

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 $= \cdot \times =$

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs505t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXGS50X Digital Signal Controller (DSC) devices.

dsPIC33EPXXGS50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXGS50X FAMILY BLOCK DIAGRAM

CORCON: CORE CONTROL REGISTER

REGISTER 3-2:

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0	
VAR		US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0	
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF	
bit 7							bit 0	
Legend:		C = Clearable	e bit					
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	VAR: Variable 1 = Variable e 0 = Fixed exc	e Exception Pro exception proce	ocessing Later essing is enab sing is enabled	ncy Control bit led l				
bit 14	Unimplemen	ted: Read as '	0'					
bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed	Control bits				
	11 = Reserve 10 = DSP eng 01 = DSP eng 00 = DSP eng	d gine multiplies gine multiplies gine multiplies	are mixed-sig are unsigned are signed	n				
bit 11	EDT: Early DO	Loop Termina	ation Control b	it(1)				
	1 = Terminate 0 = No effect	es executing DO	loop at the e	nd of current lo	pop iteration			
bit 10-8	DL<2:0>: DO	Loop Nesting I	Level Status b	its				
	111 = 7 do lo	ops are active						
	•							
	•							
	001 = 1 DO lo 000 = 0 DO lo	op is active ops are active						
bit 7	SATA: ACCA	Saturation En	able bit					
	1 = Accumula 0 = Accumula	itor A saturatio itor A saturatio	n is enabled n is disabled					
bit 6	SATB: ACCB	Saturation En	able bit					
	1 = Accumula 0 = Accumula	itor B saturatio itor B saturatio	n is enabled n is disabled					
bit 5	SATDW: Data	a Space Write f	from DSP Eng	ine Saturation	Enable bit			
	1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled							
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	Select bit				
	1 = 9.31 satur 0 = 1.31 satur	ration (super sa ration (normal	aturation) saturation)					
bit 3	IPL3: CPU Int	terrupt Priority	Level Status b	oit 3 (2)				
	1 = CPU Inter 0 = CPU Inter	rupt Priority Le rupt Priority Le	evel is greater evel is 7 or les	than 7 s				
Note 1: Th	nis bit is always r	ead as '0'.						

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

TABLE 4-26: ANALOG COMPARATOR REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMP1CON	0540	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP1DAC	0542		—	_	—		CMREF<11:0>						0000					
CMP2CON	0544	CMPON	_	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP2DAC	0546	_	_	_	_						CMREF	<11:0>						0000
CMP3CON	0548	CMPON	_	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP3DAC	054A		—	—	-						CMREF	<11:0>						0000
CMP4CON	054C	CMPON	_	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP4DAC	054E	_	_	_	_						CMREF	<11:0>						0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: JTAG INTERFACE REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	_	_	_		JDATAH<11:0> x:							xxxx				
JDATAL	0FF2		JDATAL<15:0> 0							0000								

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DATA ACCESS FROM PROGRAM 4.9.1 MEMORY USING TABLE **INSTRUCTIONS**

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)
 - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG < 7 > = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-15: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

- bit 2
 STKERR: Stack Error Trap Status bit

 1 = Stack error trap has occurred
 0 = Stack error trap has not occurred

 bit 1
 OSCFAIL: Oscillator Failure Trap Status bit

 1 = Oscillator failure trap has occurred
 0 = Oscillator failure trap has not occurred
- bit 0 Unimplemented: Read as '0'

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0					
GIE	DISI	SWTRAP	—	_	—	—	AIVTEN					
bit 15							bit 8					
U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
			INT4EP		INT2EP	INT1EP	INT0EP					
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'						
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown					
bit 15	GIE: Global I	nterrupt Enable	e bit									
	1 = Interrupts	and associate	ed IE bits are e	nabled								
h:+ 1 4		s are disabled,	but traps are s	suii enabled								
DIL 14		truction is activ										
	0 = DISI insi	truction is not a	e active									
bit 13	SWTRAP: So	oftware Trap St	atus bit									
	1 = Software	trap is enabled	1									
	0 = Software	trap is disable	d									
bit 12-9	Unimplemen	nted: Read as '	0'									
bit 8	AIVTEN: Alte	ernate Interrupt	Vector Table I	Enable								
	1 = Uses Alte	ernate Interrupt	Vector Table									
	0 = Uses star	ndard Interrupt	Vector lable									
DIT 7-5	Unimplemen	ited: Read as										
DIT 4	INI4EP: EXte	ernal Interrupt 4	4 Edge Detect	Polarity Selec	T DIT							
	1 = Interrupt	on positive ed	ye 1e									
bit 3	Unimplemen	ted: Read as '	0'									
bit 2	INT2EP: Exte	ernal Interrupt 2	2 Edge Detect	Polarity Selec	t bit							
	1 = Interrupt on negative edge											
	0 = Interrupt	on positive edg	je									
bit 1	INT1EP: Exte	ernal Interrupt ?	1 Edge Detect	Polarity Selec	t bit							
	1 = Interrupt	= Interrupt on negative edge										
	0 = Interrupt	on positive edg	je									
bit 0	INTOEP: Exte	ernal Interrupt (DEdge Detect	Polarity Selec	t bit							
	1 = Interrupt	on negative ed	ge 1e									

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SCK1INR7	SCK1INR6	SCK1INR5	SCK1INR4	SCK1INR3	SCK1INR2	SCK1INR1	SCK1INR0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SDI1R7	SDI1R6	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	
bit 7		·				·	bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 7-0	<pre>SCR INK(7). 10110101 = 10110100 =</pre>	Input tied to RF Input tied to RF Input tied to RF Input tied to Vs Assign SPI1 D Input tied to RF Input tied to RF	2181 2180 21 21 21 21 21 21 21 21 21 21 21 21 21	11) to the Corre	esponding RPn	Pin bits		

REGISTER 10-12: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

REGISTER 10-14: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SCK2INR7	SCK2INR6	SCK2INR5	SCK2INR4	SCK2INR3	SCK2INR2	SCK2INR1	SCK2INR0	
bit 15			·				bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-8 bit 7-0	SCK2INR<7:0 10110101 = 10110100 = 00000001 = 00000000 = SDI2R<7:0>: 10110101 = 10110100 = 00000001 = 00000001 =	0>: Assign SPI Input tied to RF Input tied to RF Input tied to RF Input tied to VS Assign SPI2 D Input tied to RF Input tied to RF	2 Clock Input 2181 2180 21 35 21 35 21 35 2181 2180 21 35	(SCK2) to the	Corresponding	RPn Pin bits Pin bits		

REGISTER 10-26:	RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6
-----------------	---

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP45R<5:0>: Peripheral Output Function is Assigned to RP45 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP44R<5:0>: Peripheral Output Function is Assigned to RP44 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-27: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0
—	—	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-8 **RP47R<5:0>:** Peripheral Output Function is Assigned to RP47 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP46R<5:0>:** Peripheral Output Function is Assigned to RP46 Output Pin bits (see Table 10-2 for peripheral function numbers)

13.2 Input Capture Registers

REGISTER 13-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0		
bit 15							bit 8
U-0	R/W-0	R/W-0	R-0, HC, HS	R-0, HC, HS	R/W-0	R/W-0	R/W-0
	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7							bit 0
Legend:		HC = Hardware	e Clearable bit	HS = Hardwa	re Settable bit		
R = Readab	le bit	W = Writable b	it	U = Unimpler	nented bit. read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	known
							-
bit 15-14	Unimplemen	ted: Read as '0	,				
bit 13	ICSIDL: Inpu	t Capture x Stop	in Idle Control bi	t			
	1 = Input cap	oture will halt in (CPU Idle mode				
	0 = Input cap	oture will continu	e to operate in C	PU Idle mode			
bit 12-10	ICTSEL<2:0>	Input Capture	x Timer Select bi	ts			
	111 = Periph	neral clock (FP) i	s the clock source	e of the ICx			
	110 = Reser	ved					
	101 = Reser	veu K is the clock so	urce of the ICv (o	nly the synchro	nous clock is s	upported)	
	011 = T5CL	K is the clock so	urce of the ICx (o	The synchro		apported)	
	010 = T4CL	K is the clock so	urce of the ICx				
	001 = T2CLI	K is the clock so	urce of the ICx				
	000 = T3CLI	K is the clock so	urce of the ICx				
bit 9-7	Unimplemen	ited: Read as '0	, , , , , , , , , , , , , , , , , , , ,				
bit 6-5	ICI<1:0>: Nu	mber of Capture	s per Interrupt Se	lect bits (this fie	eld is not used i	if ICM<2:0> =	001 or 111)
	11 = Interrup	t on every fourth	capture event				
	10 = Interrup	t on every triffa (d capture event				
	00 = Interrup	t on every captu	re event				
bit 4	ICOV: Input (Capture x Overflo	ow Status Flag bit	(read-only)			
	1 = Input cap	oture buffer over	flow has occurred				
	0 = No input	capture buffer o	verflow has occu	rred			
bit 3	ICBNE: Input	t Capture x Buffe	er Not Empty Stat	us bit (read-onl	y)		
	1 = Input cap 0 = Input cap	oture buffer is no oture buffer is en	t empty, at least o npty	one more captu	ire value can be	e read	
bit 2-0	ICM<2:0>: In	put Capture x M	ode Select bits				
	111 = Input (detect	Capture x function only, all other co	ons as an interru ontrol bits are not	pt pin only in (applicable)	CPU Sleep and	d Idle modes	(rising edge
	110 = Unuse	d (module is dis	abled)				
	101 = Captur	re mode, every 1	6th rising edge (Prescaler Capt	ure mode)		
	100 = Captul	re mode, every 4	in rising edge (P	rescaler Captul	re mode)		
	010 = Captu	re mode. every f	alling edge (Simp	le Capture mod	de)		
	001 = Captur	e mode, every ris	sing and falling ed	ge (Edge Detec	t mode, ICI<1:0	>, is not used i	in this mode)

001 = Capture mode, every fising an000 = Input Capture x is turned off

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0			
FLTMD	FLTOUT	FLTTRIEN	OCINV				OC32			
bit 15	·			-			bit 8			
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0			
OCTRIC	G TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0			
bit 7							bit 0			
Legend:		HS = Hardwa	re Settable bit							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	FLTMD: Fault	t Mode Select I	oit							
	1 = Fault mo	de is maintain	ed until the Fa	ault source is r	emoved; the c	orresponding	OCFLTA bit is			
	cleared in	n software and	a new PWMx p	period starts		DV/My paria	d atarta			
hit 11			a unui ine rau	it source is rem	loved and a ne		usians			
DIC 14		it Out bit	aigh an a Eault							
	0 = PWMx or	utput is driven l	ow on a Fault							
bit 13	FLTTRIEN: F	ault Output Sta	te Select bit							
	1 = OCx pin	is tri-stated on	a Fault conditio	on						
	0 = OCx pin	I/O state is defi	ned by the FLT	OUT bit on a F	ault condition					
bit 12	OCINV: Outp	ut Compare x I	nvert bit							
	1 = OCx outp	out is inverted								
h:: 44 0		out is not invert	ed							
DIT 11-9	Unimplemen	ted: Read as								
DIT 8			iodules Enable	bit (32-bit oper	ation)					
	1 = Cascade 0 = Cascade	module operat	tion is disabled							
bit 7	OCTRIG: Out	tout Compare x	Trigger/Sync S	Select bit						
	1 = Triggers	OCx from the s	ource designation	ted by the SYN	CSELx bits					
	0 = Synchror	nizes OCx with	the source des	signated by the	SYNCSELx bit	ts				
bit 6	TRIGSTAT: ⊤	imer Trigger St	atus bit							
	1 = Timer sou 0 = Timer sou	 1 = Timer source has been triggered and is running 0 = Timer source has not been triggered and is being held clear 								
bit 5	OCTRIS: Out	put Compare x	Output Pin Dir	ection Select b	it					
	1 = OCx is tr	i-stated								
	0 = OCx mod	lule drives the	OCx pin							
Note 1:	Do not use the O	Cx module as i	ts own synchro	nization or trigg	ger source.					

When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = OCxRS compare event is used for synchronization
 - 11110 = INT2 pin synchronizes or triggers OCx
 - 11101 = INT1 pin synchronizes or triggers OCx
 - 11100 = Reserved
 - 11011 = CMP4 module synchronizes or triggers OCx
 - 11010 = CMP3 module synchronizes or triggers OCx
 - 11001 = CMP2 module synchronizes or triggers OCx
 - 11000 = CMP1 module synchronizes or triggers OCx
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Reserved
 - 10100 = Reserved
 - 10011 = IC4 input capture interrupt event synchronizes or triggers OCx
 - 10010 = IC3 input capture interrupt event synchronizes or triggers OCx
 - 10001 = IC2 input capture interrupt event synchronizes or triggers OCx
 - 10000 = IC1 input capture interrupt event synchronizes or triggers OCx
 - 01111 = Timer5 synchronizes or triggers OCx
 - 01110 = Timer4 synchronizes or triggers OCx
 - 01101 = Timer3 synchronizes or triggers OCx
 - 01100 = Timer2 synchronizes or triggers OCx (default)
 - 01011 = Timer1 synchronizes or triggers OCx
 - 01010 = Reserved
 - 01001 = Reserved
 - 01000 = IC4 input capture event synchronizes or triggers OCx
 - 00111 = IC3 input capture event synchronizes or triggers OCx
 - 00110 = IC2 input capture event synchronizes or triggers OCx
 - 00101 = IC1 input capture event synchronizes or triggers OCx
 - 00100 = OC4 module synchronizes or triggers $OCx^{(1,2)}$
 - 00011 = OC3 module synchronizes or triggers $OCx^{(1,2)}$
 - 00010 = OC2 module synchronizes or triggers $OCx^{(1,2)}$
 - 00001 = OC1 module synchronizes or triggers $OCx^{(1,2)}$
 - 00000 = No sync or trigger source for OCx
- Note 1: Do not use the OCx module as its own synchronization or trigger source.
 - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

REGISTER 15-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 15-2: PTCON2: PWMx CLOCK DIVIDER SELECT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0 U		U-0
—	—	_	—	—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	PCLKDIV<2:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

111 = Reserved

- 110 = Divide-by-64, maximum PWM timing resolution
- 101 = Divide-by-32, maximum PWM timing resolution
- 100 = Divide-by-16, maximum PWM timing resolution
- 011 = Divide-by-8, maximum PWM timing resolution
- 010 = Divide-by-4, maximum PWM timing resolution
- 001 = Divide-by-2, maximum PWM timing resolution
- 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

-									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CLKSEL1	CLKSEL0	CLKDIV5	CLKDIV4	CLKDIV3	CLKDIV2	CLKDIV1	CLKDIV0		
bit 15							bit 8		
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
SHREN	—	_	—	C3EN	C2EN	C1EN	COEN		
bit 7							bit 0		
r									
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-14	CLKSEL<1:0 11 = APLL 10 = FRC 01 = Fosc (S 00 = Fsys (Sy	>: ADC Module ystem Clock x ystem Clock)	e Clock Source 2)	Selection bits					
bit 13-8	CLKDIV<5:05 The divider fo module clock TCORESRC clo register or the 111111 = 64	>: ADC Module rms a TCORESR source selecte ock to get a co e SHRADCS<6 Source Clock I Source Clock P Source Clock P Source Clock P Source Clock P	Clock Source c clock used b d by the CLKS re-specific TAD :0> bits in the / Periods eriods eriods eriods eriod	Divider bits y all ADC cores EL<2:0> bits. T CORE clock usi ADCON2L regis	s (shared and d Then, each ADC ng the ADCS< ster.	edicated) from C core individua 6:0> bits in the	the TsRC ADC ally divides the e ADCORExH		
bit 7	SHREN: Shared A 1 = Shared A 0 = Shared A	red ADC Core DC core is ena DC core is disa	Enable bit bled ıbled						
bit 6-4	Unimplemen	ted: Read as ')'						
bit 3	C3EN: Dedicated 1 = Dedicated 0 = Dedicated	ated ADC Core d ADC Core 3 is d ADC Core 3 is	3 Enable bits s enabled s disabled						
bit 2	C2EN: Dedicated ADC Core 2 Enable bits 1 = Dedicated ADC Core 2 is enabled 0 = Dedicated ADC Core 2 is disabled								
bit 1	C1EN: Dedicated 1 = Dedicated 0 = Dedicated	ated ADC Core d ADC Core 1 is d ADC Core 1 is	1 Enable bits s enabled s disabled						
bit 0	 0 = Dedicated ADC Core 1 is disabled C0EN: Dedicated ADC Core 0 Enable bits 1 = Dedicated ADC Core 0 is enabled 0 = Dedicated ADC Core 0 is disabled 								

REGISTER 19-6: ADCON3H: ADC CONTROL REGISTER 3 HIGH

REGISTER 19-27: ADTRIGXH: ADC CHANNEL TRIGGER x SELECTION REGISTER HIGH (x = 0 to 5) (CONTINUED)

- bit 4-0 TRGSRC(4x+2)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits
 - 11111 = ADTRG31
 - 11110 = Reserved
 - 11101 = Reserved
 - 11100 = PWM Generator 5 current-limit trigger
 - 11011 = PWM Generator 4 current-limit trigger
 - 11010 = PWM Generator 3 current-limit trigger
 - 11001 = PWM Generator 2 current-limit trigger
 - 11000 = PWM Generator 1 current-limit trigger
 - 10111 = Output Compare 2 trigger
 - 10110 = Output Compare 1 trigger
 - 10101 = Reserved 10100 = Reserved
 - 10011 = PWM Generator 5 secondary trigger
 - 10010 = PWM Generator 4 secondary trigger
 - 10001 = PWM Generator 3 secondary trigger
 - 10000 = PWM Generator 2 secondary trigger
 - 01111 = PWM Generator 1 secondary trigger
 - 01110 = PWM secondary Special Event Trigger
 - 01101 = Timer2 period match
 - 01100 = Timer1 period match
 - 01011 = Reserved
 - 01010 = Reserved
 - 01001 = PWM Generator 5 primary trigger
 - 01000 = PWM Generator 4 primary trigger
 - 00111 = PWM Generator 3 primary trigger
 - 00110 = PWM Generator 2 primary trigger
 - 00101 = PWM Generator 1 primary trigger
 - 00100 = PWM Special Event Trigger
 - 00011 = Reserved
 - 00010 = Level software trigger
 - 00001 = Common software trigger
 - 00000 = No trigger is enabled

FIGURE 26-23: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 26-41: UARTX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: $3.0V$ to $3.6V$ (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
UA10	TUABAUD	UARTx Baud Time	66.67			ns		
UA11	FBAUD	UARTx Baud Frequency	—	—	15	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	—		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-42: ANALOG CURRENT SPECIFICATIONS

AC CHARACTERISTICS			Standa (unless Operati	ird Opera s otherw ing temp	ating C ise stat erature	ondition ed) -40°C	ns: 3.0V to 3.6V ≤ TA ≤ +125°C
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions				
AVD01	IDD	Analog Modules Current Consumption	_	9	_	mA	Characterized data with the following modules enabled: APLL, 5 ADC Cores, 2 PGAs and 4 Analog Comparators

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC/DC CHARACTERISTICS ⁽¹⁾				Standard ((unless ot Operating	Operating C herwise sta temperature	Conditions: 3 ted) -40°C ≤ TA -40°C ≤ TA	8.0V to 3.	6V for Industrial C for Extended
Param No.	Symbol	Characteris	tic	Min.	Тур.	Max.	Units	Comments
PA01	Vin	Input Voltage Rang	е	AVss - 0.3	_	AVDD + 0.3	V	
PA02	Vсм	Common-Mode Inp Voltage Range	out	AVss	—	AVDD - 1.6	V	
PA03	Vos	Input Offset Voltage	Э	-10	_	10	mV	
PA04	Vos	Input Offset Voltage with Temperature	e Drift	_	±15	—	µV/∘C	
PA05	Rin+	Input Impedance of Positive Input	F	_	>1M 7 pF	—	Ω pF	
PA06	Rin-	Input Impedance of Negative Input		_	10K 7 pF	—	Ω pF	
PA07	Gerr	Gain Error		-2	_	2	%	Gain = 4x, 8x
				-3	—	3	%	Gain = 16x
				-4	—	4	%	Gain = 32x, 64x
PA08	Lerr	Gain Nonlinearity E	Fror		_	0.5	%	% of full scale, Gain = 16x
PA09	IDD	Current Consumpti	on		2.0	—	mA	Module is enabled with a 2-volt P-P output voltage swing
PA10a	BW	Small Signal	G = 4x		10	_	MHz	
PA10b		Bandwidth (-3 dB)	G = 8x		5	_	MHz	
PA10c			G = 16x	_	2.5	—	MHz	
PA10d			G = 32x		1.25	—	MHz	
PA10e			G = 64x	_	0.625	—	MHz	
PA11	OST	Output Settling Tim of Final Value	e to 1%	_	0.4	—	μs	Gain = 16x, 100 mV input step change
PA12	SR	Output Slew Rate		_	40	_	V/µs	Gain = 16x
PA13	TGSEL	Gain Selection Tim	е	_	1	—	μs	
PA14	TON	Module Turn On/Set	tting Time	_	_	10	μs	

TABLE 26-48: PGAx MODULE SPECIFICATIONS

Note 1: The PGAx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

TABLE 26-49: CONSTANT-CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS ⁽¹⁾				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol	Characteristic	Min.	Typ. Max. Units Conditions			
CC01	Idd	Current Consumption	_	30	—	μA	
CC02	IREG	Regulation of Current with Voltage On		±3	_	%	
CC03	Ιουτ	Current Output at Terminal	_	10	_	μA	

Note 1: The constant-current source module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

NOTES:

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103D Sheet 1 of 2