

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

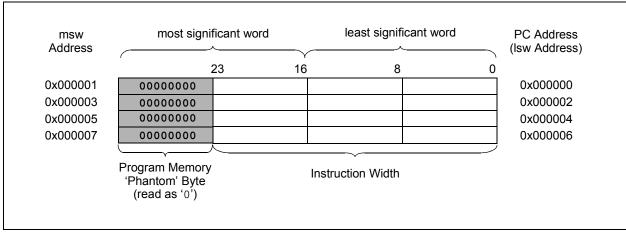
E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs505t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-5).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented, or decremented, by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.2.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXGS50X family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-5: PROGRAM MEMORY ORGANIZATION

4.5.2 EXTENDED X DATA SPACE

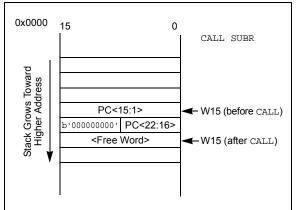
The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible, regardless of the contents of the Data Space Page register. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space in combination with DSRPAG = 0x00. Consequently, DSRPAG is initialized to 0x001 at Reset.

- Note 1: DSRPAG should not be used to access Page 0. An EDS access with DSRPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSRPAG in software has no effect.

The remaining PSV pages are only accessible using the DSRPAG register in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

4.5.3 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP), and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the Stack Pointer (for example, creating stack frames).


Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the
	hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXGS50X devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-11 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes). When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-11. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-11: CALL STACK FRAME

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS7000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXGS50X family CPU.

The interrupt controller has the following features:

- Six processor exceptions and software traps
- · Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Fixed interrupt entry and return latencies
- Alternate Interrupt Vector Table (AIVT) for debug support

7.1 Interrupt Vector Table

The dsPIC33EPXXGS50X family Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location, 000004h. The IVT contains six non-maskable trap vectors and up to 246 sources of interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-2, is available only when the Boot Segment is defined and the AIVT has been enabled. To enable the Alternate Interrupt Vector Table, the Configuration bit, AIVTDIS in the FSEC register, must be programmed and the AIVTEN bit must be set (INTCON2<8> = 1). When the AIVT is enabled, all interrupt and exception processes use the alternate vectors instead of the default vectors. The AIVT begins at the start of the last page of the Boot Segment, defined by BSLIM<12:0>. The second half of the page is no longer usable space. The Boot Segment must be at least 2 pages to enable the AIVT.

Note: Although the Boot Segment must be enabled in order to enable the AIVT, application code does not need to be present inside of the Boot Segment. The AIVT (and IVT) will inherit the Boot Segment code protection.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXGS50X family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

TABLE 7-1: INTERRUPT VECTOR DETAILS

	Vector	IRQ		Interrupt Bit Location			
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority	
	Hi	ghest Nat	ural Order Priority	•			
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>	
IC1 – Input Capture 1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>	
OC1 – Output Compare 1	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>	
T1 – Timer1	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>	
Reserved	12	4	0x00001C	_	_	_	
IC2 – Input Capture 2	13	5	0x00001E	IFS0<5>	IEC0<5>	IPC1<6:4>	
OC2 – Output Compare 2	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>	
T2 – Timer2	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>	
T3 – Timer3	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>	
SPI1E – SPI1 Error	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>	
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>	
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>	
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>	
ADC – ADC Global Convert Done	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>	
Reserved	22	14	0x000030	_	_	_	
NVM – NVM Write Complete	23	15	0x000032	IFS0<15>	IEC0<15>	IPC3<14:12>	
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>	
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>	
CMP1 – Analog Comparator 1 Interrupt	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>	
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>	
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>	
Reserved	29-32	21-24	0x00003E-0x000044	_	_	_	
OC3 – Output Compare 3	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>	
OC4 – Output Compare 4	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>	
T4 – Timer4	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12>	
T5 – Timer5	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>	
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>	
U2RX – UART2 Receiver	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>	
U2TX – UART2 Transmitter	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12>	
SPI2E – SPI2 Error	40	32	0x000054	IFS2<0>	IEC2<0>	IPC8<2:0>	
SPI2 – SPI2 Transfer Done	41	33	0x000056	IFS2<1>	IEC2<1>	IPC8<6:4>	
Reserved	42-44	34-36	0x000058-0x00005C	—	_	_	
IC3 – Input Capture 3	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>	
IC4 – Input Capture 4	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>	
Reserved	47-56	39-48	0x000062-0x000074	_	_	_	
SI2C2 – I2C2 Slave Event	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>	
MI2C2 – I2C2 Master Event	58	50	0x000078	IFS3<2>	IEC3<2>	IPC12<10:8>	
Reserved	59-61	51-53	0x00007A-0x00007E	_	_	_	
INT4 – External Interrupt 4	62	54	0x000080	IFS3<6>	IEC3<6>	IPC13<10:8>	
Reserved	63-64	55-54	0x000082-0x000084	—		_	
PSEM – PWM Special Event Match	65	57	0x000086	IFS3<9>	IEC3<9>	IPC14<6:4>	
Reserved	66-72	58-64	0x000088-0x000094	—		_	
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>	
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>	
Reserved	75-80	67-72	0x00009A-0x0000A4	—		_	

R/W-0 U2CTSR6 R/W-0 U2RXR6	R/W-0 U2CTSR5 R/W-0 U2RXR5	R/W-0 U2CTSR4 R/W-0 U2RXR4	R/W-0 U2CTSR3 R/W-0 U2RXR3	R/W-0 U2CTSR2 R/W-0 U2RXR2	R/W-0 U2CTSR1 R/W-0 U2RXR1	R/W-0 U2CTSR0 bit 8 R/W-0 U2RXR0		
R/W-0 U2RXR6	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	bit 8 R/W-0		
U2RXR6	-	-	-	-	-	R/W-0		
U2RXR6	-	-	-	-	-	-		
U2RXR6	-	-	-	-	-	-		
	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0		
						•=		
						bit (
					(0)			
t _	W = Writable		U = Unimplemented bit, read as '0'					
R	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
<pre>10110101 = Input tied to RP181 10110100 = Input tied to RP180</pre>								
	L0110101 = L0110100 = D00000001 = D00000000 = L0110101 = L0110100 = D00000001 =	10110101 = Input tied to RF 10110100 = Input tied to RF 100000001 = Input tied to RF 100000000 = Input tied to VS 12RXR<7:0>: Assign UART 10110101 = Input tied to RF 10110100 = Input tied to RF	10110101 = Input tied to RP181 10110100 = Input tied to RP180 00000001 = Input tied to RP1 00000000 = Input tied to Vss J2RXR<7:0>: Assign UART2 Receive (U2 10110101 = Input tied to RP181	10110101 = Input tied to RP181 10110100 = Input tied to RP180 100000001 = Input tied to RP1 100000000 = Input tied to Vss 12RXR<7:0>: Assign UART2 Receive (U2RX) to the Con 10110101 = Input tied to RP181 10110100 = Input tied to RP180	<pre>10110101 = Input tied to RP181 10110100 = Input tied to RP180 100000001 = Input tied to RP1 100000000 = Input tied to Vss J2RXR<7:0>: Assign UART2 Receive (U2RX) to the Corresponding RP 10110101 = Input tied to RP181 10110100 = Input tied to RP180 10000001 = Input tied to RP1</pre>	10110100 = Input tied to RP180 100000001 = Input tied to RP1 100000000 = Input tied to Vss 102RXR<7:0>: Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits 10110101 = Input tied to RP181 10110100 = Input tied to RP180 10000001 = Input tied to RP1		

REGISTER 10-11: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

12.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare modules (Timer2 and Timer3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1. T3CON and T5CON are shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 12-2.

12.1 Timer Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

12.1.1 KEY RESOURCES

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

12.2 Timer Control Registers

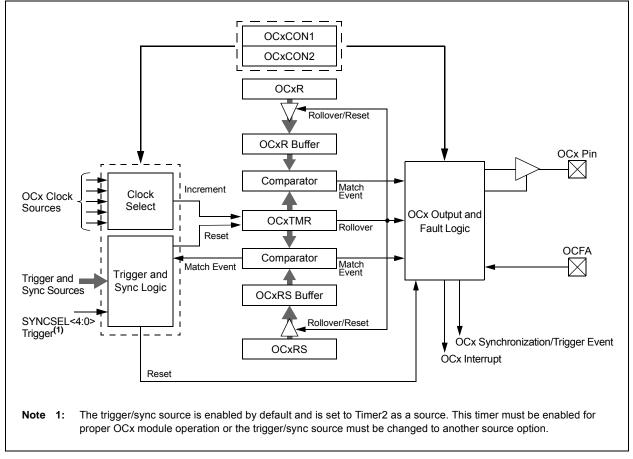
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON TSIDL bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 U-0 R/W-0 TCS⁽¹⁾ TGATE TCKPS1 TCKPS0 T32 ____ ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared -n = Value at POR x = Bit is unknown bit 15 TON: Timerx On bit When T32 = 1: 1 = Starts 32-bit Timerx/y 0 = Stops 32-bit Timerx/y When T32 = 0: 1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx bit 14 Unimplemented: Read as '0' bit 13 TSIDL: Timerx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-7 Unimplemented: Read as '0' bit 6 TGATE: Timerx Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 5-4 TCKPS<1:0>: Timerx Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3 T32: 32-Bit Timer Mode Select bit 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers bit 2 Unimplemented: Read as '0' bit 1 TCS: Timerx Clock Source Select bit⁽¹⁾ 1 = External clock is from pin, TxCK (on the rising edge) 0 = Internal clock (FP) bit 0 Unimplemented: Read as '0' Note 1: The TxCK pin is not available on all devices. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 12-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

14.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Output Compare with Dedicated Timer" (DS70005159) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select one of six available clock sources for its time base. The module compares the value of the timer with the value of one or two Compare registers, depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.


14.1 Output Compare Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

14.1.1 KEY RESOURCES

- "Output Compare with Dedicated Timer" (DS70005159) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

FIGURE 14-1: OUTPUT COMPARE x MODULE BLOCK DIAGRAM

14.2 Output Compare Control Registers

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_				
bit 15							bit				
R/W-0	U-0	U-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0				
ENFLTA			OCFLTA	TRIGMODE	OCM2	OCM1	OCM0				
bit 7							bit				
Legend:		HSC = Hardw	are Settable/Cl	earable bit							
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	own				
bit 15-14	-	nted: Read as '									
bit 13	OCSIDL: Output Compare x Stop in Idle Mode Control bit										
	1 = Output Compare x halts in CPU Idle mode										
	 0 = Output Compare x continues to operate in CPU Idle mode 										
bit 12-10	OCTSEL<2:0>: Output Compare x Clock Select bits										
	111 = Peripheral clock (FP)										
	110 = Reserved										
	101 = Reserved										
	100 = T1CLK is the clock source of the OCx (only the synchronous clock is supported) 011 = T5CLK is the clock source of the OCx										
	011 = T4CLK is the clock source of the OCx										
	001 = T3CLK is the clock source of the OCx										
	000 = T2CLI	00 = T2CLK is the clock source of the OCx									
bit 9-8	Unimpleme	nted: Read as '	0'								
bit 7	ENFLTA: Fa	ult A Input Enal	ole bit								
	1 = Output Compare Fault A input (OCFA) is enabled										
	0 = Output Compare Fault A input (OCFA) is disabled										
bit 6-5	Unimpleme	nted: Read as '	0'								
bit 4	OCFLTA: PV	VM Fault A Cor	ndition Status bir	t							
				in has occurred							
1.11.0				A pin has occur	red						
bit 3			Mode Select bi								
				when OCxRS =	OCX I MR or in	software					
	U = IRIGSI	AT is cleared o	my by soltware								
Note 1.	OCxR and OC	CxRS are doubl	e-buffered in P\	NM mode only							

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output is set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output is set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

NOTES:

REGISTER 15-24: LEBCONX: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER (x = 1 to 5)

	(X = 1	10 5)									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_					
bit 15					•		bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—		BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL				
bit 7							bit 0				
Legend:											
R = Readat	ole bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
bit 15		HRising Edge 1									
	•	•		Leading-Edge	•	er					
bit 14	-	I Falling Edge	-	ing edge of PW							
				e Leading-Edge	Blanking counte	er					
				lling edge of PW							
bit 13	PLR: PWMxL	. Rising Edge T	rigger Enable	bit							
	 1 = Rising edge of PWMxL will trigger the Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores the rising edge of PWMxL 										
	-			MxL							
bit 12	PLF: PWMxL Falling Edge Trigger Enable bit										
	 Falling edge of PWMxL will trigger the Leading-Edge Blanking counter Leading-Edge Blanking ignores the falling edge of PWMxL 										
bit 11	-	FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit									
	1 = Leading-Edge Blanking is applied to the selected Fault input										
	0 = Leading-Edge Blanking is not applied to the selected Fault input										
bit 10				lanking Enable I							
	 1 = Leading-Edge Blanking is applied to the selected current-limit input 0 = Leading-Edge Blanking is not applied to the selected current-limit input 										
bit 9-6	•	ted: Read as '0		to the selected t		ul					
bit 5	•			al High Enable b	_{i+} (1)						
DIL D		BCH: Blanking in Selected Blanking Signal High Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when the selected blanking signal is high									
		 0 = No blanking when the selected blanking signal is high 									
bit 4	BCL: Blankin	BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾									
	 1 = State blanking (of current-limit and/or Fault input signals) when the selected blanking signal is low 0 = No blanking when the selected blanking signal is low 										
		-									
bit 3		ing in PWMxH	•	oit Fault input signa	la) when the D		a hiah				
		ng when the PV			lis) when the P		snign				
bit 2		ing in PWMxH L	•	0							
	1 = State blar	nking (of current	t-limit and/or l	Fault input signa	ls) when the P	WMxH output i	s low				
		ng when the PV									

Note 1: The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.

REGISTER 19-9: ADCON5L: ADC CONTROL REGISTER 5 LOW

R-0, HSC	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC				
SHRRDY	—			C3RDY	C2RDY	C1RDY	CORDY				
bit 15							bit 8				
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
SHRPWR	—			C3PWR	C2PWR	C1PWR	COPWR				
bit 7							bit (
Legend:		U = Unimplen	nented bit, rea	ad as '0'							
R = Readabl	e bit	W = Writable			are Settable/C	learable bit					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown				
hit 1E	CUDDDV. Ch	arad ADC Car	Doody Flog	b.it							
bit 15		ared ADC Core									
	 ADC core is powered and ready for operation ADC core is not ready for operation 										
bit 14-12	Unimplemen	ted: Read as '	כי								
bit 11	C3RDY: Dedicated ADC Core 3 Ready Flag bit										
		is powered an is not ready fo		peration							
bit 10	C2RDY: Dedicated ADC Core 2 Ready Flag bit										
	1 = ADC core is powered and ready for operation										
	0 = ADC core is not ready for operation										
bit 9	C1RDY: Dedicated ADC Core 1 Ready Flag bit										
	 ADC core is powered and ready for operation ADC core is not ready for operation 										
bit 8	CORDY: Dedicated ADC Core 0 Ready Flag bit										
	1 = ADC core	is powered an	d ready for or	-							
bit 7	 0 = ADC core is not ready for operation SHRPWR: Shared ADC Core x Power Enable bit 										
	1 = ADC Core x is powered										
	0 = ADC Core x is off										
bit 6-4	Unimplemen	ted: Read as '	כ'								
bit 3	C3PWR: Dedicated ADC Core 3 Power Enable bit										
	1 = ADC core is powered 0 = ADC core is off										
bit 2	C2PWR: Ded	icated ADC Co	ore 2 Power E	nable bit							
	C2PWR: Dedicated ADC Core 2 Power Enable bit 1 = ADC core is powered										
	0 = ADC core										
bit 1		icated ADC Co	ore 1 Power E	nable bit							
	1 = ADC core 0 = ADC core	•									
bit 0	COPWR: Ded	icated ADC Co	ore 0 Power E	nable bit							

REGISTER 19-27: ADTRIGXH: ADC CHANNEL TRIGGER x SELECTION REGISTER HIGH (x = 0 to 5) (CONTINUED)

- bit 4-0 TRGSRC(4x+2)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits
 - 11111 = ADTRG31
 - 11110 = Reserved
 - 11101 = Reserved
 - 11100 = PWM Generator 5 current-limit trigger
 - 11011 = PWM Generator 4 current-limit trigger
 - 11010 = PWM Generator 3 current-limit trigger
 - 11001 = PWM Generator 2 current-limit trigger
 - 11000 = PWM Generator 1 current-limit trigger
 - 10111 = Output Compare 2 trigger
 - 10110 = Output Compare 1 trigger
 - 10101 = Reserved 10100 = Reserved
 - 10011 = PWM Generator 5 secondary trigger
 - 10010 = PWM Generator 4 secondary trigger
 - 10001 = PWM Generator 3 secondary trigger
 - 10000 = PWM Generator 2 secondary trigger
 - 01111 = PWM Generator 1 secondary trigger
 - 01110 = PWM secondary Special Event Trigger
 - 01101 = Timer2 period match
 - 01100 = Timer1 period match
 - 01011 = Reserved
 - 01010 = Reserved
 - 01001 = PWM Generator 5 primary trigger
 - 01000 = PWM Generator 4 primary trigger
 - 00111 = PWM Generator 3 primary trigger
 - 00110 = PWM Generator 2 primary trigger
 - 00101 = PWM Generator 1 primary trigger
 - 00100 = PWM Special Event Trigger
 - 00011 = Reserved
 - 00010 = Level software trigger
 - 00001 = Common software trigger
 - 00000 = No trigger is enabled

REGISTER 20-1: CMPxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

bit 5	EXTREF: Enable External Reference bit
	 1 = External source provides reference to DACx (maximum DAC voltage is determined by the external voltage source)
	0 = AVDD provides reference to DACx (maximum DAC voltage is AVDD)
bit 4	HYSPOL: Comparator Hysteresis Polarity Select bit
	 1 = Hysteresis is applied to the falling edge of the comparator output 0 = Hysteresis is applied to the rising edge of the comparator output
bit 3	CMPSTAT: Comparator Current State bit
	Reflects the current output state of Comparator x, including the setting of the CMPPOL bit.
bit 2	ALTINP: Alternate Input Select bit
	1 = INSEL<1:0> bits select alternate inputs
	0 = INSEL<1:0> bits select comparator inputs
bit 1	CMPPOL: Comparator Output Polarity Control bit
	1 = Output is inverted
	0 = Output is non-inverted
bit 0	RANGE: DACx Output Voltage Range Select bit
	1 = AVDD is the maximum DACx output voltage
	0 = Unimplemented, do not use

Note 1: DACOUTx can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DACx output by setting their respective DACOE bit.

23.7 JTAG Interface

The dsPIC33EPXXGS50X family devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to "Programming and Diagnostics"										
	(DS70608) in the "dsPIC33/PIC24 Family										
	Reference Manual" for further information on										
	usage, configuration and operation of the										
	JTAG interface.										

23.8 In-Circuit Serial Programming™

The dsPIC33EPXXGS50X family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming[™] (ICSP[™]).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

23.9 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE[™] emulator is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

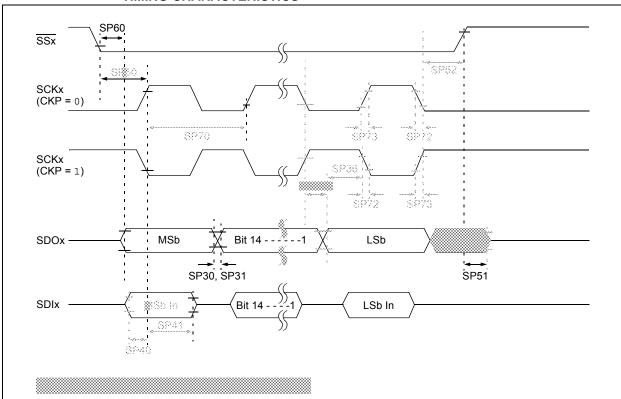
- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

23.10 Code Protection and CodeGuard™ Security

dsPIC33EPXXGS50X devices offer multiple levels of security for protecting individual intellectual property. The program Flash protection can be broken up into three segments: Boot Segment (BS), General Segment (GS) and Configuration Segment (CS). Boot Segment has the highest security privilege and can be thought to have limited restrictions when accessing other segments. General Segment has the least security and is intended for the end user system code. Configuration Segment contains only the device user configuration data which is located at the end of the program memory space.

The code protection features are controlled by the Configuration registers, FSEC and FBSLIM. The FSEC register controls the code-protect level for each segment and if that segment is write-protected. The size of BS and GS will depend on the BSLIM<12:0> setting and if the Alternate Interrupt Vector Table (AIVT) is enabled. The BSLIM<12:0> bits define the number of pages for BS with each page containing 512 IW. The smallest BS size is one page, which will consist of the Interrupt Vector Table (IVT) and 256 IW of code protection.


If the AIVT is enabled, the last page of BS will contain the AIVT and will not contain any BS code. With AIVT enabled, the smallest BS size is now two pages (1024 IW), with one page for the IVT and BS code, and the other page for the AIVT. Write protection of the BS does not cover the AIVT. The last page of BS can always be programmed or erased by BS code. The General Segment will start at the next page and will consume the rest of program Flash except for the Flash Configuration Words. The IVT will assume GS security only if BS is not enabled. The IVT is protected from being programmed or page erased when either security segment has enabled write protection.

Note: Refer to "CodeGuard™ Intermediate Security" (DS70005182) in the "dsPIC33/ PIC24 Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

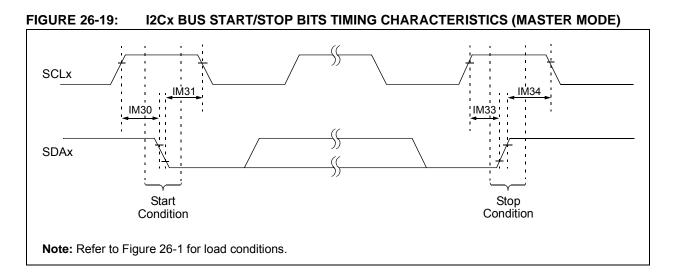

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
55	NEG	NEG	Acc	Negate Accumulator		1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
56	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
57	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
58	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
59	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
60	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
61	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 time	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 time	1	1	None
62	RESET	RESET		Software device Reset	1	1	None
63	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
64	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
65	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
66	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
67	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
68	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
69	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
70	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
71	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
72	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
73	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

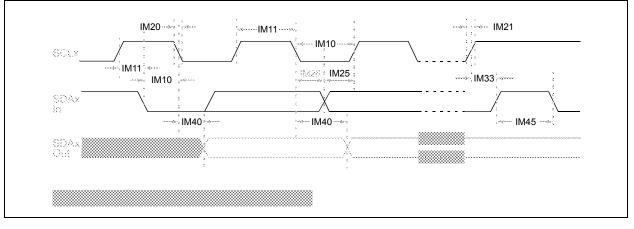
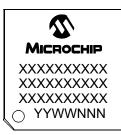
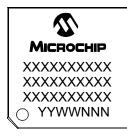

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

FIGURE 26-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS



28.1 Package Marking Information (Continued)

44-Lead TQFP (10x10x1 mm)


44-Lead QFN (8x8 mm)

48-Lead TQFP (7x7x1.0 mm)

64-Lead TQFP (10x10x1 mm)

Example

Example

Example

