

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs504t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	-	ADCIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	-	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	-	-	-	-	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	0804	-	_	_	_	-	_	_	_	_	IC4IF	IC3IF	_	_	-	SPI2IF	SPI2EIF	0000
IFS3	0806	-	_	_	_	-	_	PSEMIF	_	_	INT4IF	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	-	-	-	-	-	-	PSESIF	-	-	-	-	-	-	U2EIF	U1EIF	-	0000
IFS5	080A	PWM2IF	PWM1IF	_	_	-	_	_	_		_	_	_	_	-	-	_	0000
IFS6	080C	ADCAN1IF	ADCAN0IF	-	_	-	_	AC4IF	AC3IF	AC2IF	_	_	_	-	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	080E	-	-	-	-	-	_	-	-	-	-	ADCAN7IF	ADCAN6IF	ADCAN5IF	ADCAN4IF	ADCAN3IF	ADCAN2IF	0000
IFS8	0810	JTAGIF	ICDIF	-	-	-	-	-	-	-	_	-	-	-	-	-	-	0000
IFS9	0812	ADCAN16IF ⁽¹⁾	ADCAN15IF(1)	ADCAN14IF(2)	ADCAN13IF(1)	ADCAN12IF ⁽²⁾	ADCAN11IF ⁽²⁾	ADCAN10IF(2)	ADCAN9IF ⁽²⁾	ADCAN8IF ⁽²⁾	_	-	-	-	-	-	-	0000
IFS10	0814	-	I2C2BCIF	I2C1BCIF	_	-	_	-	_	_	_	-	ADCAN21IF	ADCAN20IF	ADCAN19IF	ADCAN18IF	ADCAN17IF ⁽²⁾	0000
IFS11	0816	-	-	-	-	-	-	-	-	-	_	-	ADFLTR1IF	ADFLTR0IF	ADCMP1IF	ADCMP0IF	-	0000
IEC0	0820	NVMIE	-	ADCIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	-	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	-	-	-	-	INT1IE	CNIE	AC1IF	MI2C1IE	SI2C1IE	0000
IEC2	0824	-	-	-	-	-	-	-	-	-	IC4IE	IC3IE	-	-	-	SPI2IE	SPI2EIE	0000
IEC3	0826	-	_	_	_	-	_	PSEMIE	_	_	INT4IE	_	_	_	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	-	-	-	-	-	-	PSESIE	-	-	-	-	-	-	U2EIE	U1EIE	-	0000
IEC5	082A	PWM2IE	PWM1IE	-	-	-	-	-	-	-	_	-	-	-	-	-	-	0000
IEC6	082C	ADCAN1IE	ADCAN0IE	_	_	-	_	AC4IE	AC3IE	AC2IE	_	_	_	_	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	082E	-	-	-	-	-	-	-	-	-	-	ADCAN7IE	ADCAN6IE	ADCAN5IE	ADCAN4IE	ADCAN3IE	ADCAN2IE	0000
IEC8	0830	JTAGIE	ICDIE	-	_	-	_	_	_	_	_	_	_	-	-	_	_	0000
IEC9	0832	ADCAN16IE ⁽¹⁾	ADCAN15IE ⁽¹⁾	ADCAN14IE ⁽²⁾	ADCAN13IE ⁽¹⁾	ADCAN12IE ⁽²⁾	ADCAN11IE ⁽²⁾	ADCAN10IE ⁽²⁾	ADCAN9IE ⁽²⁾	ADCAN8IE ⁽²⁾	_	_	_	-	-	_	_	0000
IEC10	0834	-	I2C2BCIE	I2C1BCIE	_	-	_	_	_	_	_	_	ADCAN21IE	ADCAN20IE	ADCAN19IE	ADCAN18IE	ADCAN17IE ⁽²⁾	0000
IEC11	0836	-	_	-	_	-	_	_	_	_	_	_	ADFLTR1IE	ADFLTR0IE	ADCMP1IE	ADCMP0IE	_	0000
IPC0	0840	-	T1IP2	T1IP1	T1IP0	-	OC1IP2	OC1IP1	OC1IP0	-	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	0842	-	T2IP2	T2IP1	T2IP0	-	OC2IP2	OC2IP1	OC2IP0	-	IC2IP2	IC2IP1	IC2IP0	_	-	-	_	4440
IPC2	0844	-	U1RXIP2	U1RXIP1	U1RXIP0	-	SPI1IP2	SPI1IP1	SPI1IP0	-	SPI1EIP2	SPI1EIP1	SPI1EIP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	0846	-	NVMIP2	NVMIP1	NVMIP0	-	_	_	_	_	ADCIP2	ADCIP1	ADCIP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	0848	-	CNIP2	CNIP1	CNIP0	-	AC1IP2	AC1IP1	AC1IP0	-	MI2C1IP2	MI2C1IP1	MI2C1IP0	-	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	084A	-	-	-	-	-	-	-	-	-	_	-	-	-	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	084C	_	T4IP2	T4IP1	T4IP0	-	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	-	_	_	-	4440
IPC7	084E	-	U2TXIP2	U2TXIP1	U2TXIP0	-	U2RXIP2	U2RXIP1	U2RXIP0	-	INT2IP2	INT2IP1	INT2IP0	-	T5IP2	T5IP1	T5IP0	4444
IPC8	0850	_	_	_	_	-	_	_	_	-	SPI2IP2	SPI2IP1	SPI2IP0	-	SPI2EIP2	SPI2EIP1	SPI2EIP0	0044
IPC9	0852	_	-	-	_	-	IC4IP2	IC4IP1	IC4IP0	-	IC3IP2	IC3IP1	IC3IP0	-	_	_	-	0440

Legend:

Note 1:

 — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Only available on dsPIC33EPXXGS506 devices. Only available on dsPIC33EPXXGS504/505 and dsPIC33EPXXGS506 devices.
 2:

TABLE	4-6:	OU	TPUT	COMPA	RE 1 TH	ROUGH	ΙΟυτρι	JT CON	IPARE	4 REGI	STER M	AP						
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	—	—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904		Output Compare 1 Secondary Register xx:							xxxx								
OC1R	0906								Output	Compare 1	Register							xxxx
OC1TMR	0908								Time	er Value 1 Re	egister							xxxx
OC2CON1	090A	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E	Output Compare 2 Secondary Register								xxxx								
OC2R	0910	Output Compare 2 Register 2							xxxx									
OC2TMR	0912								Time	er Value 2 Re	egister							xxxx
OC3CON1	0914	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							0	utput Comp	oare 3 Seco	ndary Regist	er						xxxx
OC3R	091A								Output	Compare 3	Register							xxxx
OC3TMR	091C								Time	er Value 3 Re	egister							xxxx
OC4CON1	091E	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							0	utput Comp	oare 4 Seco	ndary Regist	er						xxxx
OC4R	0924		Output Compare 4 Register xxxx								xxxx							
OC4TMR	0926								Time	er Value 4 Re	egister							xxxx

-

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: ADC REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON1L	0300	ADON	_	ADSIDL	_	_	_	_	_	_	_	_	_	_	—	_	_	0000
ADCON1H	0302		-	-	-	-	-	-	-	FORM	SHRRES1	SHRRES0	-	-	-	-	-	0060
ADCON2L	0304	REFCIE	REFERCIE	_	EIEN	-	SHREISEL2	SHREISEL1	SHREISEL0	_	SHRADCS6	SHRADCS5	SHRADCS4	SHRADCS3	SHRADCS2	SHRADCS1	SHRADCS0	0000
ADCON2H	0306	REFRDY	REFERR	_	_	_	_	SHRSAMC9	SHRSAMC8	SHRSAMC7	SHRSAMC6	SHRSAMC5	SHRSAMC4	SHRSAMC3	SHRSAMC2	SHRSAMC1	SHRSAMC0	0000
ADCON3L	0308	REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH	SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSEL0	0000
ADCON3H	030A	CLKSEL1	CLKSEL0	CLKDIV5	CLKDIV4	CLKDIV3	CLKDIV2	CLKDIV1	CLKDIV0	SHREN	_	_	_	C3EN	C2EN	C1EN	COEN	0000
ADCON4L	030C	_	-	_	_	SYNCTRG3	SYNCTRG2	SYNCTRG1	SYNCTRG0	_	_	-	_	SAMC3EN	SAMC2EN	SAMC1EN	SAMC0EN	0000
ADCON4H	030E	-	-	-	-	-	-	-	-	C3CHS1	C3CHS0	C2CHS1	C2CHS0	C1CHS1	C1CHS0	C0CHS1	C0CHS0	0000
ADMOD0L	0310	DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF3	SIGN4	DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0	0000
ADMOD0H	0312	DIFF15 ⁽¹⁾	SIGN15 ⁽¹⁾	DIFF14 ⁽²⁾	SIGN14 ⁽²⁾	DIFF13 ⁽¹⁾	SIGN13 ⁽¹⁾	DIFF12 ⁽²⁾	SIGN12 ⁽²⁾	DIFF11(2)	SIGN11 ⁽²⁾	DIFF10 ⁽²⁾	SIGN10 ⁽²⁾	DIFF9 ⁽²⁾	SIGN9 ⁽²⁾	DIFF8 ⁽²⁾	SIGN8 ⁽²⁾	0000
ADMOD1L	0314	-	-	-	-	DIFF21	SIGN21	DIFF20	SIGN20	DIFF19	SIGN19	DIFF18	SIGN18	DIFF17 ⁽²⁾	SIGN17 ⁽²⁾	DIFF16 ⁽¹⁾	SIGN16 ⁽¹⁾	0000
ADIEL	0320	IE15 ⁽¹⁾	IE14 ⁽²⁾	IE13 ⁽¹⁾	IE12 ⁽²⁾	IE11 ⁽²⁾	IE10 ⁽²⁾	IE9 ⁽²⁾	IE8 ⁽²⁾	IE7	IE6	IE5	IE4	IE3	IE2	IE1	IE0	0000
ADIEH	0322	_	_	_	_	_	_	_	-	_	_	IE21	IE20	IE19	IE18	IE17 ⁽²⁾	IE16 ⁽¹⁾	0000
ADSTATL	0330	AN15RDY(1)	AN14RDY(2)	AN13RDY(1)	AN12RDY(2)	AN11RDY ⁽²⁾	AN10RDY(2)	AN9RDY ⁽²⁾	AN8RDY ⁽²⁾	AN7RDY	AN6RDY	AN5RDY	AN4RDY	AN3RDY	AN2RDY	AN1RDY	ANORDY	0000
ADSTATH	0332	-	-	-	-	-	-	-	-	-	-	AN21RDY	AN20RDY	AN19RDY	AN18RDY	AN17RDY ⁽²⁾	AN16RDY ⁽¹⁾	0000
ADCMP0ENL	0338	CMPEN15 ⁽¹⁾	CMPEN14 ⁽²⁾	CMPEN13(1)	CMPEN12(2)	CMPEN11(2)	CMPEN10(2)	CMPEN9(2)	CMPEN8(2)	CMPEN7	CMPEN6	CMPEN5	CMPEN4	CMPEN3	CMPEN2	CMPEN1	CMPEN0	0000
ADCMP0ENH	033A		-	-	-	-	-	-	-	-	-	CMPEN21	CMPEN20	CMPEN19	CMPEN18	CMPEN17(2)	CMPEN16(1)	0000
ADCMP0LO	033C	ADC Comparator 0 Low Value Register								0000								
ADCMP0HI	033E	ADC Comparator 0 High Value Register									0000							
ADCMP1ENL	0340	CMPEN15 ⁽¹⁾	CMPEN14 ⁽²⁾	CMPEN13(1)	CMPEN12(2)	CMPEN11(2)	CMPEN10(2)	CMPEN9(2)	CMPEN8(2)	CMPEN7	CMPEN6	CMPEN5	CMPEN4	CMPEN3	CMPEN2	CMPEN1	CMPEN0	0000
ADCMP1ENH	0342		_	_	—		_	_	_	_	_	CMPEN21	CMPEN20	CMPEN19	CMPEN18	CMPEN17(2)	CMPEN16(1)	0000
ADCMP1LO	0344							A	DC Comparator	1 Low Value Re	egister							0000
ADCMP1HI	0346							A	DC Comparator	1 High Value Re	egister							0000
ADFLDAT	0368								ADC Filter 0 Re	sults Data Regi	ster							0000
ADFL1CON	036A	FLEN	MODE1	MODE0	OVRSAM2	OVRSAM1	OVRSAM0	IE	RDY	_	—	—	FLCHSEL4	FLCHSEL3	FLCHSEL2	FLCHSEL1	FLCHSEL0	0000
ADFL1DAT	0368								ADC Filter 1 Re	sults Data Reg	ister							0000
ADFL0CON	036A	FLEN	MODE1	MODE0	OVRSAM2	OVRSAM1	OVRSAM0	IE	RDY	—	—	-	FLCHSEL4	FLCHSEL3	FLCHSEL2	FLCHSEL1	FLCHSEL0	0000
ADTRIG0L	0380	_	—	—			TRGSRC1<4:0)>		—	—	_			TRGSRC0<4:0	>		0000
ADTRIG0H	0382	-	-	—			TRGSRC3<4:0)>		—	—	-			TRGSRC2<4:0	>		0000
ADTRIG1L	0384	-	-	—			TRGSRC5<4:0)>		—	—	-			TRGSRC4<4:0	>		0000
ADTRIG1H	0386		_	_			TRGSRC7<4:0)>		_	—	—			TRGSRC6<4:0	>		0000
ADTRIG2L	0388	-	-	—			TRGSRC9<4:0)>		—	—	-			TRGSRC8<4:0	>		0000
ADTRIG2H	038A		_	_			TRGSRC11<4:	0>		_	_	_		1	RGSRC10<4:0	>		0000
ADTRIG3L	038C		_	_			TRGSRC13<4:	0>		_	—	—		1	RGSRC12<4:0	>		0000
ADTRIG3H	038E		_	_		TRGSRC15<4:0> — — — TRGSRC14<4:0>									0000			
ADTRIG4L	0390		_	_	TRGSRC17<4:0> — — — TRGSRC16<4:0>								0000					
ADTRIG4H	0392	_	_	_			TRGSRC19<4:	0>		_	_	_		1	RGSRC18<4:0	>		0000
ADTRIG5L	0394	_	-	-			TRGSRC21<4:	0>		-	-	-		1	RGSRC20<4:0	>		0000
ADCMP0CON	03A0	_	_	_	CHNL4	CHNL3	CHNL2	CHNL1	CHNL0	CMPEN	IE	STAT	BTWN	HIHI	HILO	LOHI	LOLO	0000
ADCMP1CON	03A4	_	_	_	CHNL4	CHNL3	CHNL2	CHNL1	CHNL0	CMPEN	IE	STAT	BTWN	HIHI	HILO	LOHI	LOLO	0000

dsPIC33EPXXGS50X FAMILY

--- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1:

Implemented on dsPIC33EPXXGS506 devices only. Implemented on dsPIC33EPXXGS504/505 and dsPIC33EPXXGS506 devices only. 2:

4.7.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.8 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.8.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all of these situations are met:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing can be enabled simultaneously
	using the same W register, but Bit-
	Reversed Addressing operation will always
	take precedence for data writes when
	enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

5.4 Dual Partition Flash Configuration

For dsPIC33EP64GS50X devices operating in Dual Partition Flash Program Memory modes, the Inactive Partition can be erased and programmed without stalling the processor. The same programming algorithms are used for programming and erasing the Flash in the Inactive Partition, as described in **Section 5.2 "RTSP Operation"**. On top of the page erase option, the entire Flash memory of the Inactive Partition can be erased by configuring the NVMOP<3:0> bits in the NVMCON register.

Note 1: The application software to be loaded into the Inactive Partition will have the address of the Active Partition. The bootloader firmware will need to offset the address by 0x400000 in order to write to the Inactive Partition.

5.4.1 FLASH PARTITION SWAPPING

The Boot Sequence Number is used for determining the Active Partition at start-up and is encoded within the FBTSEQ Configuration register bits. Unlike most Configuration registers, which only utilize the lower 16 bits of the program memory, FBTSEQ is a 24-bit Configuration Word. The Boot Sequence Number (BSEQ) is a 12-bit value and is stored in FBTSEQ twice. The true value is stored in bits, FBTSEQ<11:0>, and its complement is stored in bits, FBTSEQ<23:12>. At device Reset, the sequence numbers are read and the partition with the lowest sequence number becomes the Active Partition. If one of the Boot Sequence Numbers is invalid, the device will select the partition with the valid Boot Sequence Number, or default to Partition 1 if both sequence numbers are invalid. See Section 23.0 "Special Features" for more information.

The BOOTSWP instruction provides an alternative means of swapping the Active and Inactive Partitions (soft swap) without the need for a device Reset. The BOOTSWP must always be followed by a GOTO instruction. The BOOTSWP instruction swaps the Active and Inactive Partitions, and the PC vectors to the location specified by the GOTO instruction in the newly Active Partition.

It is important to note that interrupts should temporarily be disabled while performing the soft swap sequence and that after the partition swap, all peripherals and interrupts which were enabled remain enabled. Additionally, the RAM and stack will maintain state after the switch. As a result, it is recommended that applications using soft swaps jump to a routine that will reinitialize the device in order to ensure the firmware runs as expected. The Configuration registers will have no effect during a soft swap. For robustness of operation, in order to execute the BOOTSWP instruction, it is necessary to execute the NVM unlocking sequence as follows:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Execute the BOOTSWP instruction.

If the unlocking sequence is not performed, the BOOTSWP instruction will be executed as a forced NOP and a GOTO instruction, following the BOOTSWP instruction, will be executed, causing the PC to jump to that location in the current operating partition.

The SFTSWP and P2ACTIV bits in the NVMCON register are used to determine a successful swap of the Active and Inactive Partitions, as well as which partition is active. After the BOOTSWP and GOTO instructions, the SFTSWP bit should be polled to verify the partition swap has occurred and then cleared for the next panel swap event.

5.4.2 DUAL PARTITION MODES

While operating in Dual Partition mode, dsPIC33EP64GS50X family devices have the option for both partitions to have their own defined security segments, as shown in Figure 23-4. Alternatively, the device can operate in Protected Dual Partition mode, where Partition 1 becomes permanently erase/write-protected. Protected Dual Partition mode allows for a "Factory Default" mode, which provides a fail-safe backup image to be stored in Partition 1.

dsPIC33EP64GS50X family devices can also operate in Privileged Dual Partition mode, where additional security protections are implemented to allow for protection of intellectual property when multiple parties have software within the device. In Privileged Dual Partition mode, both partitions place additional restrictions on the BSLIM register. These prevent changes to the size of the Boot Segment and General Segment, ensuring that neither segment will be altered.

5.5 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

5.5.1 KEY RESOURCES

- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the BOR and POR bits (RCON<1:0>) that are set. The user application can set or clear any bit, at any time, during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSCx bits is loaded into the NOSC<2:0> (OSCCON<10:8>) bits on Reset, which in turn, initializes the system clock.

REGISTER 9-2. FMD2. FERIFIERAL MODULE DISABLE CONTROL REGISTER	EGISTER 9-2:	PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2
--	--------------	--

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD
bit 15						•	bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	OC4MD	OC3MD	OC2MD	OC1MD
bit 7							bit 0
Legend:							
P = Peadat	ole hit	W - Writable	hit	II – Unimpler	mented bit rea	d as '0'	
n = Value a		'1' = Bit is set	Dit	0' = Bit is clearly	ared	v – Bitisunkn	own
					areu		own
bit 15-12	Unimplemer	nted: Read as '	0'				
bit 11	IC4MD: Inpu	t Capture 4 Mo	dule Disable bi	t			
	1 = Input Ca	oture 4 module	is disabled				
	0 = Input Ca	oture 4 module	is enabled				
bit 10	IC3MD: Inpu	t Capture 3 Mo	dule Disable bi	t			
	1 = Input Cap	oture 3 module	is disabled				
		oture 3 module	is enabled				
bit 9		t Capture 2 Mo	dule Disable bi	t			
	$\perp = $ Input Cap 0 = Input Cap	oture 2 module	is disabled				
bit 8	IC1MD: Input	t Capture 1 Mo	dule Disable bi	t			
	1 = Input Car	oture 1 module	is disabled	•			
	0 = Input Ca	oture 1 module	is enabled				
bit 7-4	Unimplemer	nted: Read as '	0'				
bit 3	OC4MD: Out	put Compare 4	Module Disab	le bit			
	1 = Output C	ompare 4 modu	ule is disabled				
	0 = Output C	ompare 4 modu	ule is enabled				
bit 2	OC3MD: Out	put Compare 3	Module Disab	le bit			
	1 = Output C	ompare 3 modu	ule is disabled				
bit 1		ompare 5 mout	Module Disab	le hit			
		ompare 2 modu	ile is disabled				
	0 = Output C	ompare 2 modu	le is enabled				
bit 0	OC1MD: Out	tput Compare 1	Module Disab	le bit			
	1 = Output C	ompare 1 modu	ule is disabled				
	0 = Output C	ompare 1 modu	ule is enabled				

REGISTER 10-15: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

	0-0	0-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—				—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SS2R7 | SS2R6 | SS2R5 | SS2R4 | SS2R3 | SS2R2 | SS2R1 | SS2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 SS2R<7:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits 10110101 = Input tied to RP181 10110100 = Input tied to RP180 .

00000001 = Input tied to RP1 00000000 = Input tied to Vss

REGISTER 15-22: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (x = 1 to 5) (CONTINUED)

bit 7-3	FLTSRC<4:0>: Fault Control Signal Source Select for PWMx Generator bits
	11111 = Fault 31 (Default)
	10001 = Reserved
	10000 = Analog Comparator 4
	01111 = Analog Comparator 3
	01110 = Analog Comparator 2
	01101 = Analog Comparator 1
	01100 = Fault 12
	01011 = Fault 11
	01010 = Fault 10
	01001 = Fault 9
	01000 = Fault 8
	00111 = Fault 7
	00110 = Fault 6
	00101 = Fault 5
	00100 = Fault 4
	00011 = Fault 3
	00010 = Fault 2
	00001 = Fault 1
	00000 = Reserved
bit 2	FLTPOL: Fault Polarity for PWMx Generator bit ⁽¹⁾
	1 = The selected Fault source is active-low
	0 = The selected Fault source is active-high
bit 1-0	FLTMOD<1:0>: Fault Mode for PWMx Generator bits
	11 = Fault input is disabled
	10 = Reserved
	01 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (cycle)
	00 = The selected Fault source forces the PWMxH. PWMxL pins to FLTDATx values (latched condition)

Note 1: These bits should be changed only when PTEN = 0 (PTCON<15>).

REGISTER 15-23: STRIGX: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER (x = 1 to 5)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STRGC	MP<12:5>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
	:	STRGCMP<4:0	>		_	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own	
bit 15-3 bit 2-0	STRGCMP<1 When the sec that can trigg Unimplemen	12:0>: Seconda condary PWMx er the ADC mod t ted: Read as '(iry Trigger Cor functions in th dule.)	npare Value bits e local time base	s e, this register	contains the co	mpare values	
Note 1: S	FRIGx cannot g	enerate the PW	/M trigger inte	rrupts.				

REGISTER 15-24: LEBCONX: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER (x = 1 to 5) (CONTINUED)

 bit 1
 BPLH: Blanking in PWMxL High Enable bit

 1 = State blanking (of current-limit and/or Fault input signals) when the PWMxL output is high

 bit 0
 BPLL: Blanking in PWMxL Low Enable bit

 1 = State blanking (of current-limit and/or Fault input signals) when the PWMxL output is low

 0 = No blanking when the PWMxL low Enable bit

 1 = State blanking (of current-limit and/or Fault input signals) when the PWMxL output is low

 0 = No blanking when the PWMxL output is low

Note 1: The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.

REGISTER 15-25: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER (x = 1 to 5)

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	LEB<8:5>				
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		LEB<4:0>			—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-3 **LEB<8:0>:** Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits The value is in 8.32 ns increments.

bit 2-0 Unimplemented: Read as '0'

18.3 UART Control Registers

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽	¹⁾	USIDL	IREN ⁽²⁾	RTSMD	<u> </u>	UEN1	UEN0
bit 15							bit 8
R/W-0, H	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit 0
Legend:		HC = Hardwar	e Clearable bi	t			
R = Reada	ıble bit	W = Writable I	oit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	 bit 15 UARTEN: UARTx Enable bit⁽¹⁾ 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> 0 = UARTx is disabled; all UARTx pins are controlled by PORT latches; UARTx power consumption is minimal 						
bit 14	Unimplemen	ted: Read as '0)'				
bit 13	USIDL: UART	x Stop in Idle N	/lode bit				
	1 = Discontin 0 = Continue	ues module op s module opera	eration when c ation in Idle mo	levice enters Id de	le mode		
bit 12	IREN: IrDA [®] I	Encoder and De	ecoder Enable	bit ⁽²⁾			
	1 = IrDA enco 0 = IrDA enco	oder and decoo oder and decoo	ler are enableo ler are disable	t d			
bit 11	RTSMD: Mod 1 = <u>UxRTS</u> p 0 = <u>UxRTS</u> p	e Selection for in is in Simplex in is in Flow Co	UxRTS Pin bit mode ontrol mode				
bit 10	Unimplemen	ted: Read as 'o)'				
bit 9-8	UEN<1:0>: U	ARTx Pin Enat	ole bits				
	11 = UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin is controlled by PORT latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by PORT latches 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by PORT latches						
bit 7	WAKE: Wake	-up on Start Bit	Detect During	Sleep Mode E	nable bit		
	1 = UARTx c in hardwa 0 = No wake-	ontinues to san are on the follow up is enabled	nple the UxRX ving rising edg	pin, interrupt is e	generated on t	he falling edge	; bit is cleared
bit 6	LPBACK: UA	RTx Loopback	Mode Select b	pit			
	1 = Enables I 0 = Loopback	_oopback mode mode is disab	e Ied				
Note 1:	Refer to " Univer "dsPIC33/PIC24 transmit operation	sal Asynchror Family Referen 1.	nous Receive Ince Manual' for	r Transmitter (information on	UART)" (DS70 enabling the U	000582) in the ARTx module f	or receive or

2: This feature is only available for the 16x BRG mode (BRGH = 0).

21.1 Module Description

The Programmable Gain Amplifiers are used to amplify small voltages (i.e., voltages across burden/shunt resistors) to improve the signal-to-noise ratio of the measured signal. The PGAx output voltage can be read by any of the four dedicated Sample-and-Hold circuits on the ADC module. The output voltage can also be fed to the comparator module for overcurrent/ voltage protection. Figure 21-2 shows a functional block diagram of the PGAx module. Refer to **Section 19.0 "High-Speed, 12-Bit Analog-to-Digital Converter (ADC)"** and **Section 20.0 "High-Speed Analog Comparator"** for more interconnection details.

The gain of the PGAx module is selectable via the GAIN<2:0> bits in the PGAxCON register. There are five selectable gains, ranging from 4x to 64x. The SELPI<2:0> and SELNI<2:0> bits in the PGAxCON register select one of four positive/negative inputs to the PGAx module. For single-ended applications, the SELNI<2:0> bits will select the ground as the negative

input source. To provide an independent ground reference, PGAxN2 and PGAxN3 pins are available as the negative input source to the PGAx module.

Note 1: Not all PGA positive/negative inputs are available on all devices. Refer to the specific device pinout for available input source pins.

The output voltage of the PGAx module can be connected to the DACOUTx pin by setting the PGAOEN bit in the PGAxCON register. When the PGAOEN bit is enabled, the output voltage of PGA1 is connected to DACOUT1 and PGA2 is connected to DACOUT2. For devices with a single DACOUTx pin, the output voltage of PGA2 can be connected to DACOUT1 by configuring the DBCC Configuration bit in the FDEVOPT register (FDEVOPT<6>).

If both the DACx output voltage and PGAx output voltage are connected to the DACOUTx pin, the resulting output voltage would be a combination of signals. There is no assigned priority between the PGAx module and the DACx module.

FIGURE 21-2: PGAx FUNCTIONAL BLOCK DIAGRAM

23.7 JTAG Interface

The dsPIC33EPXXGS50X family devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to "Programming and Diagnostics"						
	(DS70608) in the "dsPIC33/PIC24 Family						
	Reference Manual" for further information on						
	usage, configuration and operation of the						
	JTAG interface.						

23.8 In-Circuit Serial Programming™

The dsPIC33EPXXGS50X family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming[™] (ICSP[™]).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

23.9 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE[™] emulator is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

23.10 Code Protection and CodeGuard™ Security

dsPIC33EPXXGS50X devices offer multiple levels of security for protecting individual intellectual property. The program Flash protection can be broken up into three segments: Boot Segment (BS), General Segment (GS) and Configuration Segment (CS). Boot Segment has the highest security privilege and can be thought to have limited restrictions when accessing other segments. General Segment has the least security and is intended for the end user system code. Configuration Segment contains only the device user configuration data which is located at the end of the program memory space.

The code protection features are controlled by the Configuration registers, FSEC and FBSLIM. The FSEC register controls the code-protect level for each segment and if that segment is write-protected. The size of BS and GS will depend on the BSLIM<12:0> setting and if the Alternate Interrupt Vector Table (AIVT) is enabled. The BSLIM<12:0> bits define the number of pages for BS with each page containing 512 IW. The smallest BS size is one page, which will consist of the Interrupt Vector Table (IVT) and 256 IW of code protection.

If the AIVT is enabled, the last page of BS will contain the AIVT and will not contain any BS code. With AIVT enabled, the smallest BS size is now two pages (1024 IW), with one page for the IVT and BS code, and the other page for the AIVT. Write protection of the BS does not cover the AIVT. The last page of BS can always be programmed or erased by BS code. The General Segment will start at the next page and will consume the rest of program Flash except for the Flash Configuration Words. The IVT will assume GS security only if BS is not enabled. The IVT is protected from being programmed or page erased when either security segment has enabled write protection.

Note: Refer to "CodeGuard™ Intermediate Security" (DS70005182) in the "dsPIC33/ PIC24 Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or table read is performed. In these cases, the execution takes multiple instruction cycles, with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
$a\in\{b,c,d\}$	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write-back destination address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }

{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] } Dividend, Divisor Working register pair (direct addressing)

Destination W register ∈

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Wdo

Wm,Wn

TABLE 26-27: INPUT CAPTURE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Opera (unless otherwi Operating tempe	ting Cor se stated rature	nditions: ∷ d) -40°C ≤ T/ -40°C ≤ T/	3.0V to 3.6V A ≤ +85°C for Indus A ≤ +125°C for Exte	trial ended	
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	Conditions		
IC10	TCCL	ICx Input Low Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	_	ns	Must also meet Parameter IC15		
IC11	ТссН	ICx Input High Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15	N = Prescale Value (1, 4, 16)	
IC15	TCCP	ICx Input Period	Greater of: 25 + 50 or (1 Tcy/N) + 50	—	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S	
Dimension	MIN	NOM	MAX	
Number of Pins	N		28	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.20 REF	
Overall Width	Е		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.70
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	IILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		44	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.20 REF	
Overall Width	E		8.00 BSC	
Exposed Pad Width	E2	6.25	6.45	6.60
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.25	6.45	6.60
Terminal Width	b	0.20	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2

	440
REFUCION (Reference Oscillator Control)	113
RPINR0 (Peripheral Pin Select Input 0)	134
RPINR1 (Peripheral Pin Select Input 1)	134
RPINR11 (Perinheral Pin Select Input 11)	139
DDIND12 (Derinherel Din Select Input 12)	140
RPINRTZ (Peripheral Pin Select input TZ)	140
RPINR13 (Peripheral Pin Select Input 13)	141
RPINR18 (Peripheral Pin Select Input 18)	142
RPINR19 (Peripheral Pin Select Input 19)	143
PDINP2 (Parinharal Pin Salact Input 2)	135
DDIND20 (Deviate and Dis Calact Input 2)	100
	144
RPINR21 (Peripheral Pin Select Input 21)	145
RPINR22 (Peripheral Pin Select Input 22)	146
RPINR23 (Peripheral Pin Select Input 23)	147
RPINR3 (Peripheral Pin Select Input 3)	136
RPINR37 (Perinheral Pin Select Input 37)	148
PDIND28 (Peripheral Pin Select Input 38)	1/0
REINROO (Felipheral Fill Select linput 50)	149
RPINR42 (Peripheral Pin Select Input 42)	150
RPINR43 (Peripheral Pin Select Input 43)	151
RPINR7 (Peripheral Pin Select Input 7)	137
RPINR8 (Peripheral Pin Select Input 8)	138
RPOR0 (Peripheral Pin Select Output 0)	152
RPOR1 (Peripheral Pin Select Output 1)	152
RFORT (Felipheral Pin Select Output 1)	457
RPOR10 (Peripheral Pin Select Output 10)	157
RPOR11 (Peripheral Pin Select Output 11)	157
RPOR12 (Peripheral Pin Select Output 12)	158
RPOR13 (Peripheral Pin Select Output 13)	158
RPOR14 (Peripheral Pin Select Output 14)	159
PPOP15 (Peripheral Pin Select Output 15)	150
DDD16 (Device and Die Cale at Output 10)	100
RPOR 16 (Peripheral Pin Select Output 16)	160
RPOR17 (Peripheral Pin Select Output 17)	160
RPOR18 (Peripheral Pin Select Output 18)	161
RPOR2 (Peripheral Pin Select Output 2)	153
RPOR3 (Peripheral Pin Select Output 3)	153
RPOR4 (Peripheral Pin Select Output 4)	154
DDODE (Deripheral Din Select Output 5)	154
	154
RPOR6 (Peripheral Pin Select Output 6)	155
RPOR7 (Peripheral Pin Select Output 7)	155
RPOR8 (Peripheral Pin Select Output 8)	156
RPOR9 (Peripheral Pin Select Output 9)	156
SDCx (PWMx Secondary Duty Cycle)	194
SEV/TCMD (DW/Wy Special Event Compare)	107
	107
SPHASEX (PWWIX Secondary Phase-Shiπ)	196
SPIxCON1 (SPIx Control 1)	211
SPIxCON2 (SPIx Control 2)	213
SPIxSTAT (SPIx Status and Control)	209
SR (CPU STATUS)	3. 95
SSEVTCMP (PWMx Secondary	.,
Special Event Compare)	100
Special Event Compare)	190
STCON (PWMx Secondary Master	
Time Base Control)	188
STCON2 (PWMx Secondary Clock Divider	
Select 2)	189
STPER (PWMx Secondary Master	
Time Base Period)	180
STRICy (DW/My Secondary Trigger	100
STRIGX (FVIIVIX Secondary Higger	000
\mathbf{O}	202
Compare Value)	165
Compare Value) T1CON (Timer1 Control)	400
Compare Value) T1CON (Timer1 Control) TRGCONx (PWMx Trigger Control)	198
Compare Value) T1CON (Timer1 Control) TRGCONx (PWMx Trigger Control) TRIGx (PWMx Primary Trigger	198
Compare Value) T1CON (Timer1 Control) TRGCONx (PWMx Trigger Control) TRIGx (PWMx Primary Trigger Compare Value)	200
Compare Value) T1CON (Timer1 Control) TRGCONx (PWMx Trigger Control) TRIGx (PWMx Primary Trigger Compare Value) TxCON (Timer2/4 Control)	200
Compare Value) T1CON (Timer1 Control) TRGCONx (PWMx Trigger Control) TRIGx (PWMx Primary Trigger Compare Value) TxCON (Timer2/4 Control) TxCON (Timer3/5 Control)	200 169
Compare Value) T1CON (Timer1 Control) TRGCONx (PWMx Trigger Control) TRIGx (PWMx Primary Trigger Compare Value) TxCON (Timer2/4 Control) TyCON (Timer3/5 Control)	200 169 170
Compare Value) T1CON (Timer1 Control) TRGCONx (PWMx Trigger Control) TRIGx (PWMx Primary Trigger Compare Value) TxCON (Timer2/4 Control) TyCON (Timer3/5 Control) UxMODE (UARTx Mode)	198 200 169 170 225

Resets	85
Brown-out Reset (BOR)	85
Configuration Mismatch Reset (CM)	85
Illegal Condition Reset (IOPUWR)	85
Illegal Opcode	85
Security	85
Uninitialized W Register	85
Master Clear (MCLR) Pin Reset	85
Power-on Reset (POR)	85
RESET Instruction (SWR)	85
Resources	86
Trap Conflict Reset (TRAPR)	85
Watchdog Timer Time-out Reset (WDTO)	85
Revision History	. 377
8	
5	
Serial Peripheral Interface (SPI)	. 207
Serial Peripheral Interface. See SPI.	
Software Simulator	
MPLAB X SIM	. 301
Special Features of the CPU	. 277
SPI	
Control Registers	. 209
Helpful Tips	. 208
Resources	. 208

Т

Thermal Operating Conditions	304
Thermal Packaging Characteristics	304
Third-Party Development Tools	302
Timer1	163
Control Register	165
Mode Settings	163
Resources	164
Timer2/3 and Timer4/5	167
Control Registers	169
Resources	167
Timing Diagrams	
BOR and Master Clear Reset Characteristics	319
External Clock	316
High-Speed PWMx Fault Characteristics	325
High-Speed PWMx Module Characteristics	325
I/O Characteristics	319
I2Cx Bus Data (Master Mode)	338
I2Cx Bus Data (Slave Mode)	340
I2Cx Bus Start/Stop Bits (Master Mode)	338
I2Cx Bus Start/Stop Bits (Slave Mode)	340
Input Capture x (ICx) Characteristics	323
OCx/PWMx Characteristics	324
Output Compare x (OCx) Characteristics	324
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	329
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	328
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	326
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	327
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	336
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	334
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	330