

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs506-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXGS50X Digital Signal Controller (DSC) devices.

dsPIC33EPXXGS50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXGS50X FAMILY BLOCK DIAGRAM

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin I	Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description					
MCLR		I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.					
AVdd		Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.					
AVss		Р	Р	No	No Ground reference for analog modules. This pin must be connected at all times.					
Vdd		Р	—	No	Positive supply for peripheral logic and I/O pins.					
VCAP		Р	—	No	No CPU logic filter capacitor connection.					
Vss		Р	—	No	No Ground reference for logic and I/O pins.					
Legend:	CMOS = CM ST = Schmit	IOS co t Trigg	mpatible er input v	input vith CN	or output Analog = Analog input P = Power IOS levels O = Output I = Input					

PPS = Peripheral Pin Select

TTL = TTL input buffer

1: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

2: These pins are dedicated on 64-pin devices.

TABLE 4-2: CPU CORE REGISTER MAP (CONTINUED)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DOENDL	003E					D	o Loop End	Address Re	egister Low	(DOENDL<	:15:1>)						—	0000
DOENDH	0040	_	_	_	_	_	_	_	_	_	_	DO LO	oop End Ad	dress Regi	ster High ([DOENDH<	5:0>)	0000
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	_	US1	US0	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048		N YMODEN BWM3 BWM2 BWM1 BWM0 YWM3 YWM2 YWM1 YWM0 XWM3 XWM2 XWM1 Y X Mode Start Address Register (XMODSRT<15:1>)										_	0000				
XMODEND	004A						X Mode End	Address R	egister (XN	IODEND<1	5:1>)						_	0001
YMODSRT	004C						Y Mode Star	t Address F	Register (YN	10DSRT<1	5:1>)						_	0000
YMODEND	004E						Y Mode End	Address R	egister (YN	IODEND<1	5:1>)						_	0001
XBREV	0050	BREN							XBRE	V<14:0>								0000
DISICNT	0052	_	_						I	DISICNT<1	3:0>							0000
TBLPAG	0054	_	_	_	_	—	_	_	—				TBLPAC	G<7:0>				0000
CTXTSTAT	005A	—	_	—	_	—	CCTXI2	CCTXI1	CCTXI0	—	_	—	—	—	MCTXI2	MCTXI1	MCTXI0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The contents of this register should never be modified. The DSWPAG must always point to the first page.

TABLE 4-17: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXGS502 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670	_	_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	—	_	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR1	0672	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_		RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000
RPOR2	0674	_	_	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0	_		RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR3	0676	_	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0	_		RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR4	0678	_	_	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	_		RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR5	067A	_	_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	_		RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR6	067C	_	_	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0	_		RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0	0000
RPOR7	067E	_	_	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0	_	—	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0	0000
RPOR16	0690	_	_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0		—	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0	0000
RPOR17	0692	_	_	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0		—	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0	0000
RPOR18	0694	_	_	RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0	_		RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0	0000

dsPIC33EPXXGS50X FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXGS504/505 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670			RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0		—	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR1	0672			RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0		-	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000
RPOR2	0674			RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0		_	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR3	0676			RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0		-	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR4	0678			RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0		-	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR5	067A			RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0		_	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR6	067C			RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0		-	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0	0000
RPOR7	067E			RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0		-	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0	0000
RPOR8	0680			RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0	-		RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0	0000
RPOR9	0682			RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0		_	RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0	0000
RPOR10	0684			RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0		-	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0	0000
RPOR11	0686	_	_	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	-	_	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0	0000
RPOR12	0688			RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0		-	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0	0000
RPOR13	068A			RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0		_	RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0	0000
RPOR14	068C			RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0	-		RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0	0000
RPOR16	0690	_	_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0	-	_	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0	0000
RPOR17	0692	_	_	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	_	_	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0	0000
RPOR18	0694	_	_	RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0	_	_	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: ANALOG COMPARATOR REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMP1CON	0540	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP1DAC	0542		—	_	—						CMREF	<11:0>						0000
CMP2CON	0544	CMPON	_	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP2DAC	0546	_	_	_	_						CMREF	<11:0>						0000
CMP3CON	0548	CMPON	_	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP3DAC	054A		—	—	-						CMREF	<11:0>						0000
CMP4CON	054C	CMPON	_	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP4DAC	054E	_	—	_	_						CMREF	<11:0>						0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: JTAG INTERFACE REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	_	_	_	JDATAH<11:0> xxxx									xxxx			
JDATAL	0FF2					JDATAL<15:0> 0000												

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 4-10: PAGED DATA MEMORY SPACE

5.6 Control Registers

Five SFRs are used to write and erase the program Flash memory: NVMCON, NVMKEY, NVMADR, NVMADRU and NVMSRCADR/H.

The NVMCON register (Register 5-1) selects the operation to be performed (page erase, word/row program, Inactive Partition erase), initiates the program or erase cycle and is used to determine the Active Partition in Dual Partition modes.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations, or the selected page for erase operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

For row programming operation, data to be written to program Flash memory is written into data memory space (RAM) at an address defined by the NVMSRCADR register (location of first element in row programming data).

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-n (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

8.2 Auxiliary Clock Generation

The auxiliary clock generation is used for peripherals that need to operate at a frequency unrelated to the system clock, such as PWM or ADC.

The primary oscillator and internal FRC oscillator sources can be used with an Auxiliary PLL (APLL) to obtain the auxiliary clock. The Auxiliary PLL has a fixed 16x multiplication factor.

The auxiliary clock has the following configuration restrictions:

- For proper PWM operation, auxiliary clock generation must be configured for 120 MHz (see Parameter OS56 in Section 26.0 "Electrical Characteristics"). If a slower frequency is desired, the PWM Input Clock Prescaler (Divider) Select bits (PCLKDIV<2:0>) should be used.
- To achieve 1.04 ns PWM resolution, the auxiliary clock must use the 16x Auxiliary PLL (APLL). All other clock sources will have a minimum PWM resolution of 8 ns.
- If the primary PLL is used as a source for the auxiliary clock, the primary PLL should be configured up to a maximum operation of 30 MIPS or less.

8.3 Reference Clock Generation

The reference clock output logic provides the user with the ability to output a clock signal based on the system clock or the crystal oscillator on a device pin. The user application can specify a wide range of clock scaling prior to outputting the reference clock.

8.4 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

8.4.1 KEY RESOURCES

- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 8-7: LFSR: LINEAR FEEDBACK SHIFT REGISTER

	D 444 A		D 44/ 0	DAMA	D 444 0		D 444 0
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				LFSR<14:8>	>		
bit 15	·						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LFS	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	own

bit 15 Unimplemented: Read as '0'

bit 14-0 LFSR<14:0>: Pseudorandom Data bits

9.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

9.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral (for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

REGISTER 10-14: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SCK2INR7	SCK2INR6	SCK2INR5	SCK2INR4	SCK2INR3	SCK2INR2	SCK2INR1	SCK2INR0
bit 15			·				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8 bit 7-0	SCK2INR<7:0 10110101 = 10110100 = 00000001 = 00000000 = SDI2R<7:0>: 10110101 = 10110100 = 00000001 = 00000001 =	0>: Assign SPI Input tied to RF Input tied to RF Input tied to RF Input tied to VS Assign SPI2 D Input tied to RF Input tied to RF	2 Clock Input 2181 2180 21 35 21 35 21 35 2181 2180 21 35	(SCK2) to the	Corresponding	RPn Pin bits Pin bits	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT6R7	FLT6R6	FLT6R5	FLT6R4	FLT6R3	FLT6R2	FLT6R1	FLT6R0
bit 15		•		•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT5R7	FLT5R6	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0
bit 7		·			• •		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15-8 bit 7-0	FLT6R<7:0>: 10110101 = 10110100 = 00000001 = 00000000 = FLT5R<7:0>: 10110101 = 10110100 = 00000001 = 00000001 =	: Assign PWM Input tied to RI Input tied to RI Input tied to RI Input tied to VS : Assign PWM Input tied to RI Input tied to RI Input tied to RI	Fault 6 (FLT6) P181 P180 P1 SS Fault 5 (FLT5) P181 P180 P1) to the Corres	ponding RPn Pi	n bits	

REGISTER 10-18: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42

16.3 SPI Control Registers

REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0				
bit 15							bit 8				
R/W-0	R/C-0, HS	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R-0, HS, HC				
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF				
bit 7							bit 0				
Legend:		C = Clearabl	e bit	U = Unimpleme	ented bit, read	as '0'					
R = Readable	bit	W = Writable	bit	HS = Hardware	Settable bit	HC = Hardwar	e Clearable bit				
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is clear	red	x = Bit is unkn	iown				
bit 15	SPIEN: SPIx 1 = Enables 0 = Disables	Enable bit the module ar the module	nd configures S	SCKx, SDOx, SE	Dix and \overline{SSx} as	serial port pins					
bit 14	Unimpleme	nted: Read as	·0'								
bit 13	SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues the module operation when device enters Idle mode										
	0 = Continues the module operation when device enters the mode										
bit 12-11	Unimplemented: Read as '0'										
bit 10-8	SPIBEC<2:0	>: SPIx Buffer	r Element Cou	nt bits (valid in E	Inhanced Buffe	r mode)					
	Master Mode Number of S	<u>e:</u> Plx transfers t	hat are pendir	ng.		,					
	Slave Mode: Number of S	Plx transfers t	hat are unread	d.							
bit 7	SRMPT: SPI	x Shift Registe	er (SPIxSR) Er	mpty bit (valid in	Enhanced Buff	fer mode)					
	1 = SPIx Shi 0 = SPIx Shi	ft register is er ft register is no	mpty and read ot empty	y to send or rece	eive the data						
bit 6	SPIROV: SP	Ix Receive Ov	erflow Flag bit	t							
	1 = A new by data in th	yte/word is con ne SPIxBUF re	npletely receive gister	ed and discarded;	; the user applic	ation has not rea	ad the previous				
bit 5		Div Receive Fl	EO Empty hit	(valid in Enhance	ed Buffer mode						
bit o	1 = RX FIFO is empty 0 = RX FIFO is not empty										
bit 4-2	SISEL<2:0>	: SPIx Buffer I	nterrupt Mode	bits (valid in Enl	nanced Buffer r	node)					
	111 = Intern 110 = Intern 101 = Intern 100 = Intern memo	upt when the S upt when the la upt when the la upt when one upt when one	SPIx transmit bast bit is shifte ast bit is shifte data is shifted	buffer is full (SPI d into SPIxSR, a d out of SPIxSR into the SPIxSR	TBF bit is set) Ind as a result, and the transm , and as a resu	the TX FIFO is hit is complete lt, the TX FIFO	empty has one open				
	011 = Intern 010 = Intern 001 = Intern 000 = Intern	upt when the S upt when the S upt when data upt when the I	SPIx receive b SPIx receive b is available in ast data in the	uffer is full (SPIR uffer is 3/4 or mo the receive buffe e receive buffer	BF bit is set) ore full er (SRMPT bit is read, and as	is set) s a result, the b	ouffer is empty				

REGISTER 16-2: SPI>		ROL REGISTER 1
---------------------	--	----------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SSEN ⁽²	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾	
bit 7							bit 0	
Legend:								
R = Reada	able bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15-13	Unimplemen	ted: Read as '	0'					
bit 12	DISSCK: Disa	able SCKx Pin	bit (SPIx Mas	ter modes only	y)			
	1 = Internal S	Plx clock is dis	abled, pin fun	ctions as I/O				
L:L 44	0 = Internal S	PIX CIOCK IS EN	abled					
DICT		able SDOx Pin	DII the medule: r	vin functions o				
	1 = SDOx pin 0 = SDOx pin	is controlled by	v the module, p	on functions a	\$ 1/0			
bit 10	MODE16: Wo	ord/Byte Comm	unication Sele	ect bit				
	1 = Communi	cation is word-	wide (16 bits)					
	0 = Communi	cation is byte-	wide (8 bits)					
bit 9	SMP: SPIx Da	ata Input Samp	ole Phase bit					
	Master Mode:	<u>.</u>						
	1 = Input data	is sampled at	the end of dat	ta output time	20			
	0 – Input data Slave Mode:	i is sampled at			lie			
	SMP must be	cleared when	SPIx is used i	n Slave mode				
bit 8	CKE: SPIx CI	ock Edge Sele	ct bit ⁽¹⁾					
	1 = Serial out	put data chang	es on transitio	on from active	clock state to Id	le clock state (i	efer to bit 6)	
	0 = Serial out	put data chang	jes on transitio	on from Idle clo	ock state to activ	ve clock state (i	refer to bit 6)	
bit 7	SSEN: Slave	Select Enable	bit (Slave mod	de) ⁽²⁾				
	$1 = \frac{SSx}{SSx}$ pin is	used for Slav	e mode	:				
h:+ C	0 = 55x pin is	0 = SSX pin is not used by the module; pin is controlled by port function						
DIE	CKP : Clock Polarity Select bit							
	f = Idle state for clock is a light level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level							
bit 5	MSTEN: Mas	ter Mode Enab	le bit					
	1 = Master m	ode						
	0 = Slave mo	de						
Note 1:	The CKE bit is not	used in Frame	d SPI modes. I	Program this b	it to '0' for Frame	ed SPI modes (FRMEN = 1).	

- **2:** This bit must be cleared when FRMEN = 1.
- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

REGISTER 19-5: ADCON3L: ADC CONTROL REGISTER 3 LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HSC	R/W-0	R-0, HSC
REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH
bit 15							bit 8

R/W-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSEL0
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'				
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13 **REFSEL<2:0>:** ADC Reference Voltage Selection bits

Value	VREFH	VREFL
000	AVdd	AVss

001-111 = Unimplemented: Do not use bit 12 SUSPEND: All ADC Cores Triggers Disable bit 1 = All new trigger events for all ADC cores are disabled 0 = All ADC cores can be triggered bit 11 SUSPCIE: Suspend All ADC Cores Common Interrupt Enable bit 1 = Common interrupt will be generated when ADC core triggers are suspended (SUSPEND bit = 1) and all previous conversions are finished (SUSPRDY bit becomes set) 0 = Common interrupt is not generated for suspend ADC cores event bit 10 SUSPRDY: All ADC Cores Suspended Flag bit 1 = All ADC cores are suspended (SUSPEND bit = 1) and have no conversions in progress 0 = ADC cores have previous conversions in progress bit 9 SHRSAMP: Shared ADC Core Sampling Direct Control bit This bit should be used with the individual channel conversion trigger controlled by the CNVRTCH bit. It connects an analog input, specified by the CNVCHSEL<5:0> bits, to the shared ADC core and allows extending the sampling time. This bit is not controlled by hardware and must be cleared before the conversion starts (setting CNVRTCH to '1'). 1 = Shared ADC core samples an analog input specified by the CNVCHSEL<5:0> bits 0 = Sampling is controlled by the shared ADC core hardware bit 8 **CNVRTCH:** Software Individual Channel Conversion Trigger bit 1 = Single trigger is generated for an analog input specified by the CNVCHSEL<5:0> bits; when the bit is set, it is automatically cleared by hardware on the next instruction cycle 0 = Next individual channel conversion trigger can be generated bit 7 SWLCTRG: Software Level-Sensitive Common Trigger bit 1 = Triggers are continuously generated for all channels with the software, level-sensitive common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers 0 = No software, level-sensitive common triggers are generated SWCTRG: Software Common Trigger bit bit 6 1 = Single trigger is generated for all channels with the software, common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers; when the bit is set, it is automatically cleared by hardware on the next instruction cycle 0 = Ready to generate the next software, common trigger CNVCHSEL <5:0>: Channel Number Selection for Software Individual Channel Conversion Trigger bits bit 5-0

These bits define a channel to be converted when the CNVRTCH bit is set.

REGISTER 19-21: ADMOD1L: ADC INPUT MODE CONTROL REGISTER 1 LOW

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	_	DIFF21	SIGN21	DIFF20	SIGN20
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF19	SIGN19	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16
bit 7							bit 0
Legend:							

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-12 Unimplemented: Read as '0'

bit 11-1(odd) DIFF<21:16>: Differential-Mode for Corresponding Analog Inputs bits

1 = Channel is differential

0 = Channel is single-ended

bit 10-0 (even) **SIGN<21:16>:** Output Data Sign for Corresponding Analog Inputs bits

1 = Channel output data is signed

0 = Channel output data is unsigned

23.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXGS50X family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

23.1 Configuration Bits

In dsPIC33EPXXGS50X family devices, the Configuration Words are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored at the end of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 23-1 with detailed descriptions in Table 23-2. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration Shadow registers during device Resets.

For devices operating in Dual Partition modes, the BSEQx bits (FBTSEQ<11:0>) determine which panel is the Active Partition at start-up and the Configuration Words from that panel are loaded into the Configuration Shadow registers.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Words for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled. Program code executing out of configuration space will cause a device Reset.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words.

24.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

Table 24-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 24-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

FIGURE 26-23: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 26-41: UARTX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
UA10	TUABAUD	UARTx Baud Time	66.67			ns	
UA11	FBAUD	UARTx Baud Frequency	—	—	15	Mbps	
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	—		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-42: ANALOG CURRENT SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
AVD01	IDD	Analog Modules Current Consumption	_	9	_	mA	Characterized data with the following modules enabled: APLL, 5 ADC Cores, 2 PGAs and 4 Analog Comparators

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

28.2 Package Details

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2