

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs505-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33EP64GS50X DEVICES

TABLE 4-2: CPU CORE REGISTER MAP (CONTINUED)

							,											
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DOENDL	003E	JE DO Loop End Address Register Low (DOENDL<15:1>)									—	0000						
DOENDH	0040	_	_	_	_	_	_	_	_	_	_	DO LO	oop End Ad	dress Regi	ster High ([DOENDH<	5:0>)	0000
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	_	US1	US0	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048	8 X Mode Start Address Register (XMODSRT<15:1>)								_	0000							
XMODEND	004A						X Mode End	Address R	egister (XN	IODEND<1	5:1>)						_	0001
YMODSRT	004C						Y Mode Star	t Address F	Register (YN	10DSRT<1	5:1>)						_	0000
YMODEND	004E						Y Mode End	Address R	egister (YN	IODEND<1	5:1>)						_	0001
XBREV	0050	BREN							XBRE	V<14:0>								0000
DISICNT	0052	_	_						I	DISICNT<1	3:0>							0000
TBLPAG	0054	+ TBLPAG<7:0>							0000									
CTXTSTAT	005A	—	_	—	_	—	CCTXI2	CCTXI1	CCTXI0	—	_	—	—	—	MCTXI2	MCTXI1	MCTXI0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The contents of this register should never be modified. The DSWPAG must always point to the first page.

4.7 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.7.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-2).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word-sized data (LSb of
	every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.7.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags, as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W (XWM) register, to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-2). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W (YWM) register, to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit (MODCON<14>) is set.

FIGURE 4-12: MODULO ADDRESSING OPERATION EXAMPLE

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_	—	—	—	—	—	—		
bit 15	bit 15 bit 8								
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
			NVMKI	EY<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, read	l as '0'			

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** NVM Key Register bits (write-only)

REGISTER 5-5: NVMSRCADR: NVM SOURCE DATA ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			NVMSRO	CADR<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			NVMSR	CADR<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown		

bit 15-0 NVMSRCADR<15:0>: NVM Source Data Address bits

The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the BOR and POR bits (RCON<1:0>) that are set. The user application can set or clear any bit, at any time, during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSCx bits is loaded into the NOSC<2:0> (OSCCON<10:8>) bits on Reset, which in turn, initializes the system clock.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS7000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXGS50X family CPU.

The interrupt controller has the following features:

- Six processor exceptions and software traps
- · Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Fixed interrupt entry and return latencies
- Alternate Interrupt Vector Table (AIVT) for debug support

7.1 Interrupt Vector Table

The dsPIC33EPXXGS50X family Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location, 000004h. The IVT contains six non-maskable trap vectors and up to 246 sources of interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-2, is available only when the Boot Segment is defined and the AIVT has been enabled. To enable the Alternate Interrupt Vector Table, the Configuration bit, AIVTDIS in the FSEC register, must be programmed and the AIVTEN bit must be set (INTCON2<8> = 1). When the AIVT is enabled, all interrupt and exception processes use the alternate vectors instead of the default vectors. The AIVT begins at the start of the last page of the Boot Segment, defined by BSLIM<12:0>. The second half of the page is no longer usable space. The Boot Segment must be at least 2 pages to enable the AIVT.

Note: Although the Boot Segment must be enabled in order to enable the AIVT, application code does not need to be present inside of the Boot Segment. The AIVT (and IVT) will inherit the Boot Segment code protection.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXGS50X family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 CF: Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected a clock failure
 - 0 = FSCM has not detected a clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to the selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

REGISTER 8-5: ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER

R/W-0	R-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	
ENAPLL	APLLCK	SELACLK	_	_	APSTSCLR2	APSTSCLR1	APSTSCLR0	
bit 15							bit 8	
L								
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
ASRCSEL	FRCSEL	—		—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	pit	U = Unimplen	nented bit, read	l as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 15	ENAPLL: Auxiliary PLL Enable bit 1 = APLL is enabled 0 = APLL is disabled							
bit 14	APLLCK: APLL Locked Status bit (read-only)							
	 1 = Indicates that Auxiliary PLL is in lock 0 = Indicates that Auxiliary PLL is not in lock 							
bit 13	SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider bit							
	1 = Auxiliary o 0 = Primary P	oscillators provi PLL (Fvco) prov	de the source ides the source	clock for the au e clock for the	uxiliary clock div auxiliary clock (vider divider		
bit 12-11	Unimplemen	ted: Read as 'd)'					
bit 10-8	APSTSCLR<	2:0>: Auxiliary	Clock Output E	Divider bits				
	AFSISCER<2:0>: Advinary Clock Output Divider bits 111 = Divided by 1 110 = Divided by 2 101 = Divided by 4 100 = Divided by 8 011 = Divided by 16 010 = Divided by 32 001 = Divided by 64 000 = Divided by 256							
bit 7	ASRCSEL: S 1 = Primary o 0 = No clock i	elect Reference scillator is the c	e Clock Source lock source	e for Auxiliary C	Clock bit			
bit 6	 FRCSEL: Select Reference Clock Source for Auxiliary PLL bit 1 = Selects the FRC clock for Auxiliary PLL 0 = Input clock source is determined by the ASRCSEL bit setting 							
bit 5-0	Unimplemen	ted: Read as 'o)'					

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD		PWMMD	
bit 15							bit 8
DAMA	D /11/2	D # 4 / 0	D 444 0	D 444 0			D 444 A
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	0-0	0-0	R/W-0
I2C1MD	U2MD	UTMD	SPI2MD	SPI1MD		_	ADCMD
							Dit U
Legend:							
R = Readabl	e bit	W = Writable I	oit	U = Unimpleme	ented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkn	own
bit 15	T5MD: Timer	5 Module Disab	le bit				
	1 = 1 mer5 mer5	odule is disable	d d				
hit 14	T4MD. Timer	4 Module Disah	u le hit				
	1 = Timer4 m	odule is disable	d				
	0 = Timer4 mo	odule is enable	d				
bit 13	T3MD: Timer	3 Module Disab	le bit				
	1 = Timer3 m	odule is disable	d				
1 11 4 0	0 = Timer3 m	odule is enable	d				
bit 12	T2MD: Timer2	2 Module Disab	le bit				
	1 = Timer2 module is disabled						
bit 11	T1MD: Timer	1 Module Disab	le bit				
	1 = Timer1 methods	odule is disable	d				
	0 = Timer1 m	odule is enable	d				
bit 10	Unimplement	ted: Read as 'o)'				
bit 9	PWMMD: PW	/Mx Module Dis	able bit				
	1 = PWMx mc	odule is disable	d				
hit 0		tod: Dood on '	ג ,				
bit 7		1 Module Disah	, le hit				
	$1 = 12C1 \mod 1$	ule is disabled					
	0 = I2C1 mod	ule is enabled					
bit 6	U2MD: UART	2 Module Disal	ole bit				
	1 = UART2 m	odule is disable	ed				
	0 = UART2 m	odule is enable	d				
bit 5	U1MD: UART	1 Module Disal	ole bit				
	1 = UARI1 m 0 = UART1 m	odule is disable	bd Id				
bit 4	SPI2MD: SPI	2 Module Disab	ole bit				
	1 = SPI2 mod	lule is disabled					
	0 = SPI2 mod	lule is enabled					
bit 3	SPI1MD: SPI	1 Module Disab	ole bit				
	1 = SPI1 mod	lule is disabled					
h # 0 4	0 = SPI1 mod	iule is enabled	. 1				
DIT 2-1 bit 0		Ted: Read as '() Io hit				
	$1 = \Delta DC \mod 1$	ule is disabled					
	$0 = ADC \mod 0$	ule is enabled					

REGISTER 9-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

10.4.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 10-20 through Register 10-38). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 10-3: MULTIPLEXING REMAPPABLE OUTPUTS FOR RPn

10.4.5.1 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings, across any or all of the RPn pins, is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs, and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

10.7 Peripheral Pin Select Registers

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0		
bit 15 bit 8									
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	-	—	—	—	—	_		
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 INT1R<7:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits 10110101 = Input tied to RP181 10110100 = Input tied to RP180

- bit 7-0 Unimplemented: Read as '0'

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_	_	-	—	—		—		
bit 15 bit 8									

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| INT2R7 | INT2R6 | INT2R5 | INT2R4 | INT2R3 | INT2R2 | INT2R1 | INT2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	Unimplemented: Read as '0'				
bit 7-0	INT2R<7:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits				
	10110101 = Input tied to RP181				
	10110100 = Input tied to RP180				
	•				
	•				
	•				
	00000001 = Input tied to RP1 00000000 = Input tied to Vss				

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV				OC32
bit 15	·			-			bit 8
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIC	G TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0
Legend:		HS = Hardwa	re Settable bit				
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	FLTMD: Fault	t Mode Select k	oit				
	1 = Fault mo	de is maintain	ed until the Fa	ault source is r	emoved; the c	orresponding	OCFLTA bit is
	cleared in	n software and	a new PWMx p	period starts		DV/My paria	d atarta
hit 11			a unui ine rau	it source is rem	loved and a ne		usians
DIC 14		it Out bit it out is driven b	aigh an a Eault				
	0 = PWMx or	utput is driven l	ow on a Fault				
bit 13	FLTTRIEN: F	ault Output Sta	te Select bit				
	1 = OCx pin	is tri-stated on	a Fault conditio	on			
	0 = OCx pin	I/O state is defi	ned by the FLT	OUT bit on a F	ault condition		
bit 12	OCINV: Outp	ut Compare x I	nvert bit				
	1 = OCx output is inverted						
1.1.44.0		but is not invert	ea				
DIT 11-9	Unimplemen	ted: Read as 1	0 [,]		<i></i>		
bit 8	OC32: Casca		Iodules Enable	bit (32-bit oper	ation)		
	1 = Cascade 0 = Cascade	module operat	tion is enabled				
bit 7	OCTRIG: Out	tout Compare x	Trigger/Sync S	Select bit			
	1 = Triggers	OCx from the s	ource designation	ted by the SYN	CSELx bits		
	0 = Synchror	nizes OCx with	the source des	signated by the	SYNCSELx bit	ts	
bit 6	TRIGSTAT: ⊺	imer Trigger St	atus bit				
	1 = Timer sou 0 = Timer sou	urce has been urce has not be	triggered and is een triggered a	s running nd is being held	d clear		
bit 5	OCTRIS: Out	put Compare x	Output Pin Dir	ection Select b	it		
	1 = OCx is tr	i-stated					
	0 = OCx mod	dule drives the	OCx pin				
Note 1:	Do not use the O	Cx module as i	ts own synchro	nization or trigg	ger source.		

When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 **HRPDIS HRDDIS** ___ BLANKSEL3 BLANKSEL2 BLANKSEL1 **BLANKSEL0** _ bit 15 bit 8 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN bit 7 bit 0 Leaend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 HRPDIS: High-Resolution PWMx Period Disable bit 1 = High-resolution PWMx period is disabled to reduce power consumption 0 = High-resolution PWMx period is enabled bit 14 HRDDIS: High-Resolution PWMx Duty Cycle Disable bit 1 = High-resolution PWMx duty cycle is disabled to reduce power consumption 0 = High-resolution PWMx duty cycle is enabled bit 13-12 Unimplemented: Read as '0' bit 11-8 BLANKSEL<3:0>: PWMx State Blank Source Select bits The selected state blank signal will block the current-limit and/or Fault input signals (if enabled via the BCH and BCL bits in the LEBCONx register). 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM5H is selected as the state blank source 0100 = PWM4H is selected as the state blank source 0011 = PWM3H is selected as the state blank source 0010 = PWM2H is selected as the state blank source 0001 = PWM1H is selected as the state blank source 0000 = No state blanking bit 7-6 Unimplemented: Read as '0' bit 5-2 CHOPSEL<3:0>: PWMx Chop Clock Source Select bits The selected signal will enable and disable (chop) the selected PWMx outputs. 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM5H is selected as the chop clock source 0100 = PWM4H is selected as the chop clock source 0011 = PWM3H is selected as the chop clock source 0010 = PWM2H is selected as the chop clock source 0001 = PWM1H is selected as the chop clock source 0000 = Chop clock generator is selected as the chop clock source bit 1 **CHOPHEN:** PWMxH Output Chopping Enable bit 1 = PWMxH chopping function is enabled 0 = PWMxH chopping function is disabled bit 0 CHOPLEN: PWMxL Output Chopping Enable bit 1 = PWMxL chopping function is enabled 0 = PWMxL chopping function is disabled

REGISTER 15-26: AUXCONx: PWMx AUXILIARY CONTROL REGISTER (x = 1 to 5)

REGISTER 19-10: ADCON5H: ADC CONTROL REGISTER 5 HIGH

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	—	—	WARMTIME3	WARMTIME2	WARMTIME1	WARMTIME0			
bit 15							bit 8			
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
SHRCIE	—	—	—	C3CIE	C2CIE	C1CIE	COCIE			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable bit		U = Unimplem	ented bit, read	as '0'	as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
DIT 15-12	Unimplemen	ted: Read as								
DIT 11-8		<3:0>: ADC De		x Power-up Del	ay Dits	an Cleak Daria				
	for all ADC co	res	wer-up delay		i the Core Sour	Ce Clock Perio	us (ICORESRC)			
	1111 = 3276	8 Source Cloc	<pre>< Periods</pre>							
	1110 = 1638	4 Source Clock	<pre>< Periods</pre>							
	1101 = 8192	Source Clock	Periods							
	1100 = 4096	Source Clock	Periods							
	1011 = 2048	Source Clock	Periods							
	1010 = 1024 1001 = 512 S	Source Clock F	Periods							
	1000 = 256 \$	Source Clock F	Periods							
	0111 = 128 \$	Source Clock F	eriods							
	0110 = 64 Sc	ource Clock Pe	eriods							
	0101 = 32 So	ource Clock Pe	eriods							
	0100 = 16 Source Clock Periods									
bit 7	SHRCIE: Shared ADC Core Ready Common Interrupt Enable bit									
	1 = Common	interrupt will b	e generated w	hen ADC core	is powered and	ready for oper	ation			
	0 = Common	interrupt is dis	abled for an A	DC core ready	event					
bit 6-4	Unimplemented: Read as '0'									
bit 3	t 3 C3CIE: Dedicated ADC Core 3 Ready Common Interrupt Enable bit									
	1 = Common	interrupt will b	e generated w	hen ADC Core	3 is powered a	nd ready for op	eration			
h :# 0				DC Core 3 read	uy event					
bit 2 C2CIE: Dedicated ADC Core 2 Ready Common Interrupt Enable bit						nd roady for on	aration			
	1 = Common 0 = Common	interrupt will b	abled for an A	DC Core 2 rea	dv event	nu ready for op	eration			
bit 1	C1CIE: Dedic	cated ADC Cor	e 1 Ready Co	mmon Interrupt	Enable bit	bit				
	1 = Common	interrupt will b	e generated w	hen ADC Core	1 is powered a	nd ready for on	eration			
	0 = Common	interrupt is dis	abled for an A	DC Core 1 read	dy event	, - -				
bit 0	COCIE: Dedic	cated ADC Cor	e 0 Ready Co	mmon Interrupt	Enable bit					
	1 = Common	interrupt will b	e generated w	hen ADC Core	0 is powered a	nd ready for op	eration			
	0 = Common	interrupt is dis	abled for an A	DC Core 0 read	dv event					

REGISTER 19-26: ADTRIGXL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW (x = 0 to 5) (CONTINUED)

bit 4-0 TRGSRC(4x)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits

- 11111 = ADTRG31
- 11110 = Reserved
- 11101 = Reserved
- 11100 = PWM Generator 5 current-limit trigger
- 11011 = PWM Generator 4 current-limit trigger
- 11010 = PWM Generator 3 current-limit trigger
- 11001 = PWM Generator 2 current-limit trigger
- 11000 = PWM Generator 1 current-limit trigger
- 10111 = Output Compare 2 trigger
- 10110 = Output Compare 1 trigger 10101 = Reserved
- 10100 = Reserved
- 10011 = PWM Generator 5 secondary trigger
- 10010 = PWM Generator 4 secondary trigger
- 10001 = PWM Generator 3 secondary trigger
- 10000 = PWM Generator 2 secondary trigger
- 01111 = PWM Generator 1 secondary trigger
- 01110 = PWM secondary Special Event Trigger
- 01101 = Timer2 period match
- 01100 = Timer1 period match
- 01011 = Reserved
- 01010 = Reserved
- 01001 = PWM Generator 5 primary trigger
- 01000 = PWM Generator 4 primary trigger
- 00111 = PWM Generator 3 primary trigger
- 00110 = PWM Generator 2 primary trigger
- 00101 = PWM Generator 1 primary trigger
- 00100 = PWM Special Event Trigger
- 00011 = Reserved
- 00010 = Level software trigger
- 00001 = Common software trigger
- 00000 = No trigger is enabled

20.0 HIGH-SPEED ANALOG COMPARATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed Analog Comparator Module" (DS70005128) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The high-speed analog comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

20.1 Features Overview

The SMPS comparator module offers the following major features:

- Four Rail-to-Rail Analog Comparators
- Dedicated 12-Bit DAC for each Analog Comparator
- Up to Six Selectable Input Sources per Comparator:
 - Four external inputs
 - Two internal inputs from the PGAx module
- Programmable Comparator Hysteresis
- Programmable Output Polarity
- Up to Two DAC Outputs to Device Pins
- Multiple Voltage References for the DAC:
 External References (EXTREF1 or
 - EXTREF2) - AVDD
- Interrupt Generation Capability
- Functional Support for PWMx:
 - PWMx duty cycle control
 - PWMx period control
 - PWMx Fault detected

20.2 Module Description

Figure 20-1 shows a functional block diagram of one analog comparator from the high-speed analog comparator module. The analog comparator provides high-speed operation with a typical delay of 15 ns. The negative input of the comparator is always connected to the DACx circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin. The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
74	SL	SL	f	f = Left Shift f		1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
75	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#litl0,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
76	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
78	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f, WREG = WREG - f - (\overline{C})		1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
79	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
80	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
81	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
82	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
83	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
84	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
85	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
	XOR #lit10,Wn Wd = lit10.XOR.Wd		Wd = lit10 .XOR. Wd	1	1	N,Z	
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
86	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Тур.	Max.	Units	Conditions			
Operating Cur	rent (IDD) ⁽¹⁾			•			
DC20d	7	12	mA	-40°C			
DC20a	7	12	mA	+25°C	2 2)/		
DC20b	7	12	mA	+85°C	3.3V	10 MIFS	
DC20c	7	12	mA	+125°C			
DC22d	11	19	mA	-40°C			
DC22a	11	19	mA	+25°C	2.2)/		
DC22b	11	19	mA	+85°C	3.3V	20 MIP3	
DC22c	11	19	mA	+125°C			
DC24d	19	30	mA	-40°C			
DC24a	19	30	mA	+25°C	2 2)/		
DC24b	19	30	mA	+85°C	3.3V	40 MIF 3	
DC24c	19	30	mA	+125°C			
DC25d	26	41	mA	-40°C			
DC25a	26	41	mA	+25°C	2.2)/		
DC25b	26	41	mA	+85°C	3.3V	60 MIPS	
DC25c	26	41	mA	+125°C			
DC26d	30	46	mA	-40°C			
DC26a	30	46	mA	+25°C	3.3V	70 MIPS	
DC26b	30	46	mA	+85°C			
DC27d	51	81	mA	-40°C			
DC27a	51	81	mA	+25°C	3.3V	70 MIPS	
DC27b	52	82	mA	+85°C	7		

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- · CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- CPU is executing while(1) statement
- JTAG is disabled
- **2:** For this specification, the following test conditions apply:
 - · APLL clock is enabled
 - All 5 PWMs enabled and operating at maximum speed (PTCON2<2:0> = 000), PTPER = 1000h, 50% duty cycle
 - All other peripherals are disabled (corresponding PMDx bits are set)

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2