

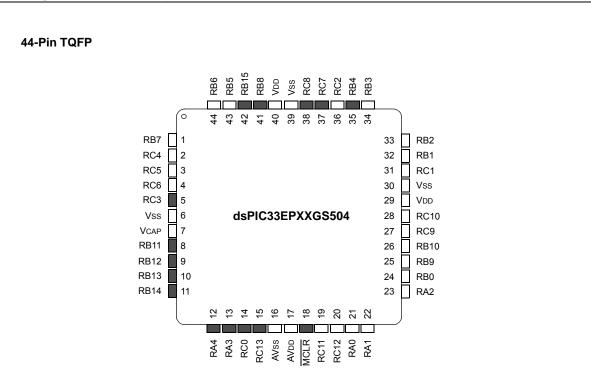
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


⊡XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs502t-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

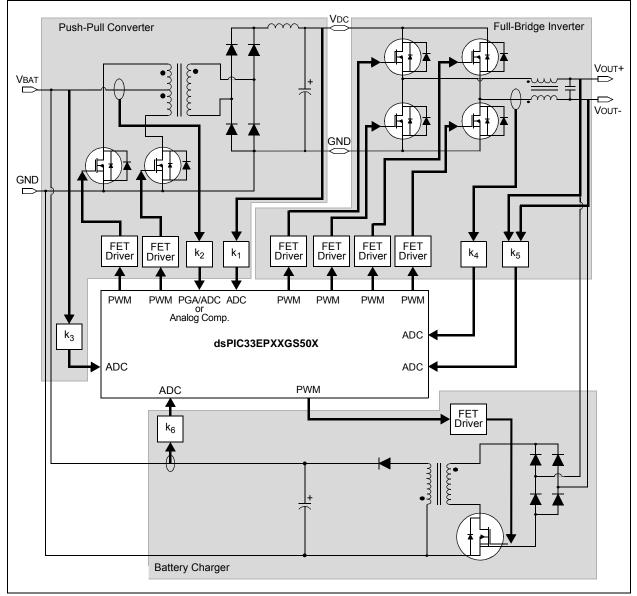
Pin	Pin Function	Pin	Pin Function
1	PGEC1/AN21/SDA1/ RP39 /RB7	23	AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2
2	AN1ALT/ RP52 /RC4	24	AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0
3	AN0ALT/RP53/RC5	25	AN4/CMP2C/CMP3A/ISRC4/RP41/RB9
4	AN17/ RP54 /RC6	26	AN5/CMP2D/CMP3B/ISRC3/RP42/RB10
5	RP51/RC3	27	AN11/PGA1N3/ RP57 /RC9
6	Vss	28	AN10/PGA1P4/EXTREF2/RP58/RC10
7	VCAP	29	VDD
8	TMS/PWM3H/RP43/RB11	30	Vss
9	TCK/PWM3L/ RP44 /RB12	31	AN8/PGA2P4/CMP4C/RP49/RC1
10	PWM2H/ RP45 /RB13	32	OSC1/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1
11	PWM2L/ RP46 /RB14	33	OSC2/CLKO/AN7/PGA1N2/CMP3D/CMP4B/RP34/RB2
12	PWM1H/RA4	34	PGED2/AN18/DACOUT1/INT0/RP35/RB3
13	PWM1L/RA3	35	PGEC2/ADTRG31/ RP36 /RB4
14	FLT12/ RP48 /RC0	36	AN9/CMP4D/EXTREF1/RP50 /RC2
15	FLT11/ RP61 /RC13	37	ASDA1/ RP55 /RC7
16	AVss	38	ASCL1/RP56/RC8
17	AVDD	39	Vss
18	MCLR	40	VDD
19	AN12/ISRC1/ RP59 /RC11	41	PGED3/SDA2/FLT31/RP40/RB8
20	AN14/PGA2N3/ RP60 /RC12	42	PGEC3/SCL2/RP47/RB15
21	AN0/PGA1P1/CMP1A/RA0	43	TDO/AN19/PGA2N2/ RP37 /RB5
22	AN1/PGA1P2/PGA2P1/CMP1B/RA1	44	PGED1/TDI/AN20/SCL1/RP38/RB6

Legend: Shaded pins are up to 5 VDC tolerant.

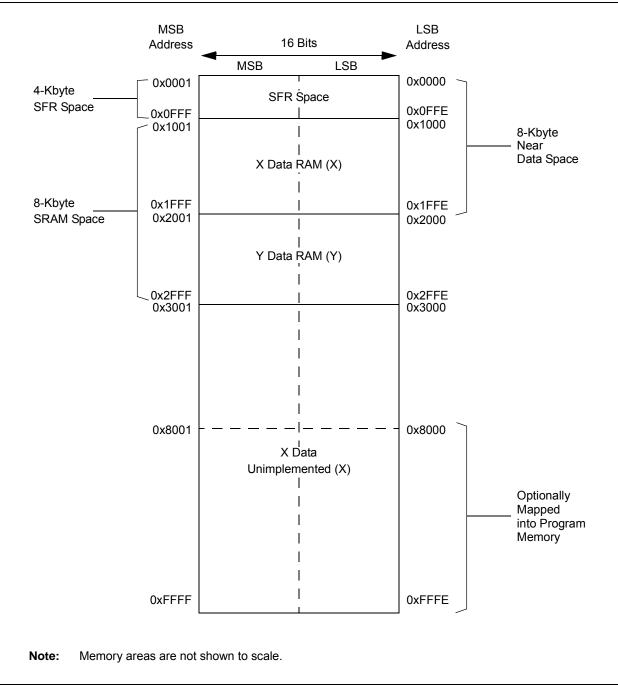
RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin I	Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description					
MCLR		I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.					
AVDD		Р	Р	No	Positive supply for analog modules. This pin must be connected at all imes.					
AVss		Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.					
Vdd		Р	_	No	Positive supply for peripheral logic and I/O pins.					
VCAP		Р	_	No	CPU logic filter capacitor connection.					
Vss		Р		No	Ground reference for logic and I/O pins.					
Legend:	CMOS = CM ST = Schmit									


PPS = Peripheral Pin Select

TTL = TTL input buffer


1: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

2: These pins are dedicated on 64-pin devices.

FIGURE 2-6: OFF-LINE UPS

FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP64GS50X DEVICES (DUAL PARTITION) 0x000000 GOTO Instruction 0x000002 Reset Address 0x000004 Interrupt Vector Table 0x0001FE 0x000200 Active Program Flash Memory (10,944 instructions) **Active Partition** 0x00577E 0x005780 **Device Configuration** 0x0057FE 0x005800 User Memory Space Unimplemented (Read '0's) 0x3FFFFE 0x400000 GOTO Instruction 0x400002 Reset Address 0x400004 Interrupt Vector Table 0x4001FE 0x400200 **Inactive Partition** Inactive Program Flash Memory (10,944 instructions) 0x40577E 0x405780 **Device Configuration** 0x4057FE 0x405800 Unimplemented (Read '0's) 0x7FFFFE 0x800000 Reserved 0x800E46 0x800E48 Calibration Data 0x800E78 0x800E7A Reserved 0x800EFE Configuration Memory Space 0x800F00 UDID 0x800F08 0x800F0A Reserved 0x800F7E 0x800F80 User OTP Memory 0x800FFC 0x801000 Reserved 0xF9FFFE 0xFA0000 Write Latches 0xFA0002 0xFA0004 Reserved **0xFEFFFE** 0xFF0000 DEVID 0xFF0002 0xFF0004 Reserved 0xFFFFFE Note: Memory areas are not shown to scale.

FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33EP64GS50X DEVICES

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	-	ADCIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	-	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	-	_	-	-	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	-	_	_	_	_	—	-	_	IC4IF	IC3IF	-	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	_	PSEMIF	_	_	INT4IF	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	-	-	-	-	-	-	PSESIF	-	-	-	-	-	-	U2EIF	U1EIF	-	0000
IFS5	080A	PWM2IF	PWM1IF	_	_	_	_	_	_		_	_	_	_	-	-	-	0000
IFS6	080C	ADCAN1IF	ADCAN0IF	—	_	_	_	AC4IF	AC3IF	AC2IF		_	_	_	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	080E	-	-	-	-	-	-	-	-	-	-	ADCAN7IF	ADCAN6IF	ADCAN5IF	ADCAN4IF	ADCAN3IF	ADCAN2IF	0000
IFS8	0810	JTAGIF	ICDIF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IFS9	0812	ADCAN16IF ⁽¹⁾	ADCAN15IF ⁽¹⁾	ADCAN14IF ⁽²⁾	ADCAN13IF(1)	ADCAN12IF ⁽²⁾	ADCAN11IF ⁽²⁾	ADCAN10IF ⁽²⁾	ADCAN9IF ⁽²⁾	ADCAN8IF ⁽²⁾	_	_	_	_	-	-	-	0000
IFS10	0814	-	I2C2BCIF	I2C1BCIF	-	-	_	-	-	_	-	-	ADCAN21IF	ADCAN20IF	ADCAN19IF	ADCAN18IF	ADCAN17IF ⁽²⁾	0000
IFS11	0816	_	-	_	_	_	_	_	-	_	_	_	ADFLTR1IF	ADFLTR0IF	ADCMP1IF	ADCMP0IF	-	0000
IEC0	0820	NVMIE	-	ADCIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	-	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	-	_	_	-	INT1IE	CNIE	AC1IF	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_	_	_	_	_	IC4IE	IC3IE	-	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	_	PSEMIE	_	_	INT4IE	_	-	_	MI2C2IE	SI2C2IE	-	0000
IEC4	0828	_	-	_	-	_	_	PSESIE	-	_	_	_	-	-	U2EIE	U1EIE	-	0000
IEC5	082A	PWM2IE	PWM1IE	_	_	_	_	_	_	_	_	_	-	_	_	_	-	0000
IEC6	082C	ADCAN1IE	ADCAN0IE	_	_	_	_	AC4IE	AC3IE	AC2IE	_	_	-	_	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	082E	_	_	_	-	_	_	_	-	_	_	ADCAN7IE	ADCAN6IE	ADCAN5IE	ADCAN4IE	ADCAN3IE	ADCAN2IE	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	_	_	_	_	-	_	_	_	-	0000
IEC9	0832	ADCAN16IE ⁽¹⁾	ADCAN15IE ⁽¹⁾	ADCAN14IE ⁽²⁾	ADCAN13IE ⁽¹⁾	ADCAN12IE ⁽²⁾	ADCAN11IE ⁽²⁾	ADCAN10IE ⁽²⁾	ADCAN9IE ⁽²⁾	ADCAN8IE ⁽²⁾	_	_	-	_	_	_	-	0000
IEC10	0834	_	I2C2BCIE	I2C1BCIE	-	_	_	_	-	_	_	_	ADCAN21IE	ADCAN20IE	ADCAN19IE	ADCAN18IE	ADCAN17IE ⁽²⁾	0000
IEC11	0836	_	_	_	_	_	_	_	_	_	_	_	ADFLTR1IE	ADFLTR0IE	ADCMP1IE	ADCMP0IE	-	0000
IPC0	0840	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	-	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	0842	-	T2IP2	T2IP1	T2IP0	-	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	-	-	-	-	4440
IPC2	0844	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	-	T3IP2	T3IP1	T3IP0	4444
IPC3	0846	_	NVMIP2	NVMIP1	NVMIP0	_	_	_	_	_	ADCIP2	ADCIP1	ADCIP0	-	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	0848	_	CNIP2	CNIP1	CNIP0	_	AC1IP2	AC1IP1	AC1IP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	-	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	084A	_	-	_	-	_	-	-	—	_	—	-	-	-	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	084C	_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	-	-	-	-	4440
IPC7	084E	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	0850	_	-	_	-	_	_	-	-	_	SPI2IP2	SPI2IP1	SPI2IP0	-	SPI2EIP2	SPI2EIP1	SPI2EIP0	0044
IPC9	0852	_	_	_	_	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	_	_	_	0440

Legend:

Note 1:

 — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Only available on dsPIC33EPXXGS506 devices. Only available on dsPIC33EPXXGS504/505 and dsPIC33EPXXGS506 devices.
 2:

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
_	—	—	—	—	CMPMD	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
_	_	—	—	_	—	I2C2MD	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-11	Unimplement	ted: Read as '	כ'				
bit 10	CMPMD: Con	nparator Modul	le Disable bit				
	1 = Comparat	or module is di	sabled				
	0 = Comparat	or module is ei	nabled				
bit 9-2	Unimplement	ted: Read as '	כי				
bit 1	12C2MD: 12C2	2 Module Disat	ole bit				
		ule is disabled					
	0 = I2C2 mod	ule is enabled					

REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

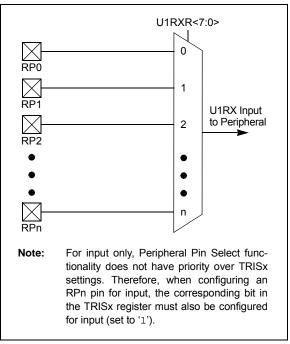
bit 0	Unimplemented: Read as '0'

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
11.0		11.0	11.0		11.0	11.0	11.0

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Module Disable bit
	1 = Reference clock module is disabled
	0 = Reference clock module is enabled
bit 2-0	Unimplemented: Read as '0'

10.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-19). Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 10-2 illustrates remappable pin selection for the U1RX input.

FIGURE 10-2: REMAPPABLE INPUT FOR U1RX

10.4.4.1 Virtual Connections

The dsPIC33EPXXGS50X devices support six virtual RPn pins (RP176-RP181), which are identical in functionality to all other RPn pins, with the exception of pinouts. These six pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP176 and the PWM Fault input can be configured for RP176 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

10.4.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 10-20 through Register 10-38). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 10-3: MULTIPLEXING REMAPPABLE OUTPUTS FOR RPn

10.4.5.1 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings, across any or all of the RPn pins, is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs, and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

REGISTER 12-2:	TyCON: ((TIMER3 AND TIMER	5) CONTROL REGISTER
-----------------------	----------	-------------------	---------------------

TON ⁽¹⁾		R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL ⁽²⁾	—	_	_	_	_
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
_	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	_	_	TCS ^(1,3)	_
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	hit	= Inimpler	mented bit, rea	ad as 'O'	
-n = Value at I		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	מעאר
	FOR	I - DILISSEL			aleu		50011
bit 15	TON: Timery	On bit ⁽¹⁾					
	1 = Starts 16-	•					
	0 = Stops 16-	bit Timery					
bit 14	•	ted: Read as '					
bit 13	TSIDL: Timer	y Stop in Idle M	lode bit ⁽²⁾				
		ues module op			dle mode		
		s module opera		ode			
bit 12-7	-	ted: Read as '		(4)			
bit 6		ery Gated Time	Accumulation	Enable bit ⁽¹⁾			
	When TCS = This bit is ign						
	When TCS =						
		<u>o.</u> le accumulatior	n is enabled				
		e accumulation					
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescal	e Select bits ⁽¹⁾	1		
	11 = 1:256						
	10 = 1:64						
	01 = 1:8 00 = 1:1						
bit 3-2		ted: Read as '	ı'				
bit 1	-	Clock Source S					
		clock is from pir		e risina edae)			
	0 = Internal c			c rising cage)			
bit 0		ted: Read as ')'				
				1), these bits	have no effec	t on Timery operat	tion; all time
	ictions are set th	•		1) in the Time-	v Control rogi	ster (TxCON<3>),	

2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all devices. See the "Pin Diagrams" section for the available pins.

R-0, HSC		R-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT ⁽	¹⁾ CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽³⁾	MDCS ⁽³⁾
bit 15				•	•	•	bit 8
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
		0-0	0-0	1	CAM ^(2,3,4)	XPRES ⁽⁵⁾	
DTC1 bit 7	DTC0	_		MTBS	CAM ^{2,0,1}	XPRES ⁽⁰⁾	IUE bit (
							Dit (
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Reada	ble bit	W = Writable I	oit	U = Unimplei	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
			(4)				
bit 15		ult Interrupt Sta					
		rupt is pending					
		nterrupt is pend ared by setting					
bit 14		ent-Limit Interr)			
		nit interrupt is p	•				
		t-limit interrupt					
	This bit is clea	ared by setting	CLIEN = 0.				
bit 13	TRGSTAT: Tri	igger Interrupt S	Status bit				
		errupt is pendi					
		interrupt is per ared by setting					
bit 12	FLTIEN: Fault	t Interrupt Enab	ole bit				
		rupt is enabled rupt is disabled		STAT bit is clea	ired		
bit 11	CLIEN: Curre	nt-Limit Interru	pt Enable bit				
		nit interrupt is e nit interrupt is o		ne CLSTAT bit	is cleared		
bit 10	TRGIEN: Trig	ger Interrupt Er	nable bit				
		event generates			AT bit is cleared		
bit 9	ITB: Independ	lent Time Base	Mode bit ⁽³⁾				
				ne time base p	eriod for this PV	VMx generator	
	0 = PTPER re	gister provides	timing for this	PWMx genera	ator	·	
bit 8	MDCS: Maste	er Duty Cycle R	egister Select	bit ⁽³⁾			
	1 = MDC regis	ster provides du	uty cycle inforr	nation for this	PWMx generate	or	
	0 = PDCx and	I SDCx register	s provide duty	cycle informa	tion for this PW	Mx generator	
Note 1:	Software must cle	ar the interrupt	status here a	nd in the corre	sponding IFSx I	pit in the interru	pt controller.
	The Independent CAM bit is ignored		de (ITB = 1) m	ust be enabled	I to use Center-	Aligned mode.	If ITB = 0, the
3:	These bits should	not be change	d after the PW	/Mx is enabled	by setting PTE	N = 1 (PTCON	<15>).
	Center-Aligned m	-				-	-
	registers. The higl the fastest clock.						
	The fastest clock.						

REGISTER 15-12: PWMCONX: PWMx CONTROL REGISTER (x = 1 to 5)

REGISTER 15-22: FCLCONX: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (x = 1 to 5)

	(x = 1	to 5)					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽¹⁾	CLMOD
bit 15	•			• 			bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽¹⁾	FLTMOD1	FLTMOD0
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 14-10	input map 0 = Normal F outputs; t	es FLTDAT0 to f Fault_mode:_Cu he PWM Fault	he PWMxL out urrent-Limit mo mode maps Fl	input maps FL tput; the CLDAT ode maps CLD LTDAT<1:0> to I Source Select	<pre><1:0> bits are r AT<1:0> bits 1 the PWMxH ar</pre>	not used for ove to the PWMxH nd PWMxL out	erride functions
	01111 = Anal 01110 = Anal	erved og Comparato og Comparato og Comparato og Comparato t 12 t 11 t 10 t 9 t 8 t 7 t 6 t 5 t 4 t 3 t 2 t 1	r 3 r 2				
bit 9	1 = The selec 0 = The selec	ent-Limit Polari ted current-limi ted current-limi	t source is act t source is act	ive-low ive-high	bit		
bit 8	1 = Current-Li	mit mode is en mit mode is dis	abled	WMx Generator	Dit		
		1 1					

Note 1: These bits should be changed only when PTEN = 0 (PTCON<15>).

REGISTER 17-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (I ² C Slave mode only)
	 1 = Read – Indicates data transfer is output from the slave 0 = Write – Indicates data transfer is input to the slave Hardware is set or clear after reception of an I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 Receive is complete, I2CxRCV is full Receive is not complete, I2CxRCV is empty Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	 0 = Transmit is complete, I2CxTRN is empty Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of a data transmission.

REGISTER 19-15: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN	<7:0>			
bit 7							bit 0
<u> </u>							
Legend:							

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 EIEN<15:0>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 19-16: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		EIEN<21:16>						
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 EIEN<21:16>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

TABLE 23-2: CONFIGURATION BITS DESCRIPTION

Bit Field	Description					
BSS<1:0>	Boot Segment Code-Protect Level bits					
	11 = Boot Segment is not code-protected other than BWRP					
	10 = Standard security					
BSEN	0x = High security Boot Segment Control bit					
DSEN	1 = No Boot Segment is enabled					
	0 = Boot Segment size is determined by the BSLIM<12:0> bits					
BWRP	Boot Segment Write-Protect bit					
	1 = Boot Segment can be written 0 = Boot Segment is write-protected					
BSLIM<12:0>	Boot Segment Flash Page Address Limit bits					
	Contains the last active Boot Segment page. The value to be programmed is the inverted page address, such that programming additional '0's can only increase the Boot Segment size (i.e., 0x1FFD = 2 Pages or 1024 IW).					
GSS<1:0>	General Segment Code-Protect Level bits					
	11 = User program memory is not code-protected					
	10 = Standard security 0x = High security					
GWRP	General Segment Write-Protect bit					
owna	1 = User program memory is not write-protected					
	0 = User program memory is write-protected					
CWRP	Configuration Segment Write-Protect bit					
	1 = Configuration data is not write-protected0 = Configuration data is write-protected					
CSS<2:0>	Configuration Segment Code-Protect Level bits					
	111 = Configuration data is not code-protected					
	110 = Standard security 10x = Enhanced security					
	0xx = High security					
BTSWP	BOOTSWP Instruction Enable/Disable bit					
	1 = BOOTSWP instruction is disabled					
	0 = BOOTSWP instruction is enabled					
BSEQ<11:0>	Boot Sequence Number bits (Dual Partition modes only)					
	Relative value defining which partition will be active after device Reset; the partition containing a lower boot number will be active.					
IBSEQ<11:0>	Inverse Boot Sequence Number bits (Dual Partition modes only)					
	The one's complement of BSEQ<11:0>; must be calculated by the user and written for					
	device programming. If BSEQx and IBSEQx are not complements of each other, the Boot Sequence Number is considered to be invalid.					
AIVTDIS ⁽¹⁾	Alternate Interrupt Vector Table bit					
	1 = Alternate Interrupt Vector Table is disabled					
IESO	0 = Alternate Interrupt Vector Table is enabled if INTCON2<8> = 1					
IESU	Two-Speed Oscillator Start-up Enable bit 1 = Starts up device with FRC, then automatically switches to the user-selected oscillator					
	source when ready					
	0 = Starts up device with the user-selected oscillator source					
PWMLOCK	PWMx Lock Enable bit					
	1 = Certain PWMx registers may only be written after a key sequence					
	0 = PWMx registers may be written without a key sequence					

Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers \in {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins excep <u>t VDD,</u> VSS, AVDD, AVSS, MCLR, VCAP and RB7
DI60b	Іісн	Input High Injection Current	0		+5(6,7,8)	mA	All pins excep <u>t VDD</u> , VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁷⁾
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾		+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 26-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

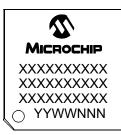
Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 5: VIL Source < (Vss 0.3). Characterized but not tested.
- 6: VIH Source > (VDD + 0.3) for pins that are not 5V tolerant only.
- 7: Digital 5V tolerant pins do not have internal high-side diodes to VDD and cannot tolerate any "positive" input injection current.
- 8: Injection Currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

AC CHA	RACTERI	STICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
							$C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +125^{\circ}C$ for Extended		
Param No. Symbol		Characte	Min.	Max.	Units	Conditions			
IS10 TLO:SCL	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS			
			400 kHz mode	1.3		μS			
			1 MHz mode ⁽¹⁾	0.5	_	μS			
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	-	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	_	μS			
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	100	ns			
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	300	ns			
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns			
		Setup Time	400 kHz mode	100	_	ns			
			1 MHz mode ⁽¹⁾	100		ns			
IS26	S26 THD:DAT	Data Input	100 kHz mode	0	_	μS			
		Hold Time	400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽¹⁾	0	0.3	μS			
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated		
		Setup Time	400 kHz mode	0.6	_	μS	Start condition		
			1 MHz mode ⁽¹⁾	0.25	_	μS			
IS31	THD:STA	Start Condition	100 kHz mode	4.0	_	μS	After this period, the first		
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated		
			1 MHz mode ⁽¹⁾	0.25	_	μS			
IS33	Tsu:sto	Stop Condition	100 kHz mode	4	_	μS			
		Setup Time	400 kHz mode	0.6	_	μS			
			1 MHz mode ⁽¹⁾	0.25	_	μS			
IS34	THD:STO	Stop Condition	100 kHz mode	4	_	μS			
		Hold Time	400 kHz mode	0.6	_	μS			
			1 MHz mode ⁽¹⁾	0.25		μS			
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3500	ns			
		Clock	400 kHz mode	0	1000	ns			
			1 MHz mode ⁽¹⁾	0	350	ns			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free		
			400 kHz mode	1.3	—	μS	before a new transmission		
			1 MHz mode ⁽¹⁾	0.5	_	μS	can start		
IS50	Св	Bus Capacitive Lo			400	pF			
IS51	TPGD	Pulse Gobbler Del	-	65	390	ns	(Note 2)		

TABLE 26-40: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

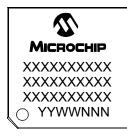

Note 1: Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: Typical value for this parameter is 130 ns.

3: These parameters are characterized but not tested in manufacturing.

28.1 Package Marking Information (Continued)

44-Lead TQFP (10x10x1 mm)


44-Lead QFN (8x8 mm)

48-Lead TQFP (7x7x1.0 mm)

64-Lead TQFP (10x10x1 mm)

Example

Example

Example

INDEX

Α

Absolute Maximum Ratings	
AC Characteristics	
ADC Specifications	
Analog Current Specifications	
Analog-to-Digital Conversion Requirements	
Auxiliary PLL Clock	317
Capacitive Loading Requirements on	
Output Pins	315
External Clock Requirements	316
High-Speed PWMx Requirements	325
I/O Requirements	319
I2Cx Bus Data Requirements (Master Mode)	339
I2Cx Bus Data Requirements (Slave Mode)	341
Input Capture x Requirements	323
Internal FRC Accuracy	
Internal LPRC Accuracy	
Load Conditions	315
OCx/PWMx Module Requirements	
Output Compare x Requirements	
PLL Clock	
Reset, WDT, OST, PWRT Requirements	
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1) Requirements	329
SPIx Master Mode (Full-Duplex, CKE = 1,	020
CKP = x, SMP = 1) Requirements	328
SPIx Master Mode (Half-Duplex,	020
Transmit Only) Requirements	327
SPIx Maximum Data/Clock Rate Summary	
SPIx Slave Mode (Full-Duplex, CKE = 0,	520
CKP = 0, $SMP = 0$) Requirements	227
	331
SPIx Slave Mode (Full-Duplex, CKE = 0,	22E
CKP = 1, SMP = 0) Requirements	335
SPIx Slave Mode (Full-Duplex, CKE = 1,	224
CKP = 0, SMP = 0) Requirements	331
SPIx Slave Mode (Full-Duplex, CKE = 1,	<u></u>
CKP = 1, SMP = 0) Requirements	333
Temperature and Voltage Specifications	
Timer1 External Clock Requirements	
Timer2/Timer4 External Clock Requirements	
Timer3/Timer5 External Clock Requirements	
UARTx I/O Requirements	342
AC/DC Characteristics	
DACx Specifications	346
High-Speed Analog Comparator Specifications	345
PGAx Specifications	347
Analog-to-Digital Converter. See ADC.	
Arithmetic Logic Unit (ALU)	30
Assembler	
MPASM Assembler	
MPLAB Assembler, Linker, Librarian	300
В	
-	
Bit-Reversed Addressing	
Example	
Implementation	
Sequence Table (16-Entry)	74
Block Diagrams	

Addressing for Table Registers	. 77
CALL Stack Frame	
Connections for On-Chip Voltage Regulator	285
Constant-Current Source	
CPU Core	. 22
Data Access from Program Space	
Address Generation	. 75
Dedicated ADC Cores 0-3	
dsPIC33EPXXGS50X Family	
High-Speed Analog Comparator x	
High-Speed PWM Architecture	
Hysteresis Control	
I2Cx Module	216
Input Capture x	171
Interleaved PFC	. 18
MCLR Pin Connections	. 16
Multiplexing Remappable Outputs for RPn	
Off-Line UPS	. 20
Oscillator System	104
Output Compare x Module	175
PGAx Functions	
PGAx Module	271
Phase-Shifted Full-Bridge Converter	. 19
PLL Module	105
Programmer's Model	. 24
PSV Read Address Generation	. 66
Recommended Minimum Connection	. 16
Remappable Input for U1RX	128
Reset System	
Security Segments for dsPIC33EP64GS50X	288
Security Segments for dsPIC33EP64GS50X	
(Dual Partition Modes)	288
Shared Port Structure	
Simplified Conceptual of High-Speed PWM	184
SPIx Module	
Suggested Oscillator Circuit Placement	. 17
Timerx (x = 2 through 5)	168
Type B/Type C Timer Pair (32-Bit Timer)	
UARTx Module	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	285
С	
~	

С

C Compilers	
MPLAB XC	300
Code Examples	
Port Write/Read	126
PWM Write-Protected Register	
Unlock Sequence	182
PWRSAV Instruction Syntax	115
Code Protection	277, 287
CodeGuard Security	277, 287
Configuration Bits	277
Description	
Constant-Current Source	275
Control Register	276
Description	275
Features Overview	275

16-Bit Timer1 Module......163 ADC Module......230