

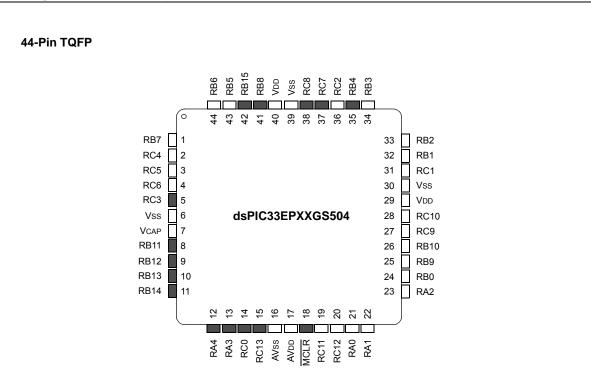
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs504t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin	Pin Function	Pin	Pin Function
1	PGEC1/AN21/SDA1/ RP39 /RB7	23	AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2
2	AN1ALT/ RP52 /RC4	24	AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0
3	AN0ALT/RP53/RC5	25	AN4/CMP2C/CMP3A/ISRC4/RP41/RB9
4	AN17/ RP54 /RC6	26	AN5/CMP2D/CMP3B/ISRC3/RP42/RB10
5	RP51/RC3	27	AN11/PGA1N3/ RP57 /RC9
6	Vss	28	AN10/PGA1P4/EXTREF2/RP58/RC10
7	VCAP	29	VDD
8	TMS/PWM3H/RP43/RB11	30	Vss
9	TCK/PWM3L/ RP44 /RB12	31	AN8/PGA2P4/CMP4C/RP49/RC1
10	PWM2H/ RP45 /RB13	32	OSC1/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1
11	PWM2L/ RP46 /RB14	33	OSC2/CLKO/AN7/PGA1N2/CMP3D/CMP4B/RP34/RB2
12	PWM1H/RA4	34	PGED2/AN18/DACOUT1/INT0/RP35/RB3
13	PWM1L/RA3	35	PGEC2/ADTRG31/ RP36 /RB4
14	FLT12/ RP48 /RC0	36	AN9/CMP4D/EXTREF1/RP50 /RC2
15	FLT11/ RP61 /RC13	37	ASDA1/ RP55 /RC7
16	AVss	38	ASCL1/RP56/RC8
17	AVDD	39	Vss
18	MCLR	40	VDD
19	AN12/ISRC1/ RP59 /RC11	41	PGED3/SDA2/FLT31/RP40/RB8
20	AN14/PGA2N3/ RP60 /RC12	42	PGEC3/SCL2/RP47/RB15
21	AN0/PGA1P1/CMP1A/RA0	43	TDO/AN19/PGA2N2/ RP37 /RB5
22	AN1/PGA1P2/PGA2P1/CMP1B/RA1	44	PGED1/TDI/AN20/SCL1/RP38/RB6

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description			
AN0-AN21 AN0ALT-AN1ALT		Analog Analog	No No	Analog input channels. Alternate analog input channels.			
CLKI	I	ST/ CMOS	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.			
CLKO	0	—	No	Always associated with OSC2 pin function.			
OSC1	I	ST/ CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.			
OSC2	I/O	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.			
REFCLKO	0	_	Yes	Reference clock output.			
IC1-IC4	1	ST	Yes	Capture Inputs 1 through 4.			
OCFA	1	ST	Yes	Compare Fault A input (for compare channels).			
OC1-OC4	Ó	_	Yes	Compare Outputs 1 through 4.			
INT0	1	ST	No	External Interrupt 0.			
INT1	I	ST	Yes	External Interrupt 1.			
INT2	I	ST	Yes	External Interrupt 2.			
INT4	Ι	ST	No	External Interrupt 4.			
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.			
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.			
RC0-RC15	I/O	ST	No	PORTC is a bidirectional I/O port.			
RD0-RD15	I/O	ST	No	PORTD is a bidirectional I/O port.			
T1CK	1	ST	Yes	Timer1 external clock input.			
T2CK		ST	Yes	Timer2 external clock input.			
T3CK	İ	ST	Yes	Timer3 external clock input.			
T4CK	I	ST	No	Timer4 external clock input.			
T5CK	I.	ST	No	Timer5 external clock input.			
U1CTS	I	ST	Yes	UART1 Clear-to-Send.			
U1RTS	0	_	Yes	UART1 Request-to-Send.			
U1RX	I	ST	Yes	UART1 receive.			
U1TX	0	—	Yes	UART1 transmit.			
BCLK1	0	ST	Yes	UART1 IrDA [®] baud clock output.			
U2CTS	I	ST	Yes				
U2RTS	0	—		UART2 Request-to-Send.			
U2RX		ST		UART2 receive.			
U2TX	0		Yes	UART2 transmit.			
BCLK2	0	ST	Yes	UART2 IrDA baud clock output.			
SCK1	1/0	ST	Yes	Synchronous serial clock input/output for SPI1.			
SDI1		ST	Yes	SPI1 data in.			
SDO1 SS1	0 I/O	ST	Yes Yes	SPI1 data out. SPI1 slave synchronization or frame pulse I/O.			
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.			
SDI2	1	ST	Yes	SPI2 data in.			
SDO2	0		Yes	SPI2 data ini. SPI2 data out.			
<u>SS2</u>	1/0	ST	Yes	SPI2 slave synchronization or frame pulse I/O.			
Legend: CMOS = C	_						
ST = Schm PPS = Peri	itt Trigg	er input v	vith CN				

1: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

2: These pins are dedicated on 64-pin devices.

5.0 FLASH PROGRAM MEMORY

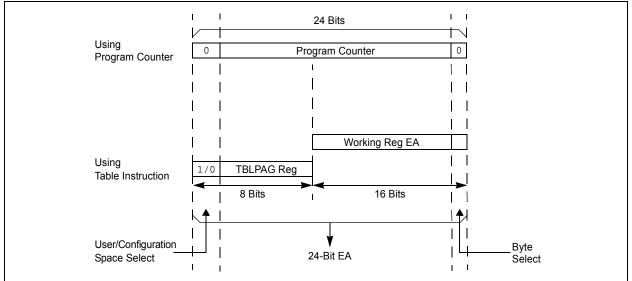
- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70005156) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXGS50X family device to be serially programmed while in the end application circuit. This is done with a programming clock and programming data (PGECx/PGEDx) line, and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the Program Executive, to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data with a single program memory word and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1. The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes. The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
GIE	DISI	SWTRAP	_	_	_		AIVTEN
bit 15							bit
U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
		—	INT4EP		INT2EP	INT1EP	INT0EP
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	GIE: Global	Interrupt Enable	e bit				
		ts and associate					
		ts are disabled, I	•	till enabled			
bit 14		Instruction Statu					
		struction is active struction is not a					
bit 13		Software Trap St					
DIL 15		e trap is enabled					
		e trap is disabled					
bit 12-9	Unimpleme	ented: Read as '	0'				
bit 8	AIVTEN: Al	ternate Interrupt	Vector Table E	Enable			
		ternate Interrupt					
		andard Interrupt					
bit 7-5	-	ented: Read as '					
bit 4		ternal Interrupt 4	-	Polarity Selec	ct bit		
	•	t on negative ed t on positive edg	•				
bit 3	-	ented: Read as '					
bit 2	-	ternal Interrupt 2		Polarity Selec	rt hit		
SIL 2		t on negative ed	0				
		t on positive edg					
bit 1	INT1EP: Ex	ternal Interrupt 1	Edge Detect	Polarity Selec	ct bit		
		t on negative ed					
	•	t on positive edg					
bit 0		ternal Interrupt (-	Polarity Selec	ct bit		
		t on negative edg					
	0 = memup	t on positive edg	e				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	—	_	—	_	—	—	NAE	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	
—	—		DOOVR	—			APLL	
bit 7							bit 0	
Legend:								
R = Readal	ole bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cleared x = Bit is unknown				
bit 15-9	Unimplemer	nted: Read as	'0'					
bit 8	NAE: NVM A	ddress Error S	Soft Trap Status	s bit				
			trap has occur					
			trap has not o	ccurred				
bit 7-5	Unimplemer	nted: Read as	'0'					
bit 4	DOOVR: DO	Stack Overflov	v Soft Trap Sta	tus bit				
	1 = DO stack	overflow soft t	rap has occurre	ed				
	0 = DO stack	overflow soft t	rap has not oc	curred				
bit 3-1	Unimplemer	nted: Read as	'0'					
bit 0	APLL: Auxili	ary PLL Loss o	of Lock Soft Tra	ap Status bit				
	1 = APLL loc	k soft trap has	occurred					
		le a aft trans has	wet easy word					

0 = APLL lock soft trap has not occurred

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—	—	SGHT
bit 7		•				•	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-1	Unimplemen	ted: Read as	'0'				
bit 0	SGHT: Softwa	are Generated	Hard Trap Sta	tus bit			
	1 = Software	generated har	d trap has occ	urred			
	0 = Software	generated har	d trap has not	occurred			

REGISTER 10-20: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13-8		RP33R<5:0>: Peripheral Output Function is Assigned to RP33 Output Pin bits (see Table 10-2 for peripheral function numbers)								
bit 7-6	Unimplemen	ted: Read as '	0'							

bit 5-0 **RP32R<5:0>:** Peripheral Output Function is Assigned to RP32 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-21: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	
bit 15		•				•	bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	
bit 7		•				•	bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 15-14	Unimplemen	ted: Read as '	כ'					
bit 13-8 RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits								

(see Table 10-2 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP34R<5:0>:** Peripheral Output Function is Assigned to RP34 Output Pin bits (see Table 10-2 for peripheral function numbers)

11.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

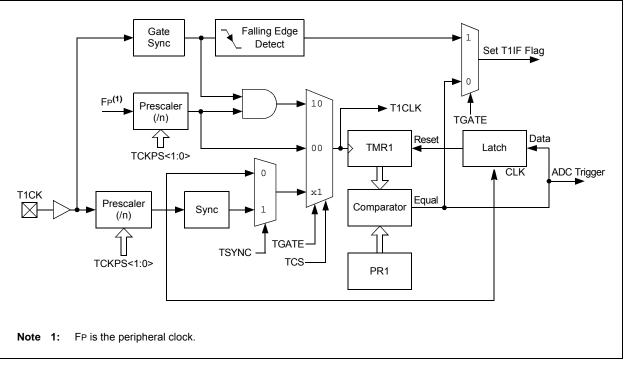
- Can be Operated in Asynchronous Counter mode from an External Clock Source
- The External Clock Input (T1CK) can Optionally be Synchronized to the Internal Device Clock and the Clock Synchronization is Performed after the Prescaler
- A block diagram of Timer1 is shown in Figure 11-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit settings for different operating modes are provided in Table 11-1.

Mode	TCS	TGATE	TSYNC				
Timer	0	0	х				
Gated Timer	0	1	x				
Synchronous Counter	1	x	1				
Asynchronous Counter	1	x	0				

TABLE 11-1: TIMER MODE SETTINGS

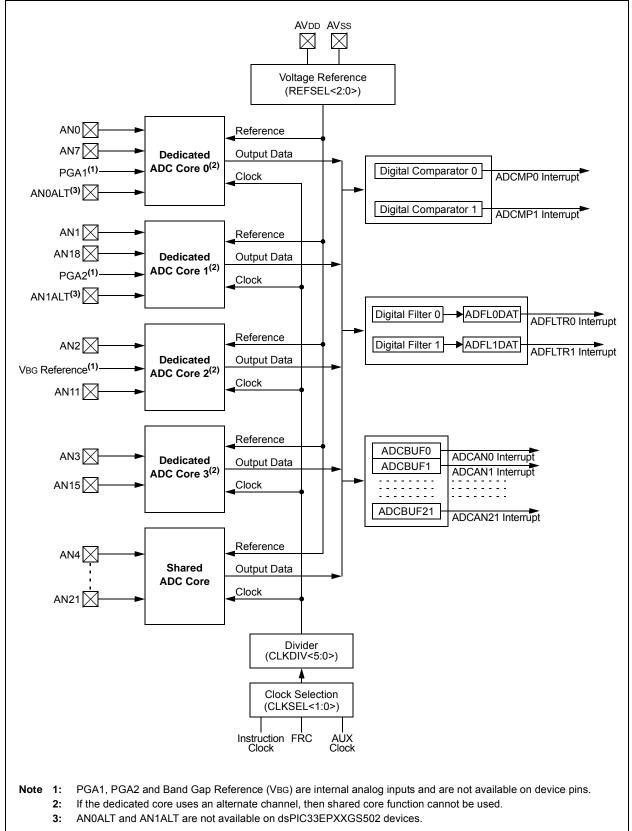
REGISTER 16-2:	SPIxCON1: SPIx CONTROL REGISTER 1
----------------	-----------------------------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾				
bit 15		·					bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSEN ⁽²⁾		MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾				
bit 7	ora	moren	011122	011121	011120		bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	-	nted: Read as									
bit 12		able SCKx Pin	•		<i>'</i>)						
		SPIx clock is di: SPIx clock is er	•	ctions as I/O							
bit 11		sable SDOx Pir									
		n is not used by		oin functions as	s I/O						
		n is controlled b									
bit 10	MODE16: Word/Byte Communication Select bit										
	 1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits) 										
		-									
bit 9		ata Input Sam	ole Phase bit								
	Master Mode	<u>:</u> a is sampled at	the end of da	ta output time							
		a is sampled at			ne						
	Slave Mode: SMP must be	e cleared when	SPIx is used i	n Slave mode.							
bit 8	CKE: SPIx C	lock Edge Sele	ect bit ⁽¹⁾								
					clock state to lo ock state to activ						
bit 7		Select Enable				,					
		s used for Slav		is controlled h	by port function						
bit 6	-	Polarity Select	-								
	1 = Idle state	for clock is a h	nigh level; activ								
bit 5		ster Mode Enal									
	1 = Master m 0 = Slave mo	node									
Note 1: Th	e CKE bit is not		d SPI modes. I	Program this bi	t to '0' for Fram	ed SPI modes (FRMEN =				
0. Th											

- **2:** This bit must be cleared when FRMEN = 1.
- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8


R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	C = Clearable bit	HC = Hardware Clearat	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: UARTx Transmit Polarity Inversion bit
 - $\frac{\text{If IREN} = 0}{1} = \text{UxTX Idle state is } 0$
 - 0 = UxTX Idle state is '1'
 - If IREN = 1:
 - $1 = \text{IrDA}^{\mathbb{R}}$ encoded, UxTX Idle state is '1'
 - 0 = IrDA encoded, UxTX Idle state is '0'
- bit 12 Unimplemented: Read as '0'
- bit 11 UTXBRK: UARTx Transmit Break bit
 - 1 = Sends Sync Break on next transmission Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
 - 0 = Sync Break transmission is disabled or completed
- bit 10 UTXEN: UARTx Transmit Enable bit⁽¹⁾
 - 1 = Transmit is enabled, UxTX pin is controlled by UARTx
 0 = Transmit is disabled, any pending transmission is aborted and buffer is reset; UxTX pin is controlled
- bit 9 UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 TRMT: Transmit Shift Register Empty bit (read-only)
 - 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
- bit 7-6 URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
 - 11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters)
 - 10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
 - 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer; receive buffer has one or more characters
- **Note 1:** Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual" for information on enabling the UARTx module for transmit operation.

REGISTER 19-9: ADCON5L: ADC CONTROL REGISTER 5 LOW

R-0, HSC	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC			
SHRRDY	—			C3RDY	C2RDY	C1RDY	CORDY			
bit 15							bit 8			
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
SHRPWR				C3PWR	C2PWR	C1PWR	COPWR			
bit 7							bit (
Legend:		U = Unimplen	nented bit, rea	ad as '0'						
R = Readable	e bit	W = Writable			are Settable/C	learable bit				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
				L 14						
bit 15		ared ADC Core is powered an								
		is not ready fo	• •	beration						
bit 14-12		ted: Read as '	-							
bit 11	C3RDY: Dedi	cated ADC Co	e 3 Ready Fl	ag bit						
		is powered an is not ready fo		peration						
bit 10		cated ADC Co		aq bit						
				•						
	1 = ADC core is powered and ready for operation0 = ADC core is not ready for operation									
bit 9	C1RDY: Dedi	cated ADC Co	e 1 Ready Fl	ag bit						
		is powered an is not ready fo		peration						
bit 8		cated ADC Col	•	ag bit						
	1 = ADC core	is powered an is not ready fo	d ready for or	-						
bit 7		nared ADC Cor	•	able bit						
		e x is powered								
	0 = ADC Core									
bit 6-4	Unimplemen	ted: Read as ')'							
bit 3	C3PWR: Ded	icated ADC Co	re 3 Power E	nable bit						
	1 = ADC core 0 = ADC core									
bit 2	C2PWR: Ded	icated ADC Co	re 2 Power E	nable bit						
	1 = ADC core									
bit 1	0 = ADC core	is oπ icated ADC Co	ro 1 Dowor E	nabla bit						
DIL	1 = ADC core									
	0 = ADC core									
bit 0	COPWR: Ded	icated ADC Co	re 0 Power E	nable bit						
	1 = ADC core									

REGISTER 19-17: ADEISTATL: ADC EARLY INTERRUPT STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EISTA	AT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIST	AT<7:0>			
bit 7							bit 0
1							
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 EISTAT<15:0>: Early Interrupt Status for Corresponding Analog Inputs bits

1 = Early interrupt was generated

0 = Early interrupt was not generated since the last ADCBUFx read

REGISTER 19-18: ADEISTATH: ADC EARLY INTERRUPT STATUS REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	—			—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			EISTAT	<21:16>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 EISTAT<21:16>: Early Interrupt Status for Corresponding Analog Inputs bits

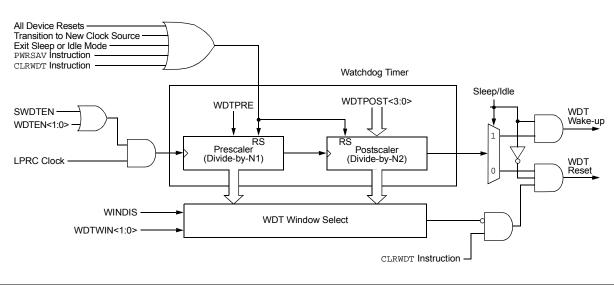
1 = Early interrupt was generated

0 = Early interrupt was not generated since the last ADCBUFx read

23.6 Watchdog Timer (WDT)

For dsPIC33EPXXGS50X family devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

23.6.1 PRESCALER/POSTSCALER


The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Time-out Period (TWDT), as shown in Parameter SY12 in Table 26-23.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods, ranges from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 23-2: WDT BLOCK DIAGRAM

23.6.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3:2>) needs to be cleared in software after the device wakes up.

23.6.3 ENABLING WDT

The WDT is enabled or disabled by the WDTEN<1:0> Configuration bits in the FWDT Configuration register. When the WDTEN<1:0> Configuration bits have been programmed to '0b11', the WDT is always enabled.

The WDT can be optionally controlled in software when the WDTEN<1:0> Configuration bits have been programmed to '0b10'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disables the WDT during non-critical segments for maximum power savings.

The WDT Time-out flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

23.6.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode, enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<7>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window select bits (WDTWIN<1:0>).

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Тур.	Max.	Units	Conditions			
Idle Current (II	dle) ⁽¹⁾						
DC40d	2	4	mA	-40°C			
DC40a	2	4	mA	+25°C	- 3.3V	10 MIPS	
DC40b	2	4	mA	+85°C	5.3V	TO MIES	
DC40c	2	4	mA	+125°C			
DC42d	3	6	mA	-40°C			
DC42a	3	6	mA	+25°C	3.3V	20 MIPS	
DC42b	3	6	mA	+85°C		20 10111 3	
DC42c	3	6	mA	+125°C			
DC44d	6	12	mA	-40°C		40 MIPS	
DC44a	6	12	mA	+25°C	- 3.3V		
DC44b	6	12	mA	+85°C	5.3V	40 MIF 3	
DC44c	6	12	mA	+125°C			
DC45d	8	15	mA	-40°C			
DC45a	8	15	mA	+25°C	- 3.3V	60 MIPS	
DC45b	8	15	mA	+85°C	3.3V	OU IVIIPS	
DC45c	8	15	mA	+125°C]		
DC46d	10	20	mA	-40°C			
DC46a	10	20	mA	+25°C	3.3V	70 MIPS	
DC46b	10	20	mA	+85°C]		

TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (lidle)

Note 1: Base Idle current (IIDLE) is measured as follows:

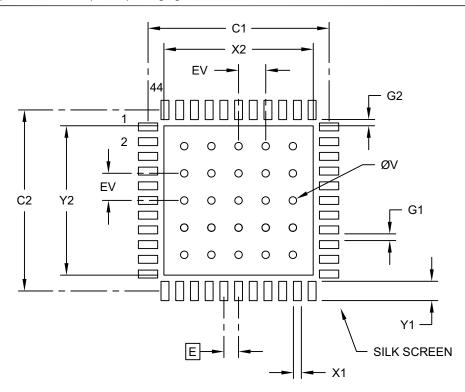
 CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

AC CHA	RACTERI	STICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
						$C \le TA \le +85^{\circ}C$ for industrial $C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	cymbol Characteristic ⁽³⁾		Min.	Max.	Units	Conditions	
IS10	TLO:SCL Clock Low Time		100 kHz mode	4.7	_	μS		
			400 kHz mode	1.3		μS		
			1 MHz mode ⁽¹⁾	0.5	_	μS		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	-	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	_	μS		
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns		
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input	100 kHz mode	0	_	μS		
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽¹⁾	0	0.3	μS		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6	_	μS	Start condition	
			1 MHz mode ⁽¹⁾	0.25	_	μS		
IS31	THD:STA	Start Condition	100 kHz mode	4.0	_	μS	After this period, the first	
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	_	μS		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4	_	μS		
		Setup Time	400 kHz mode	0.6	_	μS		
			1 MHz mode ⁽¹⁾	0.25	_	μS		
IS34	THD:STO	Stop Condition	100 kHz mode	4	_	μS		
		Hold Time	400 kHz mode	0.6	_	μS		
			1 MHz mode ⁽¹⁾	0.25		μS		
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3500	ns		
		Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5	_	μS	can start	
IS50	Св	Bus Capacitive Lo			400	pF		
IS51	TPGD	Pulse Gobbler Del	-	65	390	ns	(Note 2)	

TABLE 26-40: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).


2: Typical value for this parameter is 130 ns.

3: These parameters are characterized but not tested in manufacturing.

NOTES:

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

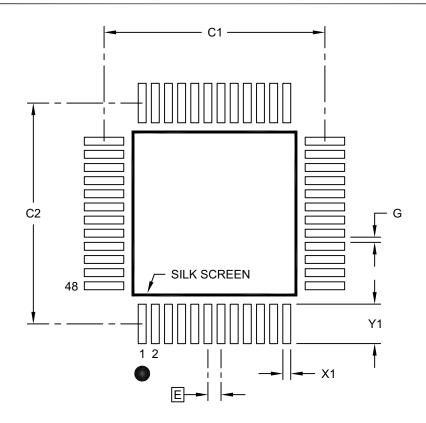
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	X2			6.60	
Optional Center Pad Length	Y2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Contact Pad to Contact Pad (X40)	G1	0.30			
Contact Pad to Center Pad (X44)	G2	0.28			
Thermal Via Diameter	V		0.33		
Thermal Via Pitch	EV	1.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C

48-Lead Thin Quad Flatpack (Y8) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETER	S
Dimens	sion Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		8.40	
Contact Pad Spacing	C2		8.40	
Contact Pad Width (X48)	X1			0.30
Contact Pad Length (X48)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2300-Y8 Rev A

Μ

Memory Organization	31
Resources	41
Microchip Internet Web Site	
Modulo Addressing	72
Applicability	73
Operation Example	72
Start and End Address	72
W Address Register Selection	72
MPLAB REAL ICE In-Circuit Emulator System	301
MPLAB X Integrated Development	
Environment Software	
MPLINK Object Linker/MPLIB Object Librarian	300
0	
Oppillator	

Oscillator	
Control Registers	
Resources	106
Output Compare	
Control Registers	
Resources	175

Ρ

1
Packaging
Details
Marking 353
Peripheral Module Disable (PMD) 117
Peripheral Pin Select (PPS) 127
Available Peripherals
Available Pins 127
Control 127
Control Registers 134
Input Mapping 128
Output Mapping 130
Output Selection for Remappable Pins 131
Selectable Input Sources 129
PGA
Pinout I/O Descriptions (table)
Power-Saving Features 115
Clock Frequency and Switching 115
Resources 117
Program Address Space
Construction75
Data Access from Program Memory Using
Table Instructions
Memory Map (dsPIC33EP16GS50X Devices)
Memory Map (dsPIC33EP32GS50X Devices)
Memory Map (dsPIC33EP64GS50X Devices,
Dual Partition)
Memory Map (dsPIC33EP64GS50X Devices)
Table Read High Instructions (TBLRDH)
Table Read Low Instructions (TBLRDL)
Program Memory
Interfacing with Data Memory Spaces
Organization 36
Reset Vector 36
Programmable Gain Amplifier (PGA) 271
Description
Resources 273
Programmable Gain Amplifier. See PGA.
Programmer's Model
Register Descriptions 23
R

к

Register Maps	
ADC	54
Analog Comparator	61
Configuration Registers	278
Constant-Current Source	60
CPU Core	42
I2C1 and I2C2	52
Input Capture 1 through Input Capture 4	47
Interrupt Controller	44
JTAG Interface	61
NVM	59
Output Compare 1 through Output Compare 4.	48
Peripheral Pin Select Input	58
Peripheral Pin Select Output	
(dsPIC33EPXXGS502 Devices)	56
Peripheral Pin Select Output	
(dsPIC33EPXXGS504/505 Devices)	56
Peripheral Pin Select Output	
(dsPIC33EPXXGS506 Devices)	57