR2	ILR1	ILR0	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)

Legend:

Note 1:

 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.
 Only available on dsPIC33EPXXGS506 devices.
 Only available on dsPIC33EPXXGS504/505 and dsPIC33EPXXGS506 devices. 2:

TABLE	4-6:	OU	TPUT	COMPA	RE 1 TH	ROUGH	ΙΟυτρι	JT CON	IPARE	4 REGI	STER M	AP						
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	—	—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904		Output Compare 1 Secondary Register xxxx							xxxx								
OC1R	0906		Output Compare 1 Register xxxx									xxxx						
OC1TMR	0908								Time	er Value 1 Re	egister							xxxx
OC2CON1	090A	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E		Output Compare 2 Secondary Register xxxx								xxxx							
OC2R	0910								Output	Compare 2	Register							xxxx
OC2TMR	0912								Time	er Value 2 Re	egister							xxxx
OC3CON1	0914	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							0	utput Comp	oare 3 Seco	ndary Regist	er						xxxx
OC3R	091A								Output	Compare 3	Register							xxxx
OC3TMR	091C								Time	er Value 3 Re	egister							xxxx
OC4CON1	091E	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							0	utput Comp	oare 4 Seco	ndary Regist	er						xxxx
OC4R	0924		Output Compare 4 Register xxxx															
OC4TMR	0926		Timer Value 4 Register xxxx															

-

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-21: NVM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	SFTSWP	P2ACTIV	RPDF	URERR	_	-	—	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMADR	072A		NVMADR<15:0> 0										0000					
NVMADRU	072C	_	_	_	_	_	─────────────────────────────────────							0000				
NVMKEY	072E	_	_	_	_	_	_	_	_				NVMK	(EY<7:0>				0000
NVMSRCADR	0730					NVM S	Source Data	Address	Register, Lo	ower Word	(NVMSRC	ADR<15:0	>)					0000
NVMSRCADRH	0732	_	_	_	_	_	_	_	_	NVM Source Data Address Register, Upper Byte (NVMSRCADR<23:16>						0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	-	_	VREGSF	—	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	3040
PLLFBD	0746	_	_	_	_	_	_	_				PLL	DIV<8:0>					0030
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_			TUN	<5:0>			0000
LFSR	074C	_							LF	SR<14:0>								0000
REFOCON	074E	ROON	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
ACLKCON	0750	ENAPLL	APLLCK	SELACLK	_	_	APSTSCLR2	APSTSCLR1	APSTSCLR0	ASRCSEL	FRCSEL	_	_	_	_	_	_	2740

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration fuses.

TABLE 4-39: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

8.5 Oscillator Control Registers

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSC0 ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
CLKLOCK	IOLOCK	LOCK	—	CF ⁽³⁾	—	—	OSWEN
bit 7							bit 0

Legend:	y = Value set from Configuration bits on POR							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits (read-only) 111 = Fast RC Oscillator (FRC) with Divide-by-n 110 = Fast RC Oscillator (FRC) with Divide-by-16 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved 011 = Primary Oscillator (XT, HS, EC) with PLL 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC)
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽²⁾
	 111 = Fast RC Oscillator (FRC) with Divide-by-n 110 = Fast RC Oscillator (FRC) with Divide-by-16 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved
	011 = Primary Oscillator (XT, HS, EC) with PLL 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC)
bit 7	CLKLOCK: Clock Lock Enable bit
	 1 = If (FCKSM0 = 1), then clock and PLL configurations are locked; if (FCKSM0 = 0), then clock and PLL configurations may be modified 0 = Clock and PL selections are not locked, configurations may be modified
bit 6	IOLOCK: I/O Lock Enable bit
2	1 = I/O lock is active 0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit (read-only)
	 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
Note 1:	Writes to this register require an unlock sequence.
2:	Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
э.	This bit should only be cleared in software. Softing the bit in software (-1) will have the same affect as an

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
_	—	—	—	—	CMPMD	—	—
bit 15						·	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
_	—	—	—	_		I2C2MD	_
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	nown		
bit 15-11	Unimplemen	ted: Read as ')'				
bit 10	CMPMD: Con	nparator Modul	e Disable bit				
	1 = Comparat	or module is di	sabled				
	0 = Comparat	or module is e	nabled				
bit 9-2	Unimplemen	ted: Read as 'd	כי				
bit 1	12C2MD: 12C2	2 Module Disab	ole bit				
	1 = I2C2 mod	ule is disabled					
	0 = I2C2 mod	ule is enabled					

REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

bit 0	Unimplemented: Read as '0'	

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0 U-0 U-0 U-0 U-0 U-0 - <					544/ 0			
U-0 U-0 U-0 U-0 U-0 U-0 U-0 - -	bit 15							bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0	—	—	—	—	—	—		—
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Module Disable bit
	1 = Reference clock module is disabled
	0 = Reference clock module is enabled
bit 2-0	Unimplemented: Read as '0'

REGISTER 10-17: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	_	—	—	—
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SYNCI2R7 | SYNCI2R6 | SYNCI2R5 | SYNCI2R4 | SYNCI2R3 | SYNCI2R2 | SYNCI2R1 | SYNCI2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 SYNCI2R<7:0>: Assign PWM Synchronization Input 2 to the Corresponding RPn Pin bits 10110101 = Input tied to RP181 10110100 = Input tied to RP180 •

• 00000001 = Input tied to RP1 00000000 = Input tied to Vss

13.2 Input Capture Registers

REGISTER 13-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0		
bit 15							bit 8
U-0	R/W-0	R/W-0	R-0, HC, HS	R-0, HC, HS	R/W-0	R/W-0	R/W-0
	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7							bit 0
l egend:		HC = Hardware	e Clearable bit	HS = Hardwa	re Settable bit		
R = Readab	le bit	W = Writable b	it	U = Unimpler	nented bit. read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
							-
bit 15-14	Unimplemen	ted: Read as '0	,				
bit 13	ICSIDL: Inpu	t Capture x Stop	in Idle Control bi	t			
	1 = Input cap	oture will halt in (CPU Idle mode				
	0 = Input cap	oture will continu	e to operate in Cl	PU Idle mode			
bit 12-10	ICTSEL<2:0>	Input Capture	x Timer Select bi	ts			
	111 = Periph	neral clock (FP) i	s the clock source	e of the ICx			
	110 = Reser						
	100 = T1CII	K is the clock so	urce of the ICx (o	nly the synchro	nous clock is s	upported)	
	011 = T5CLI	K is the clock so	urce of the ICx	,			
	010 = T4CL	K is the clock so	urce of the ICx				
	001 = T2CLI	K is the clock so	urce of the ICx				
	000 = 13CL	K is the clock so	urce of the ICx				
bit 9-7	Unimplemen	ited: Read as '0					
bit 6-5	ICI<1:0>: Nu	mber of Capture	s per Interrupt Se	lect bits (this fie	eld is not used i	f ICM<2:0> =	001 or 111)
	11 = Interrup	t on every fourth	capture event				
	10 = Interrup	t on every triffa (aplure event				
	00 = Interrup	t on every captu	re event				
bit 4	ICOV: Input (Capture x Overflo	ow Status Flag bit	(read-only)			
	1 = Input cap	oture buffer over	flow has occurred				
	0 = No input	capture buffer o	verflow has occu	rred			
bit 3	ICBNE: Input	t Capture x Buffe	er Not Empty Stat	us bit (read-onl	y)		
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty 						
bit 2-0	ICM<2:0>: In	put Capture x M	ode Select bits				
	111 = Input (detect	Capture x function only, all other co	ons as an interru ontrol bits are not	pt pin only in (applicable)	CPU Sleep and	d Idle modes	(rising edge
	110 = Unuse	d (module is dis	abled)				
	101 = Captur	re mode, every 1	6th rising edge (Prescaler Capt	ure mode)		
	100 = Captul	re mode, every 4	ising edge (P	rescaler Captul	re mode)		
	010 = Captu	re mode. every f	alling edge (Simp	le Capture mod	de)		
	001 = Captur	e mode, every ris	sing and falling ed	ge (Edge Detec	t mode, ICI<1:0	>, is not used i	in this mode)

001 = Capture mode, every fising an000 = Input Capture x is turned off

REGISTER 15-24: LEBCONX: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER (x = 1 to 5)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, reac	l as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15	PHR: PWMxH	I Rising Edge 1	rigger Enable	bit				
	1 = Rising edg	ge of PWMxH v	vill trigger the l	_eading-Edge	Blanking counte	er		
	0 = Leading-E	dge Blanking i	gnores the risi	ng edge of PW	MxH			
bit 14	PHF: PWMxH	I Falling Edge	Irigger Enable	bit Laadiaa Edaa I				
	0 = Leading-E	dae Blanking i	anores the falli	ng edge of PW	MxH	er		
bit 13	PLR: PWMxL	Rising Edge T	rigger Enable I	oit				
	1 = Rising edg	ge of PWMxL w	/ill trigger the L	.eading-Edge E	Blanking counte	er		
	0 = Leading-E	dge Blanking i	gnores the risi	ng edge of PW	MxL			
bit 12	PLF: PWMxL	Falling Edge T	rigger Enable	bit				
	1 = Falling ed	ge of PWMxL v	vill trigger the l	_eading-Edge E	Blanking counte	er		
bit 11			ynores the fail ling Edgo Blar	hig edge of PW				
	1 = Leading-F	dae Blanking i	s applied to the		t input			
	0 = Leading-E	dge Blanking i	s not applied to the	the selected F	ault input			
bit 10	CLLEBEN: C	urrent-Limit Lea	ading-Edge Bla	anking Enable I	oit			
	1 = Leading-E 0 = Leading-E	dge Blanking i dge Blanking i	s applied to the s not applied to	e selected curre the selected o	ent-limit input current-limit inp	ut		
bit 9-6	Unimplement	ted: Read as '0)'					
bit 5	BCH: Blankin	g in Selected B	lanking Signal	High Enable b	it ⁽¹⁾			
	1 = State blan 0 = No blankir	king (of current	-limit and/or Fa	ault input signa signal is high	ls) when the se	elected blanking	g signal is high	
bit 4	BCI : Blanking in Selected Blanking Signal I ow Enable bit ⁽¹⁾							
	1 = State blanking (of current-limit and/or Fault input signals) when the selected blanking signal is low							
	0 = No blanking when the selected blanking signal is low							
bit 3	BPHH: Blanki	ng in PWMxH	High Enable bi	t				
	1 = State blan 0 = No blankir	king (of curren ng when the PV	t-limit and/or F VMxH output i	ault input signa s high	ls) when the P	WMxH output i	s high	
bit 2	BPHL: Blanki	ng in PWMxH l	ow Enable bit					
	1 = State blan 0 = No blankir	king (of curren ng when the PV	t-limit and/or F VMxH output is	ault input signa s low	ls) when the P	WMxH output i	s low	

Note 1: The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.

REGISTER 19-5: ADCON3L: ADC CONTROL REGISTER 3 LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HSC	R/W-0	R-0, HSC
REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH
bit 15							bit 8

R/W-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSEL0
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'				
R = Readable bit	W = Writable bit	HSC = Hardware Settable/C	learable bit		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13 **REFSEL<2:0>:** ADC Reference Voltage Selection bits

Value	VREFH	VREFL
000	AVdd	AVss

001-111 = Unimplemented: Do not use bit 12 SUSPEND: All ADC Cores Triggers Disable bit 1 = All new trigger events for all ADC cores are disabled 0 = All ADC cores can be triggered bit 11 SUSPCIE: Suspend All ADC Cores Common Interrupt Enable bit 1 = Common interrupt will be generated when ADC core triggers are suspended (SUSPEND bit = 1) and all previous conversions are finished (SUSPRDY bit becomes set) 0 = Common interrupt is not generated for suspend ADC cores event bit 10 SUSPRDY: All ADC Cores Suspended Flag bit 1 = All ADC cores are suspended (SUSPEND bit = 1) and have no conversions in progress 0 = ADC cores have previous conversions in progress bit 9 SHRSAMP: Shared ADC Core Sampling Direct Control bit This bit should be used with the individual channel conversion trigger controlled by the CNVRTCH bit. It connects an analog input, specified by the CNVCHSEL<5:0> bits, to the shared ADC core and allows extending the sampling time. This bit is not controlled by hardware and must be cleared before the conversion starts (setting CNVRTCH to '1'). 1 = Shared ADC core samples an analog input specified by the CNVCHSEL<5:0> bits 0 = Sampling is controlled by the shared ADC core hardware bit 8 **CNVRTCH:** Software Individual Channel Conversion Trigger bit 1 = Single trigger is generated for an analog input specified by the CNVCHSEL<5:0> bits; when the bit is set, it is automatically cleared by hardware on the next instruction cycle 0 = Next individual channel conversion trigger can be generated bit 7 SWLCTRG: Software Level-Sensitive Common Trigger bit 1 = Triggers are continuously generated for all channels with the software, level-sensitive common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers 0 = No software, level-sensitive common triggers are generated SWCTRG: Software Common Trigger bit bit 6 1 = Single trigger is generated for all channels with the software, common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers; when the bit is set, it is automatically cleared by hardware on the next instruction cycle 0 = Ready to generate the next software, common trigger CNVCHSEL <5:0>: Channel Number Selection for Software Individual Channel Conversion Trigger bits bit 5-0

These bits define a channel to be converted when the CNVRTCH bit is set.

REGISTER 19-8: ADCON4H: ADC CONTROL REGISTER 4 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| C3CHS1 | C3CHS0 | C2CHS1 | C2CHS0 | C1CHS1 | C1CHS0 | C0CHS1 | C0CHS0 |
| bit 7 | | | | | | | bit 0 |

Legend:								
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-8	bit 15-8 Unimplemented: Read as '0'							
bit 7-6	C3CHS<1:0>	: Dedicated ADC Core 3 Inpu	t Channel Selection bits					
	1x = Reserve 01 = AN15 (d 00 = AN3	ed ifferential negative input wher	n DIFF3 (ADMOD0L<7>) = 1)					
bit 5-4	C2CHS<1:0>	: Dedicated ADC Core 2 Inpu	t Channel Selection bits					
	11 = Reserve 10 = VREF Ba 01 = AN11 (d 00 = AN2	ed ind Gap ifferential negative input wher	n DIFF2 (ADMOD0L<5>) = 1)					
bit 3-2	C1CHS<1:0>	: Dedicated ADC Core 1 Inpu	t Channel Selection bits					
	11 = AN1ALT 10 = PGA2 01 = AN18 (d 00 = AN1	lifferential negative input wher	n DIFF1 (ADMOD0L<3>) = 1)					
bit 1-0	COCHS<1:0> 11 = AN0ALT 10 = PGA1 01 = AN7 (dif 00 = AN0	: Dedicated ADC Core 0 Inpu	t Channel Selection bits DIFF0 (ADMOD0L<1>) = 1)					

REGISTER 19-30: ADCAL1H: ADC CALIBRATION REGISTER 1 HIGH

R/W-0, HS	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0	
CSHRRDY	—	—	—	—	CSHRDIFF	CSHREN	CSHRRUN	
bit 15	·						bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 7		•		•	•		bit 0	
Legend:		r = Reserved I	bit	U = Unimplemented bit, read as '0'				
R = Readable	e bit	W = Writable I	oit	HS = Hardware Settable bit				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15	CSHRRDY: S	hared ADC Co	re Calibration	Status Flag bit				
	1 = Shared A	DC core calibra	tion is finished					
	0 = Shared A	DC core calibra	ition is in progr	ess				
bit 14-12	Unimplemented: Read as '0'							
bit 11	Reserved: Must be written as '0'							

- bit 10 **CSHRDIFF:** Shared ADC Core Differential-Mode Calibration bit
 - 1 = Shared ADC core will be calibrated in Differential Input mode
 - 0 = Shared ADC core will be calibrated in Single-Ended Input mode
- bit 9 **CSHREN:** Shared ADC Core Calibration Enable bit
 - 1 = Shared ADC core calibration bits (CSHRRDY, CSHRDIFF and CSHRRUN) can be accessed by software
 - 0 = Shared ADC core calibration bits are disabled
- bit 8 CSHRRUN: Shared ADC Core Calibration Start bit
 - 1 = If this bit is set by software, the shared ADC core calibration cycle is started; this bit is cleared automatically by hardware
 - 0 = Software can start the next calibration cycle
- bit 7-0 Unimplemented: Read as '0'

21.1 Module Description

The Programmable Gain Amplifiers are used to amplify small voltages (i.e., voltages across burden/shunt resistors) to improve the signal-to-noise ratio of the measured signal. The PGAx output voltage can be read by any of the four dedicated Sample-and-Hold circuits on the ADC module. The output voltage can also be fed to the comparator module for overcurrent/ voltage protection. Figure 21-2 shows a functional block diagram of the PGAx module. Refer to **Section 19.0 "High-Speed, 12-Bit Analog-to-Digital Converter (ADC)"** and **Section 20.0 "High-Speed Analog Comparator"** for more interconnection details.

The gain of the PGAx module is selectable via the GAIN<2:0> bits in the PGAxCON register. There are five selectable gains, ranging from 4x to 64x. The SELPI<2:0> and SELNI<2:0> bits in the PGAxCON register select one of four positive/negative inputs to the PGAx module. For single-ended applications, the SELNI<2:0> bits will select the ground as the negative

input source. To provide an independent ground reference, PGAxN2 and PGAxN3 pins are available as the negative input source to the PGAx module.

Note 1: Not all PGA positive/negative inputs are available on all devices. Refer to the specific device pinout for available input source pins.

The output voltage of the PGAx module can be connected to the DACOUTx pin by setting the PGAOEN bit in the PGAxCON register. When the PGAOEN bit is enabled, the output voltage of PGA1 is connected to DACOUT1 and PGA2 is connected to DACOUT2. For devices with a single DACOUTx pin, the output voltage of PGA2 can be connected to DACOUT1 by configuring the DBCC Configuration bit in the FDEVOPT register (FDEVOPT<6>).

If both the DACx output voltage and PGAx output voltage are connected to the DACOUTx pin, the resulting output voltage would be a combination of signals. There is no assigned priority between the PGAx module and the DACx module.

FIGURE 21-2: PGAx FUNCTIONAL BLOCK DIAGRAM

TABLE 23-2:	CONFIGURATION BITS DESCRIPTION ((CONTINUED)	

Bit Field	Description
WDTWIN<1:0>	Watchdog Timer Window Select bits 11 = WDT window is 25% of the WDT period 10 = WDT window is 37.5% of the WDT period 01 = WDT window is 50% of the WDT period 00 = WDT window is 75% of the WDT period
ALTI2C1	Alternate I2C1 Pin bit 1 = I2C1 is mapped to the SDA1/SCL1 pins 0 = I2C1 is mapped to the ASDA1/ASCL1 pins
ALTI2C2	Alternate I2C2 Pin bit 1 = I2C2 is mapped to the SDA2/SCL2 pins 0 = I2C2 is mapped to the ASDA2/ASCL2 pins
JTAGEN	JTAG Enable bit 1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2 01 = Communicates on PGEC3 and PGED3 00 = Reserved, do not use
DBCC	DACx Output Cross Connection Select bit 1 = No cross connection between DAC outputs 0 = Interconnects DACOUT1 and DACOUT2
CTXT1<2:0>	Alternate Working Register Set 1 Interrupt Priority Level (IPL) Select bits 111 = Reserved 110 = Assigned to IPL of 7 101 = Assigned to IPL of 6 100 = Assigned to IPL of 5 011 = Assigned to IPL of 4 010 = Assigned to IPL of 3 001 = Assigned to IPL of 2 000 = Assigned to IPL of 1
CTXT2<2:0>	Alternate Working Register Set 2 Interrupt Priority Level (IPL) Select bits 111 = Reserved 110 = Assigned to IPL of 7 101 = Assigned to IPL of 6 100 = Assigned to IPL of 5 011 = Assigned to IPL of 4 010 = Assigned to IPL of 3 001 = Assigned to IPL of 2 000 = Assigned to IPL of 1
BTMODE<1:0>	Boot Mode Configuration bits 11 = Single Partition mode 10 = Dual Partition mode 01 = Protected Dual Partition mode 00 = Privileged Dual Partition mode

Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.

25.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

25.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CH	DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
			$\begin{array}{ll} \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions					
	lı∟	Input Leakage Current ^(2,3)						
DI50		I/O Pins 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	$\label{eq:VSS} \begin{split} \text{VSS} &\leq \text{VPIN} \leq \text{VDD}, \\ \text{pin at high-impedance} \end{split}$	
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +85^\circC \end{array}$	
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$	
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	_	+1	μA	$Vss \le VPIN \le VDD$, pin at high-impedance, -40°C \le TA \le +125°C	
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$	
DI55		MCLR	-5	_	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	-5	—	+5	μΑ	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$	

TABLE 26-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

5: VIL Source < (Vss – 0.3). Characterized but not tested.

6: VIH Source > (VDD + 0.3) for pins that are not 5V tolerant only.

7: Digital 5V tolerant pins do not have internal high-side diodes to VDD and cannot tolerate any "positive" input injection current.

8: Injection Currents > | 0 | can affect the ADC results by approximately 4-6 counts.

9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 26-31: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 26-31	—	—	0,1	0,1	0,1	
9 MHz	_	Table 26-32	—	1	0,1	1	
9 MHz	_	Table 26-33	—	0	0,1	1	
15 MHz		—	Table 26-34	1	0	0	
11 MHz	_	—	Table 26-35	1	1	0	
15 MHz		_	Table 26-36	0	1	0	
11 MHz		_	Table 26-37	0	0	0	

FIGURE 26-11: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Leads	Ν		64			
Lead Pitch	е		0.50 BSC			
Overall Height	Α	-	-	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05 - 0.15				
Foot Length	L	0.45 0.60 0.7				
Footprint	L1	1.00 REF				
Foot Angle	¢	0° 3.5° 7°				
Overall Width	E		12.00 BSC			
Overall Length	D		12.00 BSC			
Molded Package Width	E1		10.00 BSC			
Molded Package Length	D1	10.00 BSC				
Lead Thickness	С	0.09 - 0.20				
Lead Width	b	0.17 0.22 0.27				
Mold Draft Angle Top	α	11° 12° 13°				
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820