

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs505-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXGS50X family requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

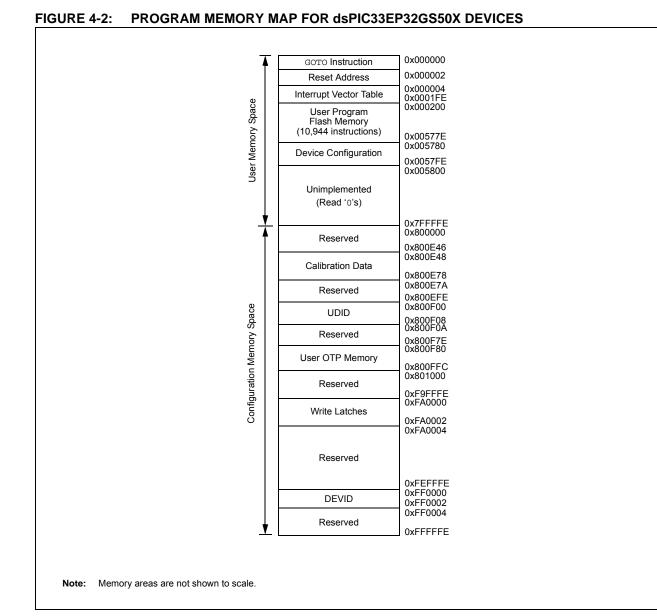
2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)


bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG 0 = Stack frame is not active; W14 and W15 address the base Data Space
bit 1	RND: Rounding Mode Select bit
	1 = Biased (conventional) rounding is enabled0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply
Note 1:	This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
—	—	—	—	—	CCTXI2	CCTXI1	CCTXI0
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
	—	—	_	—	MCTXI2	MCTXI1	MCTXI0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	CCTXI<2:0>: Current (W Register) Context Identifier bits
	111 = Reserved
	•
	•
	•
	011 = Reserved
	010 = Alternate Working Register Set 2 is currently in use
	001 = Alternate Working Register Set 1 is currently in use
	000 = Default register set is currently in use
bit 7-3	Unimplemented: Read as '0'
bit 2-0	MCTXI<2:0>: Manual (W Register) Context Identifier bits
	111 = Reserved
	•
	•
	•
	011 = Reserved
	010 = Alternate Working Register Set 2 was most recently manually selected
	001 = Alternate Working Register Set 1 was most recently manually selected
	000 = Default register set was most recently manually selected

TABLE 4-2: CPU CORE REGISTER MAP (CONTINUED)

							,											
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DOENDL	003E					D	o Loop End	Address Re	egister Low	(DOENDL<	:15:1>)						—	0000
DOENDH	0040	_	_	_	_	_	_	_	_	_	_	DO LO	oop End Ad	dress Regis	ster High ([DOENDH<	5:0>)	0000
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	_	US1	US0	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048						X Mode Star	t Address F	Register (XN	10DSRT<1	5:1>)						_	0000
XMODEND	004A						X Mode End	I Address R	egister (XN	ODEND<1	5:1>)						_	0001
YMODSRT	004C						Y Mode Star	t Address F	Register (YN	10DSRT<1	5:1>)						_	0000
YMODEND	004E						Y Mode End	I Address R	egister (YN	ODEND<1	5:1>)						_	0001
XBREV	0050	BREN							XBRE	V<14:0>								0000
DISICNT	0052	_	—						I	DISICNT<1	3:0>							0000
TBLPAG	0054	—	—	—			—	—	_				TBLPAC	G<7:0>				0000
CTXTSTAT	005A	_	_	_	_	_	CCTXI2	CCTXI1	CCTXI0	_	_	_	_	_	MCTXI2	MCTXI1	MCTXI0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The contents of this register should never be modified. The DSWPAG must always point to the first page.

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	-	ADCIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	-	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	-	_	-	-	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	-	_	_	_	_	—	-	_	IC4IF	IC3IF	-	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	_	PSEMIF	_	_	INT4IF	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	-	-	-	-	-	-	PSESIF	-	_	-	-	-	-	U2EIF	U1EIF	-	0000
IFS5	080A	PWM2IF	PWM1IF	_	_	_	_	_	_		_	_	_	_	-	-	-	0000
IFS6	080C	ADCAN1IF	ADCAN0IF	—	_	_	_	AC4IF	AC3IF	AC2IF		_	_	_	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	080E	-	-	-	-	-	-	-	-	_	-	ADCAN7IF	ADCAN6IF	ADCAN5IF	ADCAN4IF	ADCAN3IF	ADCAN2IF	0000
IFS8	0810	JTAGIF	ICDIF	_	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IFS9	0812	ADCAN16IF ⁽¹⁾	ADCAN15IF ⁽¹⁾	ADCAN14IF ⁽²⁾	ADCAN13IF(1)	ADCAN12IF ⁽²⁾	ADCAN11IF ⁽²⁾	ADCAN10IF ⁽²⁾	ADCAN9IF ⁽²⁾	ADCAN8IF ⁽²⁾	_	_	_	_	-	-	-	0000
IFS10	0814	-	I2C2BCIF	I2C1BCIF	-	-	_	-	-	_	-	-	ADCAN21IF	ADCAN20IF	ADCAN19IF	ADCAN18IF	ADCAN17IF ⁽²⁾	0000
IFS11	0816	_	-	_	_	_	_	_	-	_	_	_	ADFLTR1IF	ADFLTR0IF	ADCMP1IF	ADCMP0IF	-	0000
IEC0	0820	NVMIE	-	ADCIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	-	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	-	_	_	-	INT1IE	CNIE	AC1IF	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_	_	_	_	_	IC4IE	IC3IE	-	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	_	PSEMIE	_	_	INT4IE	_	-	_	MI2C2IE	SI2C2IE	-	0000
IEC4	0828	_	_	_	-	_	_	PSESIE	-	_	_	_	-	-	U2EIE	U1EIE	-	0000
IEC5	082A	PWM2IE	PWM1IE	_	_	_	_	_	_	_	_	_	-	_	_	_	-	0000
IEC6	082C	ADCAN1IE	ADCAN0IE	_	_	_	_	AC4IE	AC3IE	AC2IE	_	_	-	_	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	082E	_	_	_	-	_	_	_	-	_	_	ADCAN7IE	ADCAN6IE	ADCAN5IE	ADCAN4IE	ADCAN3IE	ADCAN2IE	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	_	_	_	_	-	_	_	_	-	0000
IEC9	0832	ADCAN16IE ⁽¹⁾	ADCAN15IE ⁽¹⁾	ADCAN14IE ⁽²⁾	ADCAN13IE ⁽¹⁾	ADCAN12IE ⁽²⁾	ADCAN11IE ⁽²⁾	ADCAN10IE ⁽²⁾	ADCAN9IE ⁽²⁾	ADCAN8IE ⁽²⁾	_	_	-	_	_	_	-	0000
IEC10	0834	_	I2C2BCIE	I2C1BCIE	-	_	_	_	-	_	_	_	ADCAN21IE	ADCAN20IE	ADCAN19IE	ADCAN18IE	ADCAN17IE ⁽²⁾	0000
IEC11	0836	_	_	_	_	_	_	_	_	_	_	_	ADFLTR1IE	ADFLTR0IE	ADCMP1IE	ADCMP0IE	-	0000
IPC0	0840	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	-	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	0842	-	T2IP2	T2IP1	T2IP0	-	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	-	-	-	-	4440
IPC2	0844	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	-	T3IP2	T3IP1	T3IP0	4444
IPC3	0846	_	NVMIP2	NVMIP1	NVMIP0	_	_	_	_	_	ADCIP2	ADCIP1	ADCIP0	-	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	0848	_	CNIP2	CNIP1	CNIP0	_	AC1IP2	AC1IP1	AC1IP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	-	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	084A	_	-	_	-	_	-	-	—	_	—	-	-	-	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	084C	_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	-	-	-	-	4440
IPC7	084E	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	0850	_	-	_	-	_	_	-	-	_	SPI2IP2	SPI2IP1	SPI2IP0	-	SPI2EIP2	SPI2EIP1	SPI2EIP0	0044
IPC9	0852	_	_	_	_	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	_	_	_	0440

Legend:

Note 1:

 — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Only available on dsPIC33EPXXGS506 devices. Only available on dsPIC33EPXXGS504/505 and dsPIC33EPXXGS506 devices.
 2:

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 CF: Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected a clock failure
 - 0 = FSCM has not detected a clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to the selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15			·				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U1RXR7	U1RXR6	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0
<u> </u>							
Legend:							
R = Readable		W = Writable		•	nented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 7-0	10110100 = • • 00000001 = 00000000 =	Input tied to RF Input tied to RF Input tied to RF Input tied to Vs : Assign UART	2180 21 35	1RX) to the Co	rresponding RF	n Pin bits	

REGISTER 10-10: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

REGISTER 10-14: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SCK2INR7	SCK2INR6	SCK2INR5	SCK2INR4	SCK2INR3	SCK2INR2	SCK2INR1	SCK2INR0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	
bit 7							bit (
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
	10110100 = • • 00000001 =	Input tied to Rf Input tied to Rf Input tied to Rf Input tied to Vs	2180 21					
bit 7-0	10110101 =	Input tied to RF Input tied to RF	2181 2180	12) to the Corre	esponding RPn	Pin bits		

R/W-0							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT8R7	FLT8R6	FLT8R5	FLT8R4	FLT8R3	FLT8R2	FLT8R1	FLT8R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT7R7	FLT7R6	FLT7R5	FLT7R4	FLT7R3	FLT7R2	FLT7R1	FLT7R0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8		Assign PWM	· · ·	to the Corresp	onding RPn Pi	n bits	

REGISTER 10-19: RPINR43: PERIPHERAL PIN SELECT INPUT REGISTER 43

NOTES:

13.2 Input Capture Registers

REGISTER 13-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

REGISTER	13-1: ICxC	ON1: INPUT C	CAPTURE x CC	NTROL REG	ISTER 1		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R-0, HC, HS	R-0, HC, HS	R/W-0	R/W-0	R/W-0
	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7							bit
Legend:		HC = Hardward	Cloarable bit	US - Hardwa	re Settable bit		
∟egena. R = Readab	lo hit	W = Writable b			nented bit, read	d as '0'	
-n = Value a		'1' = Bit is set	it.	'0' = Bit is cle		x = Bit is unl	nown
		I - Dit is set			areu		
bit 15-14	Unimplemen	nted: Read as '0	,				
bit 13	-		in Idle Control bi	t			
511 10	•	oture will halt in (t i			
			e to operate in Cl	PU Idle mode			
bit 12-10	ICTSEL<2:0	>: Input Capture	x Timer Select bi	ts			
			s the clock source				
	110 = Reser	rved					
	101 = Reser						
			urce of the ICx (o	nly the synchro	nous clock is s	supported)	
		K is the clock so K is the clock so					
		K is the clock so					
		K is the clock so					
bit 9-7	Unimplemer	ted: Read as '0	,				
oit 6-5	ICI<1:0>: Nu	mber of Capture	s per Interrupt Se	elect bits (this fie	eld is not used	if ICM<2:0> =	001 or 111
		t on every fourth		Υ.			
	10 = Interrup	t on every third o	apture event				
			nd capture event				
	00 = Interrup	t on every captu	re event				
bit 4	-	-	ow Status Flag bit				
			flow has occurred				
	-	-	verflow has occu		、		
bit 3	-	-	r Not Empty Stat		• •		
		oture buffer is no oture buffer is en	t empty, at least o	one more captu	re value can b	e read	
bit 2-0		put Capture x M					
JIL 2-0		•	ons as an interru	unt nin only in (PII Sleen an	d Idle modes	(rising odg
			ontrol bits are not			u luie moues	(IISING EUG
		ed (module is dis					
		•	6th rising edge (l	Prescaler Capti	ure mode)		
	100 = Captu	re mode, every 4	th rising edge (P	rescaler Captur	re mode)		
			ising edge (Simp				
			alling edge (Simp			is not used	in this mode
		re mode, every ris	sing and falling ed	ye (⊏uye Delêc		r∕, is not used	III UIIS MODE

001 = Capture mode, every fising an000 = Input Capture x is turned off

REGISTER 15-20: IOCONX: PWMx I/O CONTROL REGISTER (x = 1 to 5) (CONTINUED)

bit 3-2	CLDAT<1:0>: State for PWMxH and PWMxL Pins if CLMOD is Enabled bits ⁽²⁾
	IFLTMOD (FCLCONx<15>) = 0: Normal Fault Mode:
	If current limit is active, then CLDAT1 provides the state for the PWMxH pin.
	If current limit is active, then CLDAT0 provides the state for the PWMxL pin.
	IFLTMOD (FCLCONx<15>) = 1: Independent Fault Mode:
	CLDAT<1:0> bits are ignored.
bit 1	SWAP: SWAP PWMxH and PWMxL Pins bit
	 1 = PWMxH output signal is connected to the PWMxL pins; PWMxL output signal is connected to the PWMxH pins
	0 = PWMxH and PWMxL pins are mapped to their respective pins
bit 0	OSYNC: Output Override Synchronization bit
	 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWMx time base 0 = Output overrides via the OVRDAT<1:0> bits occur on the next CPU clock boundary

- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: State represents the active/inactive state of the PWMx depending on the POLH and POLL bits settings.

REGISTER 15-21: TRIGX: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER (x = 1 to 5)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<12:5>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		TRGCMP<4:0>	>		—		—
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	n = Value at POR (1' = Bit is set				ared	x = Bit is unkr	nown

bit 15-3 **TRGCMP<12:0>:** Trigger Compare Value bits When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADC module.

bit 2-0 Unimplemented: Read as '0'

REGISTER 17-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave)
	Used in conjunction with the SCLREL bit.
	 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
54 C	C C
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge
	0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit
	(when operating as I ² C master, applicable during master receive)
	1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; hardware is clear at the end of the master Acknowledge sequence
	0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	1 = Enables Receive mode for I ² C; hardware is clear at the end of the eighth bit of the master receive data byte
	0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiates Stop condition on SDAx and SCLx pins; hardware is clear at the end of the master Stop sequence
	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Repeated Start sequence
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Start sequence

0 = Start condition is not in progress

REGISTER 17-3: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC			
ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10			
bit 15	11.01/1	/ CONTINUE			DOL	0001/11	bit 8			
Sit TO							Site			
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC			
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF			
bit 7				I			bit 0			
Legend:		C = Clearab	le bit	HS = Hardward	e Settable bit	HSC = Hardware Se	ttable/Clearable bit			
R = Readab	ole bit	W = Writable	e bit	'0' = Bit is clear	red	x = Bit is unknown				
-n = Value a	t POR	'1' = Bit is se	et	U = Unimplem	ented bit, read	as '0'				
bit 15	ACKSTAT:	Acknowledge	Status bit (wl	hen operating a	s I ² C master, a	pplicable to master tra	nsmit operation)			
		was received								
		as received fi		f a slave Ackno	wlodao					
bit 14					-	cable to master trans	mit operation)			
			progress (8		master, appli					
			ot in progress							
						is clear at the end of sl	ave Acknowledge.			
bit 13		•		bit (I ² C Slave r	• /					
			• .	ence, set on th	•	•				
bit 12-11		ented: Read	-	cleared on the	ath haing eage	OISCLX				
bit 12-11	-									
	BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation									
		0 = No bus collision detected								
	Hardware is	s set at deteo	tion of a bus	collision.						
bit 9		Seneral Call S								
	1 = General call address was received									
	 0 = General call address was not received Hardware is set when address matches the general call address. Hardware is clear at Stop detection. 									
bit 8		-Bit Address		<u> </u>						
	1 = 10-bit address was matched									
	0 = 10-bit address was not matched Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop									
	detection.	s set at the r	match of the	2nd byte of th	e matched 10	-bit address. Hardwai	re is clear at Stop			
bit 7		Cx Write Coll	ision Detect I	nit						
bit i					ed because the	e I ² C module is busy				
	0 = No colli	-		- 3		,				
					TRN while bus	sy (cleared by softwar	e).			
bit 6			verflow Flag							
	 1 = A byte was received while the I2CxRCV register was still holding the previous byte 0 = No overflow 									
			tempt to trans	sfer I2CxRSR 1	o I2CxRCV (c	leared by software).				
bit 5			I ² C Slave mo		- (-	,				
		-	st byte receiv							
	0 = Indicate	es that the las	st byte receiv	ed was a devid						
	Hardware is	s clear at a d	evice addres	s match. Hardy	vare is set by	reception of a slave by	yte.			

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

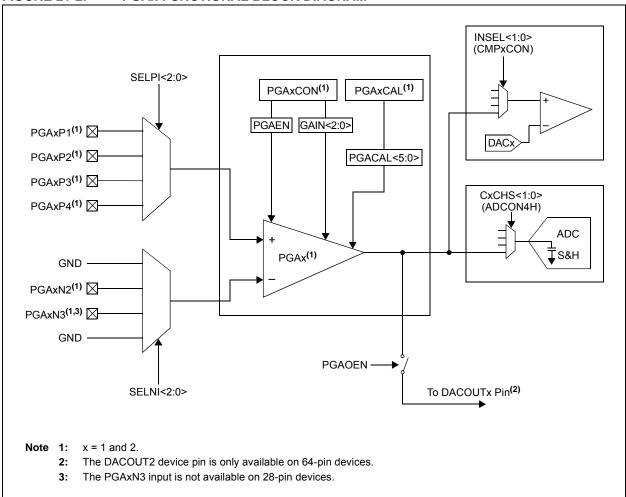
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect
	0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual" for information on enabling the UARTx module for transmit operation.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	—		SYNCTRG3	SYNCTRG2	SYNCTRG1	SYNCTRGO					
bit 15							bit 8					
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	_		_	SAMC3EN	SAMC2EN	SAMC1EN	SAMCOEN					
oit 7							bit (
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'						
n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown					
oit 15-12	Unimpleme	nted: Read as '	0'									
pit 11	SYNCTRG	: Dedicated AD	C Core 3 Trigg	ger Synchronizat	ion bit							
		 1 = All triggers are synchronized with the core source clock (TCORESRC) 0 = The ADC core triggers are not synchronized 										
Sit 10			-		ion hit							
oit 10		SYNCTRG2: Dedicated ADC Core 2 Trigger Synchronization bit										
		 1 = All triggers are synchronized with the core source clock (TCORESRC) 0 = The ADC core triggers are not synchronized 										
oit 9		SYNCTRG1: Dedicated ADC Core 1 Trigger Synchronization bit										
	1 = All triggers are synchronized with the core source clock (TCORESRC)											
		C core triggers a	-									
oit 8				ger Synchronizat								
		ers are synchror C core triggers a		core source cloc onized	k (ICORESRC)							
oit 7-4	Unimpleme	nted: Read as '	0'									
oit 3	SAMC3EN: Dedicated ADC Core 3 Conversion Delay Enable bit											
	1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the											
	time specified by the SAMC<9:0> bits in the ADCORE3L register 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the											
	next core clock cycle											
oit 2	SAMC2EN:	Dedicated ADC	Core 2 Conve	ersion Delay Ena	ble bit							
	1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the											
	time specified by the SAMC<9:0> bits in the ADCORE2L register 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the											
	0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle											
oit 1		-	Core 1 Conve	ersion Delay Ena	ble bit							
	1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the											
	time specified by the SAMC<9:0> bits in the ADCORE1L register											
	 After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle 											
oit O	SAMC0EN: Dedicated ADC Core 0 Conversion Delay Enable bit											
	1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the											
	time specified by the SAMC<9:0> bits in the ADCORE0L register 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the											
	A 61	and a flat of the second second	and 11.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	and a share of the second s	الله المستعدين		adapted and the state					

21.1 Module Description

The Programmable Gain Amplifiers are used to amplify small voltages (i.e., voltages across burden/shunt resistors) to improve the signal-to-noise ratio of the measured signal. The PGAx output voltage can be read by any of the four dedicated Sample-and-Hold circuits on the ADC module. The output voltage can also be fed to the comparator module for overcurrent/ voltage protection. Figure 21-2 shows a functional block diagram of the PGAx module. Refer to **Section 19.0 "High-Speed, 12-Bit Analog-to-Digital Converter (ADC)"** and **Section 20.0 "High-Speed Analog Comparator"** for more interconnection details.


The gain of the PGAx module is selectable via the GAIN<2:0> bits in the PGAxCON register. There are five selectable gains, ranging from 4x to 64x. The SELPI<2:0> and SELNI<2:0> bits in the PGAxCON register select one of four positive/negative inputs to the PGAx module. For single-ended applications, the SELNI<2:0> bits will select the ground as the negative

input source. To provide an independent ground reference, PGAxN2 and PGAxN3 pins are available as the negative input source to the PGAx module.

Note 1: Not all PGA positive/negative inputs are available on all devices. Refer to the specific device pinout for available input source pins.

The output voltage of the PGAx module can be connected to the DACOUTx pin by setting the PGAOEN bit in the PGAxCON register. When the PGAOEN bit is enabled, the output voltage of PGA1 is connected to DACOUT1 and PGA2 is connected to DACOUT2. For devices with a single DACOUTx pin, the output voltage of PGA2 can be connected to DACOUT1 by configuring the DBCC Configuration bit in the FDEVOPT register (FDEVOPT<6>).

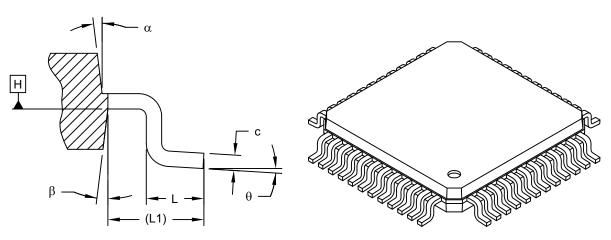
If both the DACx output voltage and PGAx output voltage are connected to the DACOUTx pin, the resulting output voltage would be a combination of signals. There is no assigned priority between the PGAx module and the DACx module.

FIGURE 21-2: PGAx FUNCTIONAL BLOCK DIAGRAM

TABLE 26-38:SPix SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHA		rics	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency	_	_	11	MHz	(Note 3)	
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCKx Input Rise Time	—	_	-	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	—	—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge	1.5 Tcy + 40	—	_	ns	(Note 4)	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

48-Lead Thin Quad Flatpack (Y8) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Number of Leads	Ν		48	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	¢	0°	3.5°	7°
Overall Width E 9.00 BSC				
Overall Length	D	9.00 BSC		
Molded Package Width	E1	7.00 BSC		
Molded Package Length	D1	7.00 BSC		
Lead Thickness	С	0.09	-	0.16
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A-B and D to be determined at center line between leads where leads exit plastic body at datum plane H

Microchip Technology Drawing C04-300-Y8 Rev A Sheet 2 of 2

	440
REFOCON (Reference Oscillator Control)	
RPINR0 (Peripheral Pin Select Input 0)	134
RPINR1 (Peripheral Pin Select Input 1)	
RPINR11 (Peripheral Pin Select Input 11)	
RPINR12 (Peripheral Pin Select Input 12)	
RPINR13 (Peripheral Pin Select Input 13)	
RPINR18 (Peripheral Pin Select Input 18)	142
RPINR19 (Peripheral Pin Select Input 19)	
RPINR2 (Peripheral Pin Select Input 2)	
RPINR20 (Peripheral Pin Select Input 20)	
RPINR21 (Peripheral Pin Select Input 21)	
RPINR22 (Peripheral Pin Select Input 22)	146
RPINR23 (Peripheral Pin Select Input 23)	147
RPINR3 (Peripheral Pin Select Input 3)	
RPINR37 (Peripheral Pin Select Input 37)	
RPINR38 (Peripheral Pin Select Input 38)	
RPINR42 (Peripheral Pin Select Input 42)	
RPINR43 (Peripheral Pin Select Input 43)	151
RPINR7 (Peripheral Pin Select Input 7)	137
RPINR8 (Peripheral Pin Select Input 8)	
RPOR0 (Peripheral Pin Select Output 0)	
RPOR1 (Peripheral Pin Select Output 1)	
RPOR10 (Peripheral Pin Select Output 10)	
RPOR11 (Peripheral Pin Select Output 11)	157
RPOR12 (Peripheral Pin Select Output 12)	158
RPOR13 (Peripheral Pin Select Output 13)	
RPOR14 (Peripheral Pin Select Output 14)	
RPOR15 (Peripheral Pin Select Output 15)	
RPOR16 (Peripheral Pin Select Output 16)	
RPOR17 (Peripheral Pin Select Output 17)	160
RPOR18 (Peripheral Pin Select Output 18)	
RPOR2 (Peripheral Pin Select Output 2)	
RPOR3 (Peripheral Pin Select Output 3)	
RPOR4 (Peripheral Pin Select Output 4)	
RPOR5 (Peripheral Pin Select Output 5)	154
RPOR6 (Peripheral Pin Select Output 6)	155
RPOR7 (Peripheral Pin Select Output 7)	
RPOR8 (Peripheral Pin Select Output 8)	
RPOR9 (Peripheral Pin Select Output 9)	
SDCx (PWMx Secondary Duty Cycle)	
SEVTCMP (PWMx Special Event Compare)	187
SPHASEx (PWMx Secondary Phase-Shift)	196
SPIxCON1 (SPIx Control 1)	
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	
SR (CPU STATUS)	6, 95
SSEVTCMP (PWMx Secondary	
Special Event Compare)	190
STCON (PWMx Secondary Master	
Time Base Control)	188
	100
STCON2 (PWMx Secondary Clock Divider	
Select 2)	189
STPER (PWMx Secondary Master	
Time Base Period)	189
STRIGx (PWMx Secondary Trigger	
Compare Value)	202
• •	
T1CON (Timer1 Control)	
TRGCONx (PWMx Trigger Control)	198
TRIGx (PWMx Primary Trigger	
Compare Value)	200
TxCON (Timer2/4 Control)	
TyCON (Timer3/5 Control)	100
	170
UXMODE (UARTx Mode) UxSTA (UARTx Status and Control)	170 225

Resets
Brown-out Reset (BOR)85
Configuration Mismatch Reset (CM) 85
Illegal Condition Reset (IOPUWR)
Illegal Opcode
Security
Uninitialized W Register 85
Master Clear (MCLR) Pin Reset
Power-on Reset (POR) 85
RESET Instruction (SWR)
Resources
Trap Conflict Reset (TRAPR) 85
Watchdog Timer Time-out Reset (WDTO) 85
Revision History
S
Serial Peripheral Interface (SPI) 207
Serial Peripheral Interface. See SPI.
Software Simulator
MPLAB X SIM 301
Special Features of the CPU 277
SPI
Control Registers
Helpful Tips
Resources

т

Thermal Operating Conditions	304
Thermal Packaging Characteristics	304
Third-Party Development Tools	302
Timer1	163
Control Register	165
Mode Settings	163
Resources	164
Timer2/3 and Timer4/5	167
Control Registers	169
Resources	167
Timing Diagrams	
BOR and Master Clear Reset Characteristics	
External Clock	
High-Speed PWMx Fault Characteristics	
High-Speed PWMx Module Characteristics	
I/O Characteristics	
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	
Input Capture x (ICx) Characteristics	
OCx/PWMx Characteristics	
Output Compare x (OCx) Characteristics	324
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	329
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	328
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	326
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	327
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	336
SPIx Slave Mode (Full-Duplex, CKE = 0 ,	<u> </u>
CKP = 1, SMP = 0)	334
SPIx Slave Mode (Full-Duplex, CKE = 1, $CKP = 0$, SMP = 0)	
CKP = 0, SMP = 0)	330