

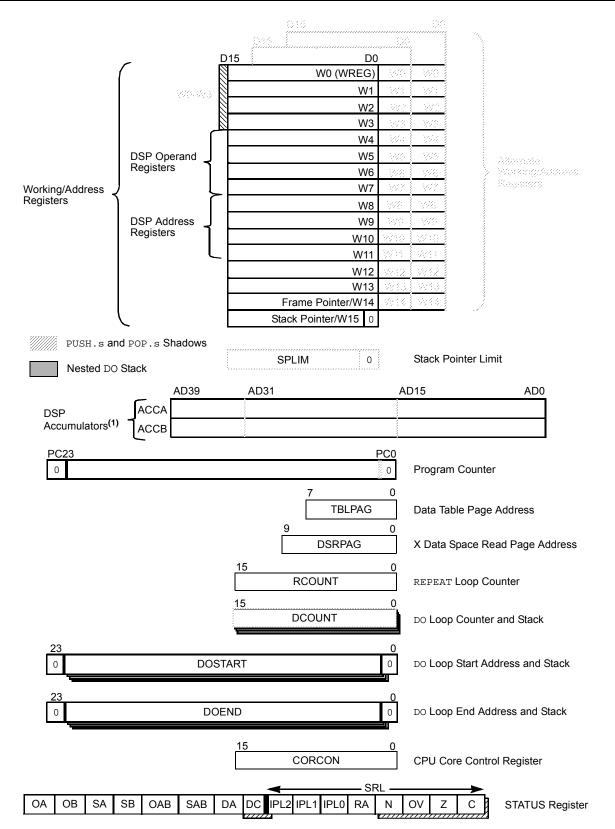
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs506t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

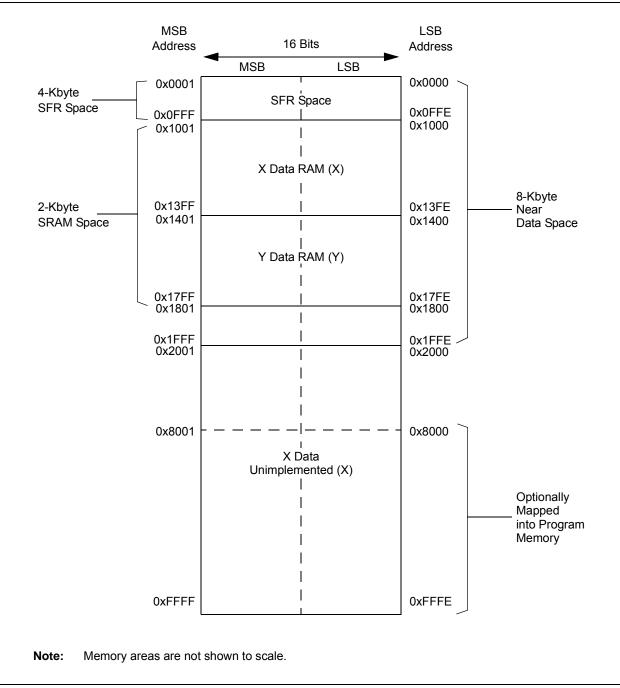


FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP64GS50X DEVICES

7	GOTO Instruction	0x000000
	Reset Address	0x000002
Ð	Interrupt Vector Table	0x000004 0x0001FE
User Memory Space	User Program Flash Memory (22,207 instructions)	0x000200 0x00AF7E
er Mem	Device Configuration	0x00AF80 0x00AFFE
Use		0x00B000
	Unimplemented	
	(Read '0's)	
	Reserved	0x7FFFFE 0x800000 0x800E46
	Calibration Data	0x800E48
	Reserved	0x800E78 0x800E7A 0x800EFE
Configuration Memory Space	UDID	0x800F00 0x800F08 0x800F0A
nory S	Reserved	0x800F7E
n Mer	User OTP Memory	0x800F80 0x800FFC
Iratio	Reserved	0x801000
onfigu	Write Latches	0xF9FFFE 0xFA0000
ŏ		0xFA0002 0xFA0004
	Reserved	
	DEVID	0xFEFFFE 0xFF0000
	Reserved	0xFF0002 0xFF0004
_		0xFFFFFE

Note: Memory areas are not shown to scale.

FIGURE 4-6: DATA MEMORY MAP FOR dsPIC33EP16GS50X DEVICES

TABLE 4-21: NVM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	SFTSWP	P2ACTIV	RPDF	URERR	R NVMOP3 NVMOP2 NVMOP1 NVMOP0						0000		
NVMADR	072A	NVMADR<15:0>											0000					
NVMADRU	072C	-	_	_	_		_	_	_	NVMADR<23:16>							0000	
NVMKEY	072E	-	_	_	_		_	_	_				NVMK	(EY<7:0>				0000
NVMSRCADR	0730					NVM S	Source Data	Address I	Register, Lo	wer Word	(NVMSRC	ADR<15:0	>)					0000
NVMSRCADRH	0732	_	— — — — — — — NVM Source Data Address Register, Upper Byte (NVMSRCADR<23:16>								0000							

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

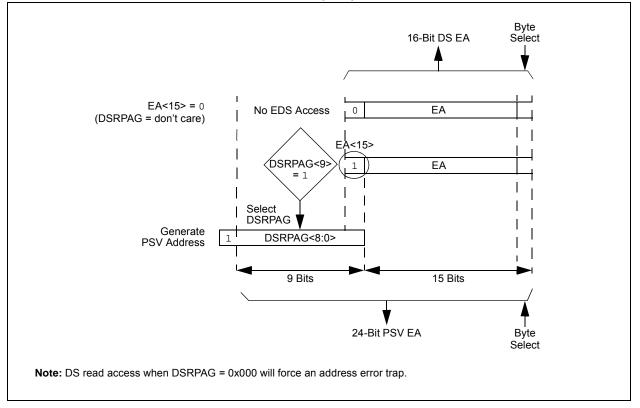
TABLE 4-22: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	—	VREGSF	_	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	-	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	3040
PLLFBD	0746	-		_	_	_	_	_	PLLDIV<8:0>							0030		
OSCTUN	0748	-		_	_	_	_	_	_	_	_			TUN	<5:0>			0000
LFSR	074C	-							LF	SR<14:0>								0000
REFOCON	074E	ROON		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
ACLKCON	0750	ENAPLL	APLLCK	SELACLK	_	_	APSTSCLR2	APSTSCLR1	APSTSCLR0	ASRCSEL	FRCSEL	—	_	_	_	_	_	2740

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration fuses.


4.5.1 PAGED MEMORY SCHEME

The dsPIC33EPXXGS50X architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the base Data Space address is used in conjunction with the Data Space Page (DSRPAG) register to form the Program Space Visibility (PSV) address.

The Data Space Page (DSRPAG) register is located in the SFR space. Construction of the PSV address is shown in Figure 4-9. When DSRPAG<9> = 1 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit PSV read address. The paged memory scheme provides access to multiple 32-Kbyte windows in the PSV memory. The Data Space Page (DSRPAG) register, in combination with the upper half of the Data Space address, can provide up to 8 Mbytes of PSV address space. The paged data memory space is shown in Figure 4-10.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG.

FIGURE 4-9: PROGRAM SPACE VISIBILITY (PSV) READ ADDRESS GENERATION

4.5.2 EXTENDED X DATA SPACE

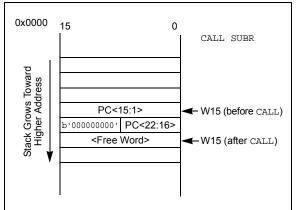
The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible, regardless of the contents of the Data Space Page register. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space in combination with DSRPAG = 0x00. Consequently, DSRPAG is initialized to 0x001 at Reset.

- Note 1: DSRPAG should not be used to access Page 0. An EDS access with DSRPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSRPAG in software has no effect.

The remaining PSV pages are only accessible using the DSRPAG register in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

4.5.3 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP), and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the Stack Pointer (for example, creating stack frames).


Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the
	hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXGS50X devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-11 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes). When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-11. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-11: CALL STACK FRAME

Reserved Reserved cillator Fail Trap Vector dress Error Trap Vector eneric Hard Trap Vector tack Error Trap Vector Math Error Trap Vector Reserved eneric Soft Trap Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54	$\begin{array}{c} \text{BSLIM}{(12:0)}^{(1)} + 0x000000\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000002\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000004\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000006\\ \text{BSLIM}{(12:0)}^{(1)} + 0x00000A\\ \text{BSLIM}{(12:0)}^{(1)} + 0x00000C\\ \text{BSLIM}{(12:0)}^{(1)} + 0x00000C\\ \text{BSLIM}{(12:0)}^{(1)} + 0x00000C\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000010\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000012\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000014\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000016\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	See Table 7-1 for
cillator Fail Trap Vector dress Error Trap Vector eneric Hard Trap Vector tack Error Trap Vector Math Error Trap Vector Reserved eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x000004 BSLIM<12:0>(1) + 0x000006 BSLIM<12:0>(1) + 0x000008 BSLIM<12:0>(1) + 0x00000A BSLIM<12:0>(1) + 0x00000C BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007E	See Table 7-1 for
dress Error Trap Vector eneric Hard Trap Vector tack Error Trap Vector Math Error Trap Vector Reserved eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x000006 BSLIM<12:0>(1) + 0x000008 BSLIM<12:0>(1) + 0x00000A BSLIM<12:0>(1) + 0x00000C BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007E	See Table 7-1 for
eneric Hard Trap Vector tack Error Trap Vector Math Error Trap Vector Reserved eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x000008 BSLIM<12:0>(1) + 0x00000A BSLIM<12:0>(1) + 0x00000C BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007C	See Table 7-1 for
tack Error Trap Vector Nath Error Trap Vector Reserved eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x00000A BSLIM<12:0>(1) + 0x00000C BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 : : BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007C	See Table 7-1 for
Math Error Trap Vector Reserved eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x00000C BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 : : BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007E	See Table 7-1 for
Reserved eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007E	See Table 7-1 for
eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 : : BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007E	See Table 7-1 for
Reserved Interrupt Vector 0 Interrupt Vector 1 	BSLIM<12:0> ⁽¹⁾ + 0x000012 BSLIM<12:0> ⁽¹⁾ + 0x000014 BSLIM<12:0> ⁽¹⁾ + 0x000016 : : BSLIM<12:0> ⁽¹⁾ + 0x00007C BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 : : BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007C	See Table 7-1 for
Interrupt Vector 1	BSLIM<12:0> ⁽¹⁾ + 0x000016 : : BSLIM<12:0> ⁽¹⁾ + 0x00007C BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
Interrupt Vector 52 Interrupt Vector 53	: BSLIM<12:0> ⁽¹⁾ + 0x00007C BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
		See Table 7-1 for
Interrupt Vector 54	BSLIM<12:0> ⁽¹⁾ + 0x000080	See Table 7-1 for
-		
:		Interrupt Vector Details
:	:	
:	:	
Interrupt Vector 116	BSLIM<12:0> ⁽¹⁾ + 0x0000FC	
Interrupt Vector 117	BSLIM<12:0> ⁽¹⁾ + 0x0000FE	
Interrupt Vector 118	BSLIM<12:0> ⁽¹⁾ + 0x000100	
Interrupt Vector 119	BSLIM<12:0> ⁽¹⁾ + 0x000102	
Interrupt Vector 120	BSLIM<12:0> ⁽¹⁾ + 0x000104	
:	:	
:	:	
:	:	
Interrupt Vector 244	BSLIM<12:0> ⁽¹⁾ + 0x0001FC	
Interrupt Vector 245	BSLIM<12:0> ⁽¹⁾ + 0x0001FE	
		y BSLIM<12:0>.

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	—	—	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
		_	_	—							
bit 7							bit C				
Legend:											
R = Readable bit W = Writable bit			oit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown					
bit 15-13	Unimplement	ted: Read as '0)'								
bit 12	PWM5MD: P\	WM5 Module D	isable bit								
		1 = PWM5 module is disabled 0 = PWM5 module is enabled									
			-								
bit 11	PWM4MD: P\	: PWM4 Module Disable bit									
		odule is disable	-								
	0 = PWM4 mo	odule is enable	d								
	0 = PWM4 mo PWM3MD: P\	odule is enable VM3 Module D	d isable bit								
	0 = PWM4 mo PWM3MD: P\ 1 = PWM3 mo	odule is enable	d isable bit d								
bit 10 bit 9	0 = PWM4 mc PWM3MD: P\ 1 = PWM3 mc 0 = PWM3 mc	odule is enable WM3 Module D odule is disable	d isable bit d								
bit 10	0 = PWM4 mc PWM3MD: P\ 1 = PWM3 mc 0 = PWM3 mc PWM2MD: P\	odule is enable WM3 Module D odule is disable odule is enable	d isable bit d d isable bit								
bit 10	0 = PWM4 mo PWM3MD : PV 1 = PWM3 mo 0 = PWM3 mo PWM2MD : PV 1 = PWM2 mo	odule is enable WM3 Module D odule is disable odule is enable WM2 Module D	d isable bit d d isable bit d								
bit 10	0 = PWM4 mc PWM3MD : PV 1 = PWM3 mc 0 = PWM3 mc PWM2MD : PV 1 = PWM2 mc 0 = PWM2 mc	odule is enable WM3 Module D odule is disable odule is enable WM2 Module D odule is disable	d isable bit d d isable bit d d								
bit 10 bit 9	0 = PWM4 mo PWM3MD: PV 1 = PWM3 mo 0 = PWM3 mo PWM2MD: PV 1 = PWM2 mo 0 = PWM2 mo 0 = PWM2 mo PWM1MD: PV 1 = PWM1 mo	odule is enable WM3 Module D odule is disable odule is enable WM2 Module D odule is disable odule is enable WM1 Module D odule is disable	d isable bit d isable bit d d isable bit d								
bit 10 bit 9	0 = PWM4 mo PWM3MD : PV 1 = PWM3 mo 0 = PWM3 mo PWM2MD : PV 1 = PWM2 mo 0 = PWM2 mo PWM1MD : PV 1 = PWM1 mo 0 = PWM1 mo	odule is enable WM3 Module D odule is disable odule is enable WM2 Module D odule is disable odule is enable WM1 Module D	d isable bit d isable bit d d isable bit d d								

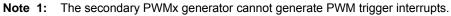

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<7:0>
External Interrupt 2	INT2	RPINR1	INT2R<7:0>
Timer1 External Clock	T1CK	RPINR2	T1CKR<7:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<7:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<7:0>
Input Capture 1	IC1	RPINR7	IC1R<7:0>
Input Capture 2	IC2	RPINR7	IC2R<7:0>
Input Capture 3	IC3	RPINR8	IC3R<7:0>
Input Capture 4	IC4	RPINR8	IC4R<7:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<7:0>
PWM Fault 1	FLT1	RPINR12	FLT1R<7:0>
PWM Fault 2	FLT2	RPINR12	FLT2R<7:0>
PWM Fault 3	FLT3	RPINR13	FLT3R<7:0>
PWM Fault 4	FLT4	RPINR13	FLT4R<7:0>
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>
UART1 Clear-to-Send	U1CTS	RPINR18	U1CTSR<7:0>
UART2 Receive	U2RX	RPINR19	U2RXR<7:0>
UART2 Clear-to-Send	U2CTS	RPINR19	U2CTSR<7:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<7:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<7:0>
SPI1 Slave Select	SS1	RPINR21	SS1R<7:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<7:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<7:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>
PWM Synch Input 1	SYNCI1	RPINR37	SYNCI1R<7:0>
PWM Synch Input 2	SYNCI2	RPINR38	SYNCI2R<7:0>
PWM Fault 5	FLT5	RPINR42	FLT5R<7:0>
PWM Fault 6	FLT6	RPINR42	FLT6R<7:0>
PWM Fault 7	FLT7	RPINR43	FLT7R<7:0>
PWM Fault 8	FLT8	RPINR43	FLT8R<7:0>

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

REGISTER 15-19: TRGCONX: PWMx TRIGGER CONTROL REGISTER (x = 1 to 5)

TRGDIV3 bit 15	TRGDIV2	TRGDIV1	TRGDIV0	_			_					
bit 15												
			L			I	bit 8					
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
DTM ⁽¹⁾	<u> </u>	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	2 TRGSTRT1 TRGSTR1						
bit 7							bit (
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 15-12	TRGDIV<3:0	Trigger # Out	tput Divider bit	S								
	1111 = Trigg e	er output for eve	ery 16th trigge	revent								
		er output for eve										
	1101 = Trigger output for every 14th trigger event 1100 = Trigger output for every 13th trigger event											
		er output for events of events output for events of the second second second second second second second second										
		er output for even										
		er output for eve										
		er output for ev										
		er output for eve										
	0110 = Trigger output for every 7th trigger event											
	0101 = Trigger output for every 6th trigger event											
	0100 = Trigger output for every 5th trigger event 0011 = Trigger output for every 4th trigger event											
	0010 = Trigger output for every 3rd trigger event											
	0001 = Trigger output for every 2nd trigger event											
		er output for eve										
bit 11-8	Unimplemen	ted: Read as '0)'									
bit 7	DTM: Dual Tr	igger Mode bit ⁽	1)									
	1 = Secondary trigger event is combined with the primary trigger event to create a PWM trigger											
	0 = Secondary trigger event is not combined with the primary trigger event to create a PWM trigger two separate PWM triggers are generated											
bit 6		ted: Read as '	•									
bit 5-0	-			Enable Select b	its							
				erating the first		fter the module	is enabled					
	•		5	J	00111							
	•											
	•											
	000010 = W a	ait 2 PWM cycle	s before dene	rating the first t	rigger event aft	er the module i	s enabled					
	000010 = Wait 2 PWM cycles before generating the first trigger event after the module is enabled 000001 = Wait 1 PWM cycle before generating the first trigger event after the module is enabled											
	000001 = Wa	it 1 PWM cvcle	e before genera	ating the first tri	gger event afte	er the module is	enabled					

16.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on \overline{SSx} .

Note:	This	ensures	that	the	first	fra	ame
	transr	nission	after	initializa	ation	is	not
	shifte						

- 2. In Non-Framed 3-Wire mode (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.
- **Note:** This will ensure that during power-up and initialization, the master/slave will not lose synchronization due to an errant SCKx transition that would cause the slave to accumulate data shift errors for both transmit and receive, appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the frame sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. Refer to the SPIx specifications in Section 26.0 "Electrical Characteristics" for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPIx data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

16.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

16.2.1 KEY RESOURCES

- "Serial Peripheral Interface (SPI)" (DS70005185) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 19-3: ADCON2L: ADC CONTROL REGISTER 2 LOW

R/W-0	R/W-0	r-0	R/W-0	r-0	R/W-0	R/W-0	R/W-0
REFCIE	REFERCIE	_	EIEN	—	SHREISEL2(1)	SHREISEL1(1)	SHREISEL0 ⁽¹⁾
bit 15	•						bit 8

U-0	-0 R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	— SHRADCS6 SHRADCS5		SHRADCS4	SHRADCS3 SHRADCS2		SHRADCS1	SHRADCS0
bit 7							bit 0

Legend:	r = Reserved b	t							
R = Read	lable bit W = Writable bit	t U = Unimplemented b	bit, read as '0'						
-n = Value	e at POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15	-	rence Voltage Ready Common Inte	-						
	•	generated when the band gap will	become ready						
L:1 4 4	-	bled for the band gap ready event							
bit 14	-	erence Voltage Error Common Inte	-						
	•	generated when a band gap or refe bled for the band gap and reference							
bit 13	Reserved: Maintain as '0'								
bit 12	EIEN: Early Interrupts Enable	bit							
			nterrupts (when the EISTATx flag is set) done (when the ANxRDY flag is set)						
bit 11	Reserved: Maintain as '0'								
bit 10-8	SHREISEL<2:0>: Shared Co	re Early Interrupt Time Selection bi	its ⁽¹⁾						
	110 = Early interrupt is set ar 101 = Early interrupt is set ar 100 = Early interrupt is set ar 011 = Early interrupt is set ar 010 = Early interrupt is set ar 001 = Early interrupt is set ar	111 = Early interrupt is set and interrupt is generated 8 TADCORE clocks prior to when the data is ready 110 = Early interrupt is set and interrupt is generated 7 TADCORE clocks prior to when the data is ready 101 = Early interrupt is set and interrupt is generated 6 TADCORE clocks prior to when the data is ready 100 = Early interrupt is set and interrupt is generated 5 TADCORE clocks prior to when the data is ready 101 = Early interrupt is set and interrupt is generated 5 TADCORE clocks prior to when the data is ready 101 = Early interrupt is set and interrupt is generated 4 TADCORE clocks prior to when the data is ready 011 = Early interrupt is set and interrupt is generated 3 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and interrupt is generated 2 TADCORE clocks prior to when the data is ready 001 = Early interrupt is set and interrupt is generated 2 TADCORE clocks prior to when the data is ready 000 = Early interrupt is set and interrupt is generated 1 TADCORE clocks prior to when the data is ready							
bit 7	Unimplemented: Read as '0								
bit 6-0	SHRADCS<6:0>: Shared AD	C Core Input Clock Divider bits							
	Clock Period).	·	Periods) for one shared TADCORE (Core						
	1111111 = 254 Source Clock	Periods							
	•								
	•								
	0000011 = 6 Source Clock P 0000010 = 4 Source Clock P								
	0000001 = 2 Source Clock P 0000000 = 2 Source Clock P	eriods							
Note 1:	For the 6-bit shared ADC core res	solution (SHRRES<1:0> = 0.0) the	SHRFISEL<2.0> settings						

Note 1: For the 6-bit shared ADC core resolution (SHRRES<1:0> = 00), the SHREISEL<2:0> settings, from '100' to '111', are not valid and should not be used. For the 8-bit shared ADC core resolution (SHRRES<1:0> = 01), the SHREISEL<2:0> settings, '110' and '111', are not valid and should not be used.

REGISTER 19-27: ADTRIGXH: ADC CHANNEL TRIGGER x SELECTION REGISTER HIGH (x = 0 to 5)

U-0	U-0 U-0 R/W-0 R/W-0 R/W-0 R/W				R/W-0 R/W-0 R/W-0 R/W		U-0 R/W-0 R/W-0 R/W-0 R/W-0			U-0 R/W-0 R/W-0 R/W-0 R/W-0			
	_	_	TRGSRC(4x+3)<4:0>										
bit 15							bit 8						
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
	_	_	TRGSRC(4x+2)<4:0>										
bit 7							bit 0						

Legend:

•				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 TRGSRC(4x+3)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits

TRGSRC(4x+3)<4:0>: Ingger Source Selection T
11111 = ADTRG31
11110 = Reserved
11101 = Reserved
11100 = PWM Generator 5 current-limit trigger
11011 = PWM Generator 4 current-limit trigger
11010 = PWM Generator 3 current-limit trigger
11001 = PWM Generator 2 current-limit trigger
11000 = PWM Generator 1 current-limit trigger
10111 = Output Compare 2 trigger
10110 = Output Compare 1 trigger
10101 = Reserved
10100 = Reserved
10011 = PWM Generator 5 secondary trigger
10010 = PWM Generator 4 secondary trigger
10001 = PWM Generator 3 secondary trigger
10000 = PWM Generator 2 secondary trigger
01111 = PWM Generator 1 secondary trigger
01110 = PWM secondary Special Event Trigger
01101 = Timer2 period match
01100 = Timer1 period match
01011 = Reserved
01010 = Reserved
01001 = PWM Generator 5 primary trigger
01000 = PWM Generator 4 primary trigger
00111 = PWM Generator 3 primary trigger
00110 = PWM Generator 2 primary trigger
00101 = PWM Generator 1 primary trigger
00100 = PWM Special Event Trigger
00011 = Reserved
00010 = Level software trigger
00001 = Common software trigger
00000 = No trigger is enabled
Unimplemented: Read as '0'

bit 7-5

NOTES:

23.2 Device Calibration and Identification

The PGAx and current source modules on the dsPIC33EPXXGS50X family devices require Calibration Data registers to improve performance of the module over a wide operating range. These Calibration registers are read-only and are stored in configuration memory space. Prior to enabling the module, the calibration data must be read (TBLPAG and Table Read instruction) and loaded into its respective SFR registers. The device calibration addresses are shown in Table 23-3. The dsPIC33EPXXGS50X devices have two identification registers near the end of configuration memory space that store the Device ID (DEVID) and Device Revision (DEVREV). These registers are used to determine the mask, variant and manufacturing information about the device. These registers are read-only and are shown in Register 23-1 and Register 23-2.

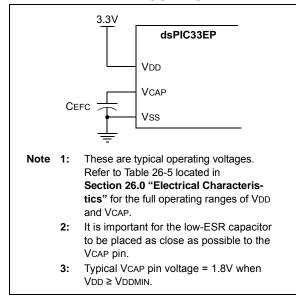
TABLE 23-3:	DEVICE CALIBRATION ADDRESSES ⁽¹⁾

Calibration Name	Address	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PGA1CAL	800E48	—	_	_	_	_	_	_	_	-	_	-	PGA1 Calibration Data					
PGA2CAL	800E4C	_	-	—	—	—	_	—	_		_		PGA2 Calibration Data					
ISRCCAL	800E78	—	_	_	—	_		_	_	_	_	_	Current Source Calibration Data			ata		

Note 1: The calibration data must be copied into its respective registers prior to enabling the module.

23.3 User OTP Memory

dsPIC33EPXXGS50X family devices contain 64 words of User One-Time-Programmable (OTP) memory, located at addresses, 0x800F80 through 0x800FFE. The User OTP Words can be used for storing checksum, code revisions, product information, such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information. These words can only be written once at program time and not at run time; they can be read at run time.


23.4 On-Chip Voltage Regulator

All the dsPIC33EPXXGS50X family devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXGS50X family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 23-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 26-5, located in **Section 26.0 "Electrical Characteristics"**.

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the VCAP
	pin.

FIGURE 23-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

23.5 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse which resets the device. The BOR selects the clock source based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an Oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 26-23 of **Section 26.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or table read is performed. In these cases, the execution takes multiple instruction cycles,

Slit6

Wb

Wd

Wdo

Wm,Wn

with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the "16-bit MCU and DSC Programmer's Reference Manual' (DS70157).

Description
Means literal defined by "text"
Means "content of text"
Means "the location addressed by text"
Optional field or operation
a is selected from the set of values b, c, d
Register bit field
Byte mode selection
Double-Word mode selection
Shadow register select
Word mode selection (default)
One of two accumulators {A, B}
Accumulator write-back destination address register \in {W13, [W13]+ = 2}
4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Absolute address, label or expression (resolved by the linker)
File register address ∈ {0x00000x1FFF}
1-bit unsigned literal $\in \{0,1\}$
4-bit unsigned literal $\in \{015\}$
5-bit unsigned literal $\in \{031\}$
8-bit unsigned literal $\in \{0255\}$
10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
14-bit unsigned literal $\in \{016384\}$
16-bit unsigned literal \in {065535}
23-bit unsigned literal \in {08388608}; LSb must be '0'
Field does not require an entry, can be blank
DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
Program Counter
10-bit signed literal \in {-512511}
16-bit signed literal ∈ {-3276832767}

Destination W register ∈ { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }

{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }

Dividend, Divisor Working register pair (direct addressing)

6-bit signed literal \in {-16...16}

Base W register \in {W0...W15}

Destination W register \in

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

26.1 DC Characteristics

TABLE 26-1: OPERATING MIPS vs. VOLTAGE

Characteristic	VDD Range	Temperature Range	Maximum MIPS
Gharacteristic	(in Volts)	(in °C)	dsPIC33EPXXGS50X Family
—	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70
_	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, PGAs and comparators) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 26-13 for the minimum and maximum BOR values.

TABLE 26-2: THERMAL OPERATING CONDITIONS

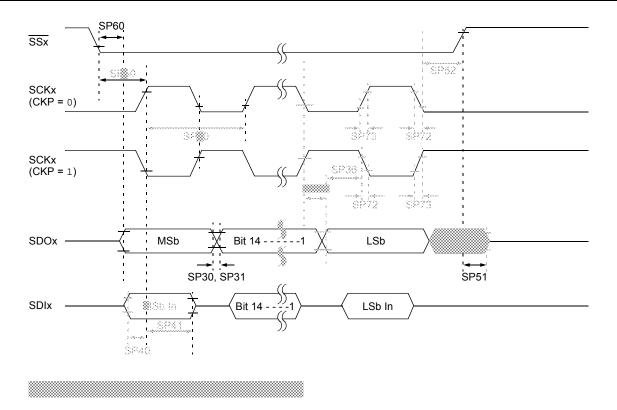
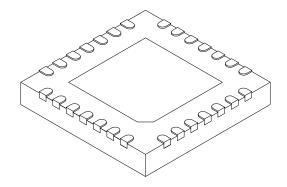

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/0			W
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	Pdmax	(ΓJ — ΤΑ)/θJ	W	

TABLE 26-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin TQFP 10x10x1 mm	θJA	49.0		°C/W	1
Package Thermal Resistance, 48-Pin TQFP 7x7x1.0 mm	θJA	63.0	_	°C/W	1
Package Thermal Resistance, 44-Pin QFN 8x8 mm	θJA	29.0	-	°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10x1 mm	θJA	50.0	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S 6x6x0.9 mm	θJA	30.0	_	°C/W	1
Package Thermal Resistance, 28-Pin UQFN 6x6x0.5 mm	θJA	26.0	-	°C/W	1
Package Thermal Resistance, 28-Pin SOIC 7.50 mm	θJA	70.0		°C/W	1


Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	0.65 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	Е	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.70	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.70	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2