

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs502t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Communication Interfaces

- Two UART modules (15 Mbps):
 - Supports LIN/J2602 protocols and IrDA®
- Two 4-Wire SPI modules (15 Mbps)
- Two I²C modules (up to 1 Mbaud) with SMBus Support

Input/Output

- Constant-Current Source (10 µA nominal)
- Sink/Source up to 12mA/15mA, respectively; Pin-Specific for Standard VOH/VOL
- 5V Tolerant Pins
- · Selectable, Open-Drain Pull-ups and Pull-Downs
- External Interrupts on All I/O Pins
- Peripheral Pin Select (PPS) to allow Function Remap with Six Virtual I/Os

Qualification and Class B Support

- AEC-Q100 REVG (Grade 1, -40°C to +125°C)
- Class B Safety Library, IEC 60730
- The 6x6x0.5 mm UQFN Package is Designed and Optimized to ease IPC9592B 2nd Level Temperature Cycle Qualification

Debugger Development Support

- In-Circuit and In-Application Programming
- Five Program and Three Complex Data Breakpoints
- IEEE 1149.2 Compatible (JTAG) Boundary Scan
- Trace and Run-Time Watch

		Bytes		(GPIO)		Rei	napj	pable	Peri	phera	als				·Bit DC		r		Source	
Device	Pins	Program Memory By	RAM (Bytes)	General Purpose I/O (Timers ⁽¹⁾	Input Capture	Output Compare	UART	SPI	PWM ⁽²⁾	External Interrupts ⁽³⁾	Reference Clock	l²C	Analog Inputs	S&H Circuits	V9d	Analog Comparator	DAC Output	Constant-Current Sou	Packages
dsPIC33EP16GS502	28	16K	2K	21	5	4	4	2	2	5x2	3	1	2	12	5	2	4	1	1	SOIC,
dsPIC33EP32GS502	28	32K	4K	21	5	4	4	2	2	5x2	3	1	2	12	5	2	4	1	1	QFN-S,
dsPIC33EP64GS502	28	64K	8K	21	5	4	4	2	2	5x2	3	1	2	12	5	2	4	1	1	UQFN
dsPIC33EP16GS504	44	16K	2K	35	5	4	4	2	2	5x2	3	1	2	19	5	2	4	1	1	
dsPIC33EP32GS504	44	32K	4K	35	5	4	4	2	2	5x2	3	1	2	19	5	2	4	1	1	QFN, TQFP
dsPIC33EP64GS504	44	64K	8K	35	5	4	4	2	2	5x2	3	1	2	19	5	2	4	1	1	i Qi i
dsPIC33EP16GS505	48	16K	2K	35	5	4	4	2	2	5x2	3	1	2	19	5	2	4	1	1	
dsPIC33EP32GS505	48	32K	4K	35	5	4	4	2	2	5x2	3	1	2	19	5	2	4	1	1	TQFP
dsPIC33EP64GS505	48	64K	8K	35	5	4	4	2	2	5x2	3	1	2	19	5	2	4	1	1	
dsPIC33EP16GS506	64	16K	2K	53	5	4	4	2	2	5x2	4	1	2	22	5	2	4	2	1	
dsPIC33EP32GS506	64	32K	4K	53	5	4	4	2	2	5x2	4	1	2	22	5	2	4	2	1	TQFP
dsPIC33EP64GS506	64	64K	8K	53	5	4	4	2	2	5x2	4	1	2	22	5	2	4	2	1	

Note 1: The external clock for Timer1, Timer2 and Timer3 is remappable.

2: PWM4 and PWM5 are remappable on all devices except the 64-pin devices.

3: External interrupts, INT0 and INT4, are not remappable.

5.4 Dual Partition Flash Configuration

For dsPIC33EP64GS50X devices operating in Dual Partition Flash Program Memory modes, the Inactive Partition can be erased and programmed without stalling the processor. The same programming algorithms are used for programming and erasing the Flash in the Inactive Partition, as described in **Section 5.2 "RTSP Operation"**. On top of the page erase option, the entire Flash memory of the Inactive Partition can be erased by configuring the NVMOP<3:0> bits in the NVMCON register.

Note 1: The application software to be loaded into the Inactive Partition will have the address of the Active Partition. The bootloader firmware will need to offset the address by 0x400000 in order to write to the Inactive Partition.

5.4.1 FLASH PARTITION SWAPPING

The Boot Sequence Number is used for determining the Active Partition at start-up and is encoded within the FBTSEQ Configuration register bits. Unlike most Configuration registers, which only utilize the lower 16 bits of the program memory, FBTSEQ is a 24-bit Configuration Word. The Boot Sequence Number (BSEQ) is a 12-bit value and is stored in FBTSEQ twice. The true value is stored in bits, FBTSEQ<11:0>, and its complement is stored in bits, FBTSEQ<23:12>. At device Reset, the sequence numbers are read and the partition with the lowest sequence number becomes the Active Partition. If one of the Boot Sequence Numbers is invalid, the device will select the partition with the valid Boot Sequence Number, or default to Partition 1 if both sequence numbers are invalid. See Section 23.0 "Special Features" for more information.

The BOOTSWP instruction provides an alternative means of swapping the Active and Inactive Partitions (soft swap) without the need for a device Reset. The BOOTSWP must always be followed by a GOTO instruction. The BOOTSWP instruction swaps the Active and Inactive Partitions, and the PC vectors to the location specified by the GOTO instruction in the newly Active Partition.

It is important to note that interrupts should temporarily be disabled while performing the soft swap sequence and that after the partition swap, all peripherals and interrupts which were enabled remain enabled. Additionally, the RAM and stack will maintain state after the switch. As a result, it is recommended that applications using soft swaps jump to a routine that will reinitialize the device in order to ensure the firmware runs as expected. The Configuration registers will have no effect during a soft swap. For robustness of operation, in order to execute the BOOTSWP instruction, it is necessary to execute the NVM unlocking sequence as follows:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Execute the BOOTSWP instruction.

If the unlocking sequence is not performed, the BOOTSWP instruction will be executed as a forced NOP and a GOTO instruction, following the BOOTSWP instruction, will be executed, causing the PC to jump to that location in the current operating partition.

The SFTSWP and P2ACTIV bits in the NVMCON register are used to determine a successful swap of the Active and Inactive Partitions, as well as which partition is active. After the BOOTSWP and GOTO instructions, the SFTSWP bit should be polled to verify the partition swap has occurred and then cleared for the next panel swap event.

5.4.2 DUAL PARTITION MODES

While operating in Dual Partition mode, dsPIC33EP64GS50X family devices have the option for both partitions to have their own defined security segments, as shown in Figure 23-4. Alternatively, the device can operate in Protected Dual Partition mode, where Partition 1 becomes permanently erase/write-protected. Protected Dual Partition mode allows for a "Factory Default" mode, which provides a fail-safe backup image to be stored in Partition 1.

dsPIC33EP64GS50X family devices can also operate in Privileged Dual Partition mode, where additional security protections are implemented to allow for protection of intellectual property when multiple parties have software within the device. In Privileged Dual Partition mode, both partitions place additional restrictions on the BSLIM register. These prevent changes to the size of the Boot Segment and General Segment, ensuring that neither segment will be altered.

5.5 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

5.5.1 KEY RESOURCES

- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	_
bit 15		· · ·			•		bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** NVM Key Register bits (write-only)

REGISTER 5-5: NVMSRCADR: NVM SOURCE DATA ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRC	CADR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSR	CADR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-0 NVMSRCADR<15:0>: NVM Source Data Address bits

The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	_	—	—	NAE
bit 15							bit 8
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
—	—		DOOVR	—			APLL
bit 7							bit 0
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-9	Unimplemer	nted: Read as	'0'				
bit 8	NAE: NVM A	ddress Error S	Soft Trap Status	s bit			
			trap has occur				
			trap has not o	ccurred			
bit 7-5	Unimplemer	nted: Read as	'0'				
bit 4	DOOVR: DO	Stack Overflov	v Soft Trap Sta	tus bit			
	1 = DO stack	overflow soft t	rap has occurre	ed			
	0 = DO stack	overflow soft t	rap has not oc	curred			
bit 3-1	Unimplemer	nted: Read as	'0'				
bit 0	APLL: Auxili	ary PLL Loss o	of Lock Soft Tra	ap Status bit			
	1 = APLL loc	k soft trap has	occurred				
		le a aft trans has	wet easy word				

0 = APLL lock soft trap has not occurred

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
_	—	—	—	—	—	—	SGHT			
bit 7		•				•	bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 15-1	Unimplemen	ted: Read as	'0'							
bit 0	SGHT: Softwa	are Generated	Hard Trap Sta	tus bit						
	1 = Software	generated har	d trap has occ	urred						
	0 = Software	generated har	d trap has not	occurred						

8.5 Oscillator Control Registers

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
—	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
CLKLOCK	IOLOCK	LOCK	—	CF ⁽³⁾	—	—	OSWEN
bit 7							bit 0

Legend:	y = Value set from Cor	nfiguration bits on POR	ation bits on POR			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits (read-only) 111 = Fast RC Oscillator (FRC) with Divide-by-n 110 = Fast RC Oscillator (FRC) with Divide-by-16
	101 = Low-Power RC Oscillator (LPRC) 100 = Reserved
	011 = Primary Oscillator (XT, HS, EC) with PLL 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC)
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽²⁾
	111 = Fast RC Oscillator (FRC) with Divide-by-n
	110 = Fast RC Oscillator (FRC) with Divide-by-16 101 = Low-Power RC Oscillator (LPRC)
	100 = Reserved
	011 = Primary Oscillator (XT, HS, EC) with PLL
	010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)
	000 = Fast RC Oscillator (FRC)
bit 7	CLKLOCK: Clock Lock Enable bit
	1 = If (FCKSM0 = 1), then clock and PLL configurations are locked; if (FCKSM0 = 0), then clock and PLL configurations may be modified
	 0 = Clock and PLL selections are not locked, configurations may be modified
bit 6	IOLOCK: I/O Lock Enable bit
	1 = I/O lock is active
hit E	0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit (read-only) 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied
	0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
Note 1:	Writes to this register require an unlock sequence.
2:	Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.
	This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
3:	This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 CF: Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected a clock failure
 - 0 = FSCM has not detected a clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to the selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

9.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

9.5.1 KEY RESOURCES

- "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		_	_	—				
bit 7							bit C	
Legend:								
R = Readabl	le bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-13	Unimplement	ted: Read as '0)'					
bit 12	PWM5MD: P\	WM5 Module D	isable bit					
		odule is disable	-					
		odule is enable	-					
bit 11	PWM4MD: P\	VM4 Module D	isable bit					
		odule is disable	-					
	0 = PWM4 mo	odule is enable	d					
	0 = PWM4 mo PWM3MD: P\	odule is enable VM3 Module D	d isable bit					
	0 = PWM4 mo PWM3MD: P\ 1 = PWM3 mo	odule is enable	d isable bit d					
bit 10 bit 9	0 = PWM4 mc PWM3MD: P\ 1 = PWM3 mc 0 = PWM3 mc	odule is enable WM3 Module D odule is disable	d isable bit d					
bit 10	0 = PWM4 mc PWM3MD : PV 1 = PWM3 mc 0 = PWM3 mc PWM2MD : PV	odule is enable WM3 Module D odule is disable odule is enable	d isable bit d d isable bit					
bit 10	0 = PWM4 mc PWM3MD : PV 1 = PWM3 mc 0 = PWM3 mc PWM2MD : PV 1 = PWM2 mc	odule is enable WM3 Module D odule is disable odule is enable WM2 Module D	d isable bit d d isable bit d					
bit 10	0 = PWM4 mc PWM3MD : PV 1 = PWM3 mc 0 = PWM3 mc PWM2MD : PV 1 = PWM2 mc 0 = PWM2 mc	odule is enable WM3 Module D odule is disable odule is enable WM2 Module D odule is disable	d isable bit d d isable bit d d					
bit 10 bit 9	0 = PWM4 mo PWM3MD: PV 1 = PWM3 mo 0 = PWM3 mo PWM2MD: PV 1 = PWM2 mo 0 = PWM2 mo 0 = PWM2 mo PWM1MD: PV 1 = PWM1 mo	odule is enable WM3 Module D odule is disable odule is enable WM2 Module D odule is disable odule is enable WM1 Module D odule is disable	d isable bit d isable bit d d isable bit d					
bit 10 bit 9	0 = PWM4 mo PWM3MD: PV 1 = PWM3 mo 0 = PWM3 mo PWM2MD: PV 1 = PWM2 mo 0 = PWM2 mo 0 = PWM1 mo 0 = PWM1 mo 0 = PWM1 mo	odule is enable WM3 Module D odule is disable odule is enable WM2 Module D odule is disable odule is enable WM1 Module D	d isable bit d isable bit d d isable bit d d					

REGISTER 10-28: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

— — RP49R5 RP49R4 RP49R3 RP49R2 RP49R1 RP49R1 bit 15 U-0 U-0 R/W-0 R/W-0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
bit 15U-0U-0R/W-0R/W-0R/W-0R/W-0R/W-0———RP48R5RP48R4RP48R3RP48R2RP48R1RP4bit 7Legend: R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' -n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknownbit 15-14Unimplemented: Read as '0' bit 13-8RP49R<5:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 10-2 for peripheral function numbers)	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U-0U-0R/W	—	—	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0
— — RP48R5 RP48R4 RP48R3 RP48R2 RP48R1 RP4 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13-8 RP49R<5:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 10-2 for peripheral function numbers)	bit 15							bit 8
— — RP48R5 RP48R4 RP48R3 RP48R2 RP48R1 RP4 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13-8 RP49R<5:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 10-2 for peripheral function numbers)								
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13-8 RP49R<5:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 10-2 for peripheral function numbers)	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13-8 RP49R<5:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 10-2 for peripheral function numbers)	—	—	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13-8 RP49R<5:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 10-2 for peripheral function numbers)	bit 7		•	-				bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13-8 RP49R<5:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 10-2 for peripheral function numbers)								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' Image: Second se	Legend:							
bit 15-14Unimplemented: Read as '0'bit 13-8RP49R<5:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 10-2 for peripheral function numbers)	R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
bit 13-8 RP49R<5:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 10-2 for peripheral function numbers)	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	
bit 13-8 RP49R<5:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 10-2 for peripheral function numbers)								
(see Table 10-2 for peripheral function numbers)	bit 15-14	Unimplemen	ted: Read as '	0'				
bit 7-6 Unimplemented: Read as '0'	bit 13-8							
	bit 7-6	Unimplemented: Read as '0'						

bit 5-0 **RP48R<5:0>:** Peripheral Output Function is Assigned to RP48 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-29: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0
bit 15						- -	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0
bit 7				·			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-14	Unimplemen	ted: Read as ')'				

bit 13-8 **RP51R<5:0>:** Peripheral Output Function is Assigned to RP51 Output Pin bits (see Table 10-2 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP50R<5:0>:** Peripheral Output Function is Assigned to RP50 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-34: RPC	DR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14
---------------------	--

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
L:1 7							h:+ 0

|--|

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP61R<5:0>: Peripheral Output Function is Assigned to RP61 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP60R<5:0>: Peripheral Output Function is Assigned to RP60 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-35: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP63R5	RP63R4	RP63R3	RP63R2	RP63R1	RP63R0
bit 15		•					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP62R5	RP62R4	RP62R3	RP62R2	RP62R1	RP62R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = E		x = Bit is unkr	nown				

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **RP63R<5:0>:** Peripheral Output Function is Assigned to RP63 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP62R<5:0>:** Peripheral Output Function is Assigned to RP62 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 0

11.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

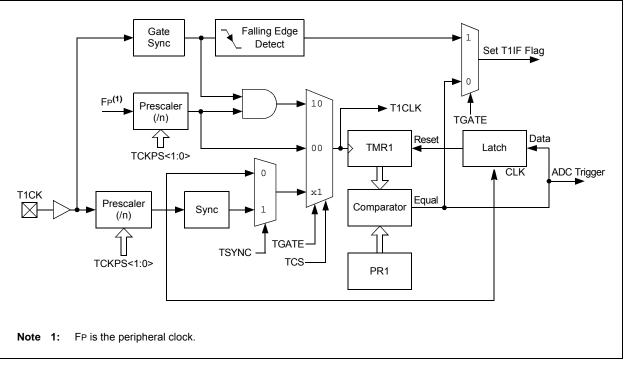
- Can be Operated in Asynchronous Counter mode from an External Clock Source
- The External Clock Input (T1CK) can Optionally be Synchronized to the Internal Device Clock and the Clock Synchronization is Performed after the Prescaler
- A block diagram of Timer1 is shown in Figure 11-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit settings for different operating modes are provided in Table 11-1.

Mode	TCS	TGATE	TSYNC			
Timer	0	0	х			
Gated Timer	0	1	x			
Synchronous Counter	1	x	1			
Asynchronous Counter	1	x	0			

TABLE 11-1: TIMER MODE SETTINGS

x = Bit is unknown

REGISTER 15-15: PHASEX: PWMx PRIMARY PHASE-SHIFT REGISTER (x = 1 to 5)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHASE	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplen	nented bit. read	l as '0'	

bit 15-0 **PHASEx<15:0>:** PWMx Phase-Shift Value or Independent Time Base Period for the PWMx Generator bits

Note 1: If PWMCONx<9> = 0, the following applies based on the mode of operation:

'1' = Bit is set

- Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs
- True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Phase-shift value for PWMxH only
- When the PHASEx/SPHASEx registers provide the phase shift with respect to the master time base; therefore, the valid range is 0x0000 through period

'0' = Bit is cleared

- **2:** If PWMCONx<9> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant, and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL
 - True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Independent time base period value for PWMxH only
 - When the PHASEx/SPHASEx registers provide the local period, the valid range is 0x0000 through 0xFFF8

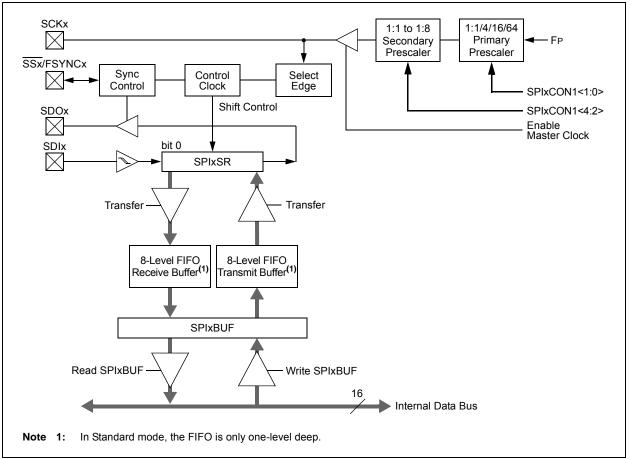
-n = Value at POR

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70005185) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripherals or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces. The dsPIC33EPXXGS50X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical.

Note:	In this section, the SPI modules are
	referred to together as SPIx, or separately
	as SPI1 and SPI2. Special Function
	Registers follow a similar notation. For
	example, SPIxCON refers to the control
	register for the SPI1 and SPI2 modules.


The SPIx module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration.

The SPIx serial interface consists of four pins, as follows:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-Pin mode, SSx is not used. In 2-Pin mode, neither SDOx nor SSx is used.

Figure 16-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

FIGURE 16-1: SPIX MODULE BLOCK DIAGRAM

REGISTER 19-8: ADCON4H: ADC CONTROL REGISTER 4 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| C3CHS1 | C3CHS0 | C2CHS1 | C2CHS0 | C1CHS1 | C1CHS0 | C0CHS1 | C0CHS0 |
| bit 7 | • | | | | | | bit 0 |

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimplen	nented: Read as '0'		
bit 7-6	-		3 Input Channel Selection bits	
	1x = Rese 01 = AN15 00 = AN3		when DIFF3 (ADMOD0L<7>)	= 1)
bit 5-4	C2CHS<1	:0>: Dedicated ADC Core 2	2 Input Channel Selection bits	
		Band Gap	when DIFF2 (ADMOD0L<5>)	= 1)
bit 3-2	11 = AN1/ 10 = PGA	ALT 2	I Input Channel Selection bits when DIFF1 (ADMOD0L<3>)	= 1)
bit 1-0	11 = AN0/ 10 = PGA	ALT 1) Input Channel Selection bits when DIFF0 (ADMOD0L<1>) =	= 1)

REGISTER 19-13: ADLVLTRGL: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER LOW

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
			LVLE	N<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LVL	EN<7:0>			
bit 7							bit 0
Legend:							
		U = Unimpler	nented bit. rea	d as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is clea		x = Bit is unkr	nown	

bit 15-0 LVLEN<15:0>: Level Trigger for Corresponding Analog Input Enable bits

1 = Input trigger is level-sensitive

0 = Input trigger is edge-sensitive

REGISTER 19-14: ADLVLTRGH: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER HIGH

<u>– – – – – – – –</u> bit 15 bit 8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit 8	—	_	—	—	—	—	—	—
	bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	LVLEN<21:16>					
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 LVLEN<21:16>: Level Trigger for Corresponding Analog Input Enable bits

1 = Input trigger is level-sensitive

0 = Input trigger is edge-sensitive

Bit Field	Description
FNOSC<2:0>	Oscillator Selection bits
	111 = Fast RC Oscillator with Divide-by-N (FRCDIVN)
	110 = Fast RC Oscillator with Divide-by-16
	101 = Low-Power RC Oscillator (LPRC)
	100 = Reserved; do not use
	011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC)
	001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL)
	000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits
	1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
	01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
	00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit
	1 = Allows only one reconfiguration
	0 = Allows multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes)
	1 = OSC2 is the clock output 0 = OSC2 is a general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits
	11 = Primary Oscillator is disabled
	10 = HS Crystal Oscillator mode
	01 = XT Crystal Oscillator mode
	00 = EC (External Clock) mode
WDTEN<1:0>	Watchdog Timer Enable bits
	11 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the
	SWDTEN bit in the RCON register will have no effect)
	10 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
	01 = Watchdog Timer is enabled only while device is active and is disabled while in Sleep
	mode; software control is disabled in this mode
	00 = Watchdog Timer and SWDTEN bit are disabled
WINDIS	Watchdog Timer Window Enable bit
	1 = Watchdog Timer in Non-Window mode
	0 = Watchdog Timer in Window mode
PLLKEN	PLL Lock Enable bit
	1 = PLL lock is enabled
	0 = PLL lock is disabled
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128 0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1:32,768 1110 = 1:16,384
	•
	•
	•
	0001 = 1:2
	0000 = 1:1

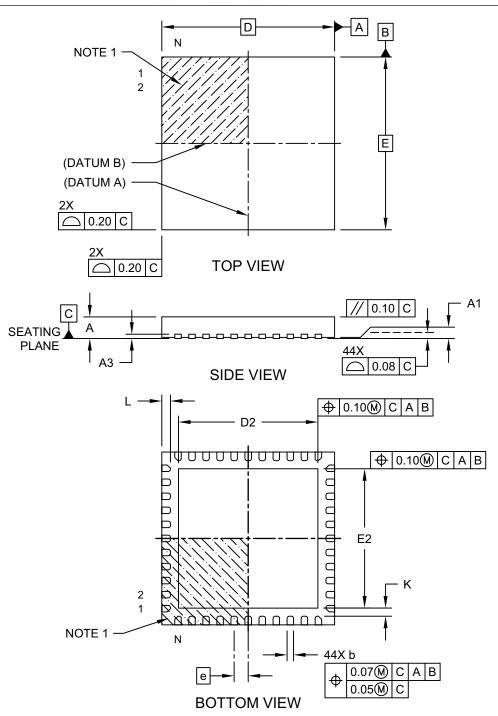
TABLE 23-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 26-43: ADC MODULE SPECIFICATIONS

		STICS	Standard Op (unless othe	rwise stat	ed) ⁽⁵⁾		
							C for Industrial °C for Extended
Param No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
	• •	•	Device	Supply	·		•
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	_	Lesser of: VDD + 0.3 or 3.6	V	The difference between AVDD supply and VDD supply must not exceed ±300 mV at all times, including during device power-up
AD02	AVss	Module Vss Supply	Vss	_	Vss + 0.3	V	
			Reference	e Inputs			
AD06	VREFL	Reference Voltage Low	_	AVss	—	V	(Note 1)
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.7	_	AVDD	V	(Note 3)
AD08	IREF	Reference Input Current	_	5	10	μA	ADC operating or in standby
			Analog	j Input			
AD12	VINH-VINL	Full-Scale Input Span	AVss		AVdd	V	
AD14	VIN	Absolute Input Voltage	AVss – 0.3	_	AVDD + 0.3	V	
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	100	_	Ω	For minimum sampling time (Note 1)
AD66	Vbg	Internal Voltage Reference Source	—	1.2	—	V	
		ADC Ac	curacy: Pseu	do-Differe	ential Input		
AD20a	Nr	Resolution		12		bits	
AD21a	INL	Integral Nonlinearity	> -3		< 3	LSb	AVss = 0V, AVDD = 3.3V
AD22a	DNL	Differential Nonlinearity	> -1		< 1	LSb	AVss = 0V, AVDD = 3.3V (Note 2)
AD23a	Gerr	Gain Error (Dedicated Core)	> 5	13	< 20	LSb	AVss = 0V, AVDD = 3.3V
		Gain Error (Shared Core)	> -1	5	< 10	LSb	
AD24a	Eoff	Offset Error (Dedicated Core)	> 2	7	< 12	LSb	AVss = 0V, AVDD = 3.3V
		Offset Error (Shared Core)	> -2	3	< 8	LSb	
AD25a		Monotonicity		_	_	_	Guaranteed

Note 1: These parameters are not characterized or tested in manufacturing.

2: No missing codes, limits based on characterization results.


3: These parameters are characterized but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103D Sheet 1 of 2

CPU

Addressing Modes	21
Clocking System Options	
Fast RC (FRC) Oscillator	
FRC Oscillator with PLL (FRCPLL)	105
FRC Oscillator with Postscaler	
Low-Power RC (LPRC) Oscillator	
Primary (XT, HS, EC) Oscillator	
Primary Oscillator with PLL	
Control Registers	
Data Space Addressing	21
Instruction Set	21
Registers	21
Resources	25
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data Address Space	37
Memory Map for dsPIC33EP16GS50X Devices	38
Memory Map for dsPIC33EP32GS50X Devices	
Memory Map for dsPIC33EP64GS50X Devices	
Near Data Space	
Organization, Alignment	
SFR Space	
Width	
Data Space	
Extended X	69
Paged Data Memory Space (figure)	67
Paged Memory Scheme	66
DC Characteristics	
Brown-out Reset (BOR)	313
Constant-Current Source Specifications	
DACx Output (DACOUTx Pin) Specifications	346
Doze Current (IDOZE)	309
I/O Pin Input Specifications	310
I/O Pin Output Specifications	
Idle Current (IIDLE)	307
Operating Current (IDD)	306
Operating MIPS vs. Voltage	304
Power-Down Current (IPD)	308
Program Memory	
Temperature and Voltage Specifications	
Watchdog Timer Delta Current (∆IWDT)	308
DC/AC Characteristics	
Graphs and Tables	349
Demo/Development Boards, Evaluation and	
Starter Kits	
Development Support	
Device Calibration	
Addresses	
and Identification	283
Device Programmer	
MPLAB PM3	
Doze Mode	
DSP Engine	30
F	

E

Electrical Characteristics	
AC	
Equations	
Device Operating Frequency	
FPLLO Calculation	
Fvco Calculation	
Errata	10

F

Filter Capacitor (CEFC) Specifications	305
Flash Program Memory	77
and Table Instructions	
Control Registers	80
Dual Partition Flash Configuration	
Operations	
Resources	
RTSP Operation	
Flexible Configuration	

G

Getting Started Guidelines	15
Connection Requirements	
CPU Logic Filter Capacitor Connection (VCAP)	16
Decoupling Capacitors	15
External Oscillator Pins	17
ICSP Pins	17
Master Clear (MCLR) Pin	16
Oscillator Value Conditions on Start-up	18
Targeted Applications	18
Unused I/Os	18

Н

High-Speed Analog Comparator	
Applications	265
Description	264
Digital-to-Analog Comparator (DAC)	265
Features Overview	263
Hysteresis	266
Pulse Stretcher and Digital Logic	265
Resources	266
High-Speed PWM	
Description	181
Features	181
Resources	182
Write-Protected Registers	182
High-Speed, 12-Bit Analog-to-Digital	
Converter (ADC)	229
Control Registers	232
Features Overview	229
Resources	232

I

I/O Ports
Configuring Analog/Digital Port Pins 126
Helpful Tips 132
Open-Drain Configuration 126
Parallel I/O (PIO) 125
Resources 133
Write/Read Timing 126
In-Circuit Debugger
MPLAB ICD 3 30'
PICkit 3 Programmer 302
In-Circuit Emulation
In-Circuit Serial Programming (ICSP) 277, 287
Input Capture
Control Registers 172
Resources 17
Input Change Notification (ICN) 126