
NXP USA Inc. - MC68376BGCFT20 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor CPU32

Core Size 32-Bit Single-Core

Speed 20MHz

Connectivity CANbus, EBI/EMI, SCI, SPI

Peripherals POR, PWM, WDT

Number of I/O 18

Program Memory Size -

Program Memory Type ROMless

EEPROM Size -

RAM Size 7.5K x 8

Voltage - Supply (Vcc/Vdd) 4.75V ~ 5.25V

Data Converters A/D 16x10b

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 160-BQFP

Supplier Device Package 160-QFP (28x28)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68376bgcft20

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68376bgcft20-4448131
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

(Continued)
Figure Title Page

LIST OF ILLUSTRATIONS

336376UMBook Page xix Friday, November 15, 1996 2:09 PM
A-6 Fast Termination Read Cycle Timing Diagram ..A-13
A-7 Fast Termination Write Cycle Timing Diagram ...A-14
A-8 Bus Arbitration Timing Diagram — Active Bus CaseA-15
A-9 Bus Arbitration Timing Diagram — Idle Bus CaseA-16
A-10 Show Cycle Timing Diagram ..A-17
A-11 Chip-Select Timing Diagram ..A-18
A-12 Reset and Mode Select Timing Diagram ..A-18
A-13 Background Debugging Mode Timing — Serial CommunicationA-20
A-14 Background Debugging Mode Timing — Freeze AssertionA-20
A-15 ECLK Timing Diagram ..A-22
A-16 QSPI Timing — Master, CPHA = 0 ..A-24
A-17 QSPI Timing — Master, CPHA = 1 ..A-24
A-18 QSPI Timing — Slave, CPHA = 0 ..A-25
A-19 QSPI Timing — Slave, CPHA = 1 ..A-25
A-20 TPU Timing Diagram ..A-26
B-1 MC68336 Pin Assignments for 160-Pin Package ..B-1
B-2 MC68376 Pin Assignments for 160-Pin Package ..B-2
B-3 160-Pin Package Dimensions ..B-3
D-1 User Programming Model ..D-2
D-2 Supervisor Programming Model Supplement ...D-3
D-3 TouCAN Message Buffer Address Map ...D-85
MC68336/376 MOTOROLA

USER’S MANUAL xix

336376UMSect3Overview Page 7 Thursday, December 5, 1996 4:45 PM
Table 3-1 MC68336/376 Pin Characteristics

Pin Mnemonic Output
Driver

Input
Synchronized

Input
Hysteresis

Discrete
I/O

Port
Designation

ADDR23/CS10/ECLK A Yes No O —

ADDR[22:19]/CS[9:6] A Yes No O PC[6:3]

ADDR[18:0] A Yes No — —

AN[51:48] — Yes1 Yes I PQB[7:4]

AN[3:0]/AN[w, x, y, z] — Yes1 Yes I PQB[3:0]

AN[59:57] Ba Yes Yes I/O PQA[7:5]

AN[56:55]/ETRIG[2:1] Ba Yes Yes I/O PQA[4:3]

AN[54:52]/MA[2:0] Ba Yes Yes I/O PQA[2:0]

AS B Yes Yes I/O PE5

AVEC B Yes No I/O PE2

BERR B Yes No — —

BG/CS1 B — — — —

BGACK/CS2 B Yes No — —

BKPT/DSCLK — Yes Yes — —

BR/CS0 B Yes No O —

CLKOUT A — — — —

CANRX0 (MC68376 Only) — Yes Yes — —

CANTX0 (MC68376 Only) Bo — — — —

CSBOOT B — — — —

CTD[10:9]/[4:3] A Yes Yes I/O —

CPWM[8:5] A — — O —

CTM2C — Yes Yes I —

DATA[15:0] Aw Yes1 No — —

DS B Yes Yes I/O PE4

DSACK[1:0] B Yes No I/O PE[1:0]

EXTAL2 — — Special — —

FC[2:0]/CS[5:3] A Yes No O PC[2:0]

FREEZE/QUOT A — — — —

IPIPE/DSO A — — O —

IFETCH/DSI A Yes Yes — —

HALT Bo Yes No — —

IRQ[7:1] B Yes Yes I/O PF[7:1]

MISO Bo Yes1 Yes I/O PQS0

MODCLK B Yes1 Yes I/O PF0

MOSI Bo Yes1 Yes I/O PQS1

PCS0/SS Bo Yes1 Yes I/O PQS3

PCS[3:1] Bo Yes1 Yes I/O PQS[6:4]

R/W A Yes No — —

RESET Bo Yes Yes — —

RMC B Yes Yes I/O PE3

RXD — No Yes — —

SCK Bo Yes1 Yes I/O PQS2
MC68336/376 OVERVIEW MOTOROLA

USER’S MANUAL 3-7

336376UMBook Page 1 Friday, November 15, 1996 2:09 PM
SECTION 4 CENTRAL PROCESSOR UNIT
The CPU32, the instruction processing module of the M68300 family, is based on the
industry-standard MC68000 processor. It has many features of the MC68010 and
MC68020, as well as unique features suited for high-performance controller applica-
tions. This section is an overview of the CPU32. For detailed information concerning
CPU operation, refer to the CPU32 Reference Manual (CPU32RM/AD).

4.1 General

Ease of programming is an important consideration in using a microcontroller. The
CPU32 instruction format reflects a philosophy emphasizing register-memory interac-
tion. There are eight multifunction data registers and seven general-purpose address-
ing registers.

All data resources are available to all operations requiring those resources. The data
registers readily support 8-bit (byte), 16-bit (word), and 32-bit (long-word) operand
lengths for all operations. Word and long-word operations support address manipula-
tion. Although the program counter (PC) and stack pointers (SP) are special-purpose
registers, they are also available for most data addressing activities. Ease of program
checking and diagnosis is further enhanced by trace and trap capabilities at the in-
struction level.

A block diagram of the CPU32 is shown in Figure 4-1. The major blocks operate in a
highly independent fashion that maximizes concurrency of operation while managing
the essential synchronization of instruction execution and bus operation. The bus con-
troller loads instructions from the data bus into the decode unit. The sequencer and
control unit provide overall chip control, managing the internal buses, registers, and
functions of the execution unit.
MC68336/376 CENTRAL PROCESSOR UNIT MOTOROLA

USER’S MANUAL 4-1

336376UMBook Page 18 Friday, November 15, 1996 2:09 PM
4.10.1 M68000 Family Development Support

All M68000 Family members include features to facilitate applications development.
These features include the following:

Trace on Instruction Execution — M68000 Family processors include an instruction-
by-instruction tracing facility as an aid to program development. The MC68020,
MC68030, MC68040, and CPU32 also allow tracing only of those instructions causing
a change in program flow. In the trace mode, a trace exception is generated after an
instruction is executed, allowing a debugger program to monitor the execution of a pro-
gram under test.

Breakpoint Instruction — An emulator may insert software breakpoints into the target
code to indicate when a breakpoint has occurred. On the MC68010, MC68020,
MC68030, and CPU32, this function is provided via illegal instructions, $4848–$484F,
to serve as breakpoint instructions.

Unimplemented Instruction Emulation — During instruction execution, when an at-
tempt is made to execute an illegal instruction, an illegal instruction exception occurs.
Unimplemented instructions (F-line, A-line, . . .) utilize separate exception vectors to
permit efficient emulation of unimplemented instructions in software.

4.10.2 Background Debug Mode

Microcomputer systems generally provide a debugger, implemented in software, for
system analysis at the lowest level. The background debug mode (BDM) on the
CPU32 is unique in that the debugger has been implemented in CPU microcode.

BDM incorporates a full set of debugging options: registers can be viewed or altered,
memory can be read or written to, and test features can be invoked.

A resident debugger simplifies implementation of an in-circuit emulator. In a common
setup (refer to Figure 4-8), emulator hardware replaces the target system processor.
A complex, expensive pod-and-cable interface provides a communication path be-
tween the target system and the emulator.

By contrast, an integrated debugger supports use of a bus state analyzer (BSA) for
incircuit emulation. The processor remains in the target system (refer to Figure 4-9)
and the interface is simplified. The BSA monitors target processor operation and the
on-chip debugger controls the operating environment. Emulation is much “closer” to
target hardware, and many interfacing problems (for example, limitations on high-
frequency operation, AC and DC parametric mismatches, and restrictions on cable
length) are minimized.
 MOTOROLA CENTRAL PROCESSOR UNIT MC68336/376

4-18 USER’S MANUAL

336376UMBook Page 21 Friday, November 15, 1996 2:09 PM
— it is imperative that the RSREG command be the first command issued after tran-
sition into BDM.

A double bus fault during initial stack pointer/program counter (SP/PC) fetch sequence
is distinguished by a value of $FFFFFFFF in the current instruction PC. At no other
time will the processor write an odd value into this register.

4.10.6 BDM Commands

BDM commands consist of one 16-bit operation word and can include one or more 16-
bit extension words. Each incoming word is read as it is assembled by the serial inter-
face. The microcode routine corresponding to a command is executed as soon as the
command is complete. Result operands are loaded into the output shift register to be
shifted out as the next command is read. This process is repeated for each command
until the CPU returns to normal operating mode. Table 4-6 is a summary of back-
ground mode commands.

NOTES:
1. Special status word (SSW) is described in detail in the CPU32 Reference

Manual (CPU32RM/AD).

Table 4-5 Polling the BDM Entry Source
Source ATEMP[31:16] ATEMP[15:0]

Double Bus Fault SSW1 $FFFF
BGND Instruction $0000 $0001

Hardware Breakpoint $0000 $0000
MC68336/376 CENTRAL PROCESSOR UNIT MOTOROLA

USER’S MANUAL 4-21

Figure 5-1 System Integration Module Block Diagram

5.2 System Configuration

The SIM configuration register (SIMCR) governs several aspects of system operation.
The following paragraphs describe those configuration options controlled by SIMCR.

5.2.1 Module Mapping

Control registers for all the modules in the microcontroller are mapped into a 4-Kbyte
block. The state of the module mapping bit (MM) in the SIM configuration register
(SIMCR) determines where the control register block is located in the system memory
map. When MM = 0, register addresses range from $7FF000 to $7FFFFF; when MM
= 1, register addresses range from $FFF000 to $FFFFFF.

5.2.2 Interrupt Arbitration

Each module that can request interrupts has an interrupt arbitration (IARB) field. Arbi-
tration between interrupt requests of the same priority is performed by serial conten-
tion between IARB field bit values. Contention must take place whenever an interrupt
request is acknowledged, even when there is only a single request pending. For an
interrupt to be serviced, the appropriate IARB field must have a non-zero value. If an
interrupt request from a module with an IARB field value of %0000 is recognized, the
CPU32 processes a spurious interrupt exception.

300 S(C)IM BLOCK

SYSTEM CONFIGURATION

CLOCK SYNTHESIZER

CHIP-SELECTS

EXTERNAL BUS INTERFACE

FACTORY TEST

CLKOUT
EXTAL

MODCLK

CHIP-SELECTS

EXTERNAL BUS

RESET

TSTME/TSC

FREEZE/QUOT

XTAL

SYSTEM PROTECTION
 MOTOROLA SYSTEM INTEGRATION MODULE MC68336/376

5-2 USER’S MANUAL

To generate a reference frequency using the crystal oscillator, a reference crystal
must be connected between the EXTAL and XTAL pins. Typically, a 4.194 MHz crystal
is used, but the frequency may vary between 1 and 6 MHz. Figure 5-3 shows a typical
circuit.

Figure 5-3 System Clock Oscillator Circuit

If a fast reference frequency is provided to the PLL from a source other than a crystal,
or an external system clock signal is applied through the EXTAL pin, the XTAL pin
must be left floating.

When an external system clock signal is applied (MODCLK = 0 during reset), the PLL
is disabled. The duty cycle of this signal is critical, especially at operating frequencies
close to maximum. The relationship between clock signal duty cycle and clock signal
period is expressed as follows:

5.3.2 Clock Synthesizer Operation

VDDSYN is used to power the clock circuits when the system clock is synthesized from
either a crystal or an externally supplied reference frequency. A separate power
source increases MCU noise immunity and can be used to run the clock when the
MCU is powered down. A quiet power supply must be used as the VDDSYN source. Ad-
equate external bypass capacitors should be placed as close as possible to the
VDDSYN pin to assure a stable operating frequency. When an external system clock
signal is applied and the PLL is disabled, VDDSYN should be connected to the VDD sup-
ply. Refer to the SIM Reference Manual (SIMRM/AD) for more information regarding
system clock power supply conditioning.

32 OSCILLATOR 4M

EXTAL

XTAL

1 MΩ

1.5 kΩ

27 pF*

27 pF*

VSS

RESISTANCE AND CAPACITANCE BASED ON A TEST CIRCUIT CONSTRUCTED WITH A KDS041-18 4.194 MHz CRYSTAL.
SPECIFIC COMPONENTS MUST BE BASED ON CRYSTAL TYPE. CONTACT CRYSTAL VENDOR FOR EXACT CIRCUIT.

*

R1
C1

C2

R2

Minimum External Clock Period

Minimum External Clock High/Low Time
50% Percentage Variation of External Clock Input Duty Cycle–
--

=

MC68336/376 SYSTEM INTEGRATION MODULE MOTOROLA

USER’S MANUAL 5-5

E. After arbitration, the interrupt acknowledge cycle is completed in one of the fol-
lowing ways:
1. When there is no contention (IARB = %0000), the spurious interrupt monitor

asserts BERR, and the CPU32 generates the spurious interrupt vector num-
ber.

2. The dominant interrupt source (external or internal) supplies a vector num-
ber and DSACK signals appropriate to the access. The CPU32 acquires the
vector number.

3. The AVEC signal is asserted (the signal can be asserted by the dominant
external interrupt source or the pin can be tied low), and the CPU32 gener-
ates an autovector number corresponding to interrupt priority.

4. The bus monitor asserts BERR and the CPU32 generates the spurious in-
terrupt vector number.

F. The vector number is converted to a vector address.
G. The content of the vector address is loaded into the PC and the processor

transfers control to the exception handler routine.

5.8.5 Interrupt Acknowledge Bus Cycles

Interrupt acknowledge bus cycles are CPU32 space cycles that are generated during
exception processing. For further information about the types of interrupt acknowledge
bus cycles determined by AVEC or DSACK, refer to APPENDIX A ELECTRICAL
CHARACTERISTICS and the SIM Reference Manual (SIMRM/AD).

5.9 Chip-Selects

Typical microcontrollers require additional hardware to provide external chip-select
and address decode signals. The MCU includes 12 programmable chip-select circuits
that can provide 2 to 16 clock-cycle access to external memory and peripherals.
Address block sizes of two Kbytes to one Mbyte can be selected. Figure 5-19 is a
diagram of a basic system that uses chip-selects.
 MOTOROLA SYSTEM INTEGRATION MODULE MC68336/376

5-54 USER’S MANUAL

336376UMBook Page 3 Friday, November 15, 1996 2:09 PM
7.5 Low-Power Stop Mode Operation

Low-power stop mode minimizes MCU power consumption. Setting the STOP bit in
MRMCR places the MRM in low-power stop mode. In low-power stop mode, the array
cannot be accessed. The reset state of STOP is the complement of the logic state of
DATA14 during reset. Low-power stop mode is exited by clearing STOP.

7.6 ROM Signature

Signature registers RSIGHI and RSIGLO contain a user-specified mask-programmed
signature pattern. A special signature algorithm allows the user to verify ROM array
content.

7.7 Reset

The state of the MRM following reset is determined by the default values programmed
into the MRMCR BOOT, LOCK, ASPC[1:0], and WAIT[1:0] bits. The default array
base address is determined by the values programmed into ROMBAL and ROMBAH.

When the mask programmed value of the MRMCR BOOT bit is zero, the contents of
MRM bootstrap words ROMBS[0:3] are used as reset vectors. When the mask pro-
grammed value of the MRMCR BOOT bit is one, reset vectors are fetched from exter-
nal memory, and system integration module chip-select logic is used to assert the boot
ROM select signal CSBOOT. Refer to 5.9.4 Chip-Select Reset Operation for more
information concerning external boot ROM selection.
MC68336/376 MASKED ROM MODULE MOTOROLA

USER’S MANUAL 7-3

336376UMBook Page 14 Friday, November 15, 1996 2:09 PM
Figure 9-8 Flowchart of QSPI Slave Operation (Part 1)

READ TRANSMIT DATA
FROM RAM USING QUEUE

POINTER ADDRESS

A2

QUEUE POINTER
CHANGED TO NEWQP

N

Y

N

WRITE QUEUE POINTER TO
CPTQP STATUS BITS

STORE RECEIVED DATA
IN RAM USING QUEUE

POINTER ADDRESS

B2

QSPI CYCLE BEGINS
(SLAVE MODE)

Y

EXECUTE SERIAL TRANSFER
WHEN SCK RECEIVED

N

YIS SLAVE
 SELECT PIN
ASSERTED

HAS NEWQP
BEEN WRITTEN

IS QSPI
DISABLED

QSPI SLV1 FLOW 5
 MOTOROLA QUEUED SERIAL MODULE MC68336/376

9-14 USER’S MANUAL

336376UMBook Page 18 Friday, November 15, 1996 2:09 PM
Delay after transfer can be used to provide a peripheral deselect interval. A delay can
also be inserted between consecutive transfers to allow serial A/D converters to com-
plete conversion. Writing a value to DTL[7:0] in SPCR1 specifies a delay period. The
DT bit in each command RAM byte determines whether the standard delay period (DT
= 0) or the specified delay period (DT = 1) is used. The following expression is used
to calculate the delay:

where DTL equals {1, 2, 3,..., 255}.

A zero value for DTL[7:0] causes a delay-after-transfer value of 8192/System Clock.

Adequate delay between transfers must be specified for long data streams because
the QSPI requires time to load a transmit RAM entry for transfer. Receiving devices
need at least the standard delay between successive transfers. If the system clock is
operating at a slower rate, the delay between transfers must be increased proportion-
ately.

Operation is initiated by setting the SPE bit in SPCR1. Shortly after SPE is set, the
QSPI executes the command at the command RAM address pointed to by NEWQP.
Data at the pointer address in transmit RAM is loaded into the data serializer and
transmitted. Data that is simultaneously received is stored at the pointer address in re-
ceive RAM.

When the proper number of bits have been transferred, the QSPI stores the working
queue pointer value in CPTQP, increments the working queue pointer, and loads the
next data for transfer from transmit RAM. The command pointed to by the incremented
working queue pointer is executed next, unless a new value has been written to
NEWQP. If a new queue pointer value is written while a transfer is in progress, that
transfer is completed normally.

When the CONT bit in a command RAM byte is set, PCS pins are continuously driven
in specified states during and between transfers. If the chip-select pattern changes
during or between transfers, the original pattern is driven until execution of the follow-
ing transfer begins. When CONT is cleared, the data in register PORTQS is driven be-
tween transfers. The data in PORTQS must match the inactive states of SCK and any
peripheral chip-selects used.

When the QSPI reaches the end of the queue, it sets the SPIF flag. If the SPIFIE bit
in SPCR2 is set, an interrupt request is generated when SPIF is asserted. At this point,
the QSPI clears SPE and stops unless wrap-around mode is enabled.

Delay after Transfer 32 DTL[7:0]×
System Clock
------------------------------------=

Standard Delay after Transfer 17
System Clock
------------------------------------=
 MOTOROLA QUEUED SERIAL MODULE MC68336/376

9-18 USER’S MANUAL

336376UMBook Page 30 Friday, November 15, 1996 2:09 PM
9.4.3.9 Internal Loop

The LOOPS bit in SCCR1 controls a feedback path in the data serial shifter. When
LOOPS is set, the SCI transmitter output is fed back into the receive serial shifter. TXD
is asserted (idle line). Both transmitter and receiver must be enabled before entering
loop mode.

9.5 QSM Initialization

After reset, the QSM remains in an idle state until initialized. A general guide for
initialization follows.

A. Global
1. Configuration QSMCR

a.Write an interrupt arbitration priority value into the IARB field.
b. Clear the FREEZE and/or STOP bits for normal operation.

2. Configure QIVR and QILR
a. Write QSPI/SCI interrupt vector number into QIVR.
b. Write QSPI (ILSPI) and SCI (ILSCI) interrupt priorities into QILR.

3. Configure PORTQS and DDRQS
a. Write a data word to PORTQS.
b. Set the direction of QSM pins used for I/O by writing to DDRQS.

4. Assign pin functions by writing to the pin assignment register PQSPAR
B. Queued Serial Peripheral Interface

1. Write appropriate values to QSPI command RAM and transmit RAM.
2. Set up the SPCR0

a. Set the bit in with the BR field.
b. Determine clock phase (CPHA), and clock polarity (CPOL).
c. Determine number of bits to be transferred in a serial operation

(BITS[3:0]).
d. Select master or slave operating mode (MSTR).
e. Enable or disable wired-OR operation (WOMQ).

3. Set up SPCR1
a. Establish a delay following serial transfer by writing to the DTL field.
b. Establish a delay before serial transfer by writing to the DSCKL field.

4. Set up SPCR2
a. Write an initial queue pointer value into the NEWQP field.
b. Write a final queue pointer value into the ENDQP field.
c. Enable or disable queue wrap-around (WREN).
d. Set wrap-around address if enabled (WRTO).
e. Enable or disable QSPI interrupt (SPIFIE).

5. Set up SPCR3
a. Enable or disable halt at end of queue (HALT).
b. Enable or disable halt and mode fault interrupts (HMIE).
c. Enable or disable loopback (LOOPQ).

6. To enable the QSPI, set the SPE bit in SPCR1.
C. Serial Communication Interface

1. Set up SCCR0
a. Set the baud with the SCBR field.
 MOTOROLA QUEUED SERIAL MODULE MC68336/376

9-30 USER’S MANUAL

336376UMBook Page 31 Friday, November 15, 1996 2:09 PM
2. Set up SCCR1
a. Select serial mode (M)
b. Enable use (PE) and type (PT) of parity check.
c. Select use (RWU) and type (WAKE) of receiver wake-up.
d. Enable idle-line detection (ILT) and interrupt (ILIE).
e. Enable or disable wired-OR operation (WOMS).
f. Enable or disable break transmission (SBK).

3. To receive:
a. Set the receiver (RE) and receiver interrupt (RIE) bits in SCCR1.

4. To transmit:
a. Set transmitter (TE) and transmitter interrupt (TIE) bits in SCCR1.
b. Clear the TDRE and TC flags by reading SCSR and writing data to

SCDR.
MC68336/376 QUEUED SERIAL MODULE MOTOROLA

USER’S MANUAL 9-31

336376UMBook Page 32 Friday, November 15, 1996 2:09 PM
 MOTOROLA QUEUED SERIAL MODULE MC68336/376

9-32 USER’S MANUAL

336376UMBook Page 32 Friday, November 15, 1996 2:09 PM
8.13 Interrupts

The QADC supports both polled and interrupt driven operation. Status bits in QASR
reflect the operating condition of each queue and can optionally generate interrupts
when enabled by the appropriate bits in QACR1 and/or QACR2.

8.13.1 Interrupt Sources

The QADC has four interrupt service sources, each of which is separately enabled.
Each time the result is written for the last CCW in a queue, the completion flag for the
corresponding queue is set, and when enabled, an interrupt request is generated. In
the same way, each time the result is written for a CCW with the pause bit set, the
queue pause flag is set, and when enabled, an interrupt request is generated.

Table 8-5 displays the status flag and interrupt enable bits which correspond to queue
1 and queue 2 activity.

Both polled and interrupt-driven QADC operations require that status flags must be
cleared after an event occurs. Flags are cleared by first reading QASR with the appro-
priate flag bits set to one, then writing zeros to the flags that are to be cleared. A flag
can be cleared only if the flag was a logic one at the time the register was read by the
CPU. If a new event occurs between the time that the register is read and the time that
it is written, the associated flag is not cleared.

8.13.2 Interrupt Register

The QADC interrupt register QADCINT specifies the priority level of QADC interrupt
requests and the upper six bits of the vector number provided during an interrupt ac-
knowledge cycle.

The values contained in the IRLQ1 and IRLQ2 fields in QADCINT determine the pri-
ority of QADC interrupt service requests. A value of %000 in either field disables the
interrupts associated with that field. The interrupt levels for queue 1 and queue 2 may
be different.

The IVB[7:2] bits specify the upper six bits of each QADC interrupt vector number.
IVB[1:0] have fixed assignments for each of the four QADC interrupt sources. Refer to
8.13.3 Interrupt Vectors for more information.

Table 8-5 QADC Status Flags and Interrupt Sources

Queue Queue Activity Status Flag Interrupt Enable Bit

Queue 1
Result written for the last CCW in queue 1 CF1 CIE1
Result written for a CCW with pause bit set in
queue 1

PF1 PIE1

Queue 2
Result written for the last CCW in queue 2 CF2 CIE2
Result written for a CCW with pause bit set in
queue 2

PF2 PIE2
 MOTOROLA QUEUED ANALOG-TO-DIGITAL CONVERTER MODULE MC68336/376

8-32 USER’S MANUAL

336376UMBook Page 6 Friday, November 15, 1996 2:09 PM
Arbitration is performed by means of serial assertion of IARB field bit values. The IARB
of TPUMCR is initialized to $0 during reset.

When the TPU wins arbitration, it must respond to the CPU32 interrupt acknowledge
cycle by placing an interrupt vector number on the data bus. The vector number is
used to calculate displacement into the exception vector table. Vectors are formed by
concatenating the 4-bit value of the CIBV field in TICR with the 4-bit number of the
channel requesting interrupt service. Since the CIBV field has a reset value of $0, it
must be assigned a value corresponding to the upper nibble of a block of 16 user-de-
fined vector numbers before TPU interrupts are enabled. Otherwise, a TPU interrupt
service request could cause the CPU32 to take one of the reserved vectors in the
exception vector table.

For more information about the exception vector table, refer to 4.9 Exception Pro-
cessing. Refer to 5.8 Interrupts for further information about interrupts.

11.4 A Mask Set Time Functions

The following paragraphs describe factory-programmed time functions implemented
in the A mask set TPU microcode ROM. A complete description of the functions is be-
yond the scope of this manual. Refer to the TPU Reference Manual (TPURM/AD) for
additional information.

11.4.1 Discrete Input/Output (DIO)

When a pin is used as a discrete input, a parameter indicates the current input level
and the previous 15 levels of a pin. Bit 15, the most significant bit of the parameter,
indicates the most recent state. Bit 14 indicates the next most recent state, and so on.
The programmer can choose one of the three following conditions to update the pa-
rameter: 1) when a transition occurs, 2) when the CPU32 makes a request, or 3) when
a rate specified in another parameter is matched. When a pin is used as a discrete out-
put, it is set high or low only upon request by the CPU32.

Refer to TPU programming note Discrete Input/Output (DIO) TPU Function
(TPUPN18/D) for more information.

11.4.2 Input Capture/Input Transition Counter (ITC)

Any channel of the TPU can capture the value of a specified TCR upon the occurrence
of each transition or specified number of transitions and then generate an interrupt re-
quest to notify the CPU32. A channel can perform input captures continually, or a
channel can detect a single transition or specified number of transitions, then cease
channel activity until reinitialization. After each transition or specified number of tran-
sitions, the channel can generate a link to a sequential block of up to eight channels.
The user specifies a starting channel of the block and the number of channels within
the block. The generation of links depends on the mode of operation. In addition, after
each transition or specified number of transitions, one byte of the parameter RAM (at
an address specified by channel parameter) can be incremented and used as a flag
to notify another channel of a transition.
 MOTOROLA TIME PROCESSOR UNIT MC68336/376

11-6 USER’S MANUAL

336376UMBook Page 34 Friday, November 15, 1996 2:09 PM
RES — Queue 2 Resume
RES selects the resumption point after queue 2 is suspended by queue 1. If RES is
changed during execution of queue 2, the change is not recognized until an end-of-
queue condition is reached, or the queue operating mode of queue 2 is changed.

0 = After suspension, begin execution with the first CCW in queue 2 or the current
subqueue.

1 = After suspension, begin execution with the aborted CCW in queue 2.

Table D-26 Queue 2 Operating Modes

MQ2[4:0] Queue 2 Operating Mode
00000 Disabled mode, conversions do not occur
00001 Software triggered single-scan mode (started with SSE2)
00010 External trigger rising edge single-scan mode (on ETRIG2 pin)
00011 External trigger falling edge single-scan mode (on ETRIG2 pin)

00100 Interval timer single-scan mode: interval = QCLK period x 27

00101 Interval timer single-scan mode: interval = QCLK period x 28

00110 Interval timer single-scan mode: interval = QCLK period x 29

00111 Interval timer single-scan mode: interval = QCLK period x 210

01000 Interval timer single-scan mode: interval = QCLK period x 211

01001 Interval timer single-scan mode: interval = QCLK period x 212

01010 Interval timer single-scan mode: interval = QCLK period x 213

01011 Interval timer single-scan mode: interval = QCLK period x 214

01100 Interval timer single-scan mode: interval = QCLK period x 215

01101 Interval timer single-scan mode: interval = QCLK period x 216

01110 Interval timer single-scan mode: interval = QCLK period x 217

01111 Reserved mode
10000 Reserved mode
10001 Software triggered continuous-scan mode (started with SSE2)
10010 External trigger rising edge continuous-scan mode (on ETRIG2 pin)
10011 External trigger falling edge continuous-scan mode (on ETRIG2 pin)

10100 Periodic timer continuous-scan mode: period = QCLK period x 27

10101 Periodic timer continuous-scan mode: period = QCLK period x 28

10110 Periodic timer continuous-scan mode: period = QCLK period x 29

10111 Periodic timer continuous-scan mode: period = QCLK period x 210

11000 Periodic timer continuous-scan mode: period = QCLK period x 211

11001 Periodic timer continuous-scan mode: period = QCLK period x 212

11010 Periodic timer continuous-scan mode: period = QCLK period x 213

11011 Periodic timer continuous-scan mode: period = QCLK period x 214

11100 Periodic timer continuous-scan mode: period = QCLK period x 215

11101 Periodic timer continuous-scan mode: period = QCLK period x 216

11110 Periodic timer continuous-scan mode: period = QCLK period x 217

11111 Reserved mode
 MOTOROLA REGISTER SUMMARY MC68336/376

D-34 USER’S MANUAL

336376UMBook Page 35 Friday, November 15, 1996 2:09 PM
BQ2[5:0] — Beginning of Queue 2
The BQ2 field indicates the location in the CCW table where queue 2 begins. The BQ2
field also indicates the end of queue 1 and thus creates an end-of-queue condition for
queue 1.

D.5.7 QADC Status Register

CF1 — Queue 1 Completion Flag
CF1 indicates that a queue 1 scan has been completed. CF1 is set by the QADC when
the conversion is complete for the last CCW in queue 1, and the result is stored in the
result table.

0 = Queue 1 scan is not complete.
1 = Queue 1 scan is complete.

PF1 — Queue 1 Pause Flag
PF1 indicates that a queue 1 scan has reached a pause. PF1 is set by the QADC when
the current queue 1 CCW has the pause bit set, the selected input channel has been
converted, and the result has been stored in the result table.

0 = Queue 1 has not reached a pause.
1 = Queue 1 has reached a pause.

CF2 — Queue 2 Completion Flag
CF2 indicates that a queue 2 scan has been completed. CF2 is set by the QADC when
the conversion is complete for the last CCW in queue 2, and the result is stored in the
result table.

0 = Queue 2 scan is not complete.
1 = Queue 2 scan is complete.

PF2 — Queue 2 Pause Flag
PF2 indicates that a queue 2 scan has reached a pause. PF2 is set by the QADC when
the current queue 2 CCW has the pause bit set, the selected input channel has been
converted, and the result has been stored in the result table.

0 = Queue 2 has not reached a pause.
1 = Queue 2 has reached a pause.

TOR1 — Queue 1 Trigger Overrun
TOR1 indicates that an unexpected queue 1 trigger event has occurred. TOR1 can be
set only while queue 1 is active.

A trigger event generated by a transition on ETRIG1 may be recorded as a trigger
overrun. TOR1 can only be set when using an external trigger mode. TOR1 cannot oc-
cur when the software initiated single-scan mode or the software initiated continuous-
scan mode is selected.

QASR — Status Register $YFFF210
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CF1 PF1 CF2 PF2 TOR1 TOR2 QS[3:0] CWP[5:0]

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MC68336/376 REGISTER SUMMARY MOTOROLA

USER’S MANUAL D-35

336376UMBook Page 41 Friday, November 15, 1996 2:09 PM
STOP — Low-Power Stop Mode Enable
0 = QSM clock operates normally.
1 = QSM clock is stopped.

When STOP is set, the QSM enters low-power stop mode. The system clock input to
the module is disabled. While STOP is set, only QSMCR reads are guaranteed to be
valid, but writes to the QSPI RAM and other QSM registers are guaranteed valid. The
SCI receiver and transmitter must be disabled before STOP is set. To stop the QSPI,
set the HALT bit in SPCR3, wait until the HALTA flag is set, then set STOP.

FRZ1— FREEZE Assertion Response
FRZ1 determines what action is taken by the QSPI when the IMB FREEZE signal is
asserted.

0 = Ignore the IMB FREEZE signal.
1 = Halt the QSPI on a transfer boundary.

FRZ0 — Not Implemented

Bits [12:8] — Not Implemented

SUPV — Supervisor/Unrestricted Data Space
The SUPV bit places the QSM registers in either supervisor or user data space.

0 = Registers with access controlled by the SUPV bit are accessible in either
supervisor or user mode.

1 = Registers with access controlled by the SUPV bit are restricted to supervisor
access only.

Bits [6:4] — Not Implemented

IARB[3:0] — Interrupt Arbitration ID
The IARB field is used to arbitrate between simultaneous interrupt requests of the
same priority. Each module that can generate interrupt requests must be assigned a
unique, non-zero IARB field value.

D.6.2 QSM Test Register

QTEST — QSM Test Register $YFFC02

Used for factory test only.

D.6.3 QSM Interrupt Level Register

The values of ILQSPI[2:0] and ILSCI[2:0] in QILR determine the priority of QSPI and SCI
interrupt requests.

QILR — QSM Interrupt Levels Register $YFFC04
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 ILQSPI[2:0] ILSCI[2:0] QIVR

RESET:

0 0 0 0 0 0 0 0
MC68336/376 REGISTER SUMMARY MOTOROLA

USER’S MANUAL D-41

336376UMBook Page 67 Friday, November 15, 1996 2:09 PM
D.7.13 DASM Data Register B

DASMB is the data register associated with channel B. Table D-48 shows how
DASMB is used with the different modes of operation. Depending on the mode select-
ed, software access is to register B1 or register B2.

Table D-47 DASMA Operations

Mode DASMA Operation
DIS DASMA can be accessed to prepare a value for a subsequent mode selection

IPWM DASMA contains the captured value corresponding to the trailing edge of the measured pulse

IPM
DASMA contains the captured value corresponding to the most recently detected user-specified rising
or falling edge

IC
DASMA contains the captured value corresponding to the most recently detected user-specified rising
or falling edge

OCB
DASMA is loaded with the value corresponding to the leading edge of the pulse to be generated. Writ-
ing to DASMA in the OCB and OCAB modes also enables the corresponding channel A comparator
until the next successful comparison.

OCAB
DASMA is loaded with the value corresponding to the leading edge of the pulse to be generated. Writ-
ing to DASMA in the OCB and OCAB modes also enables the corresponding channel A comparator
until the next successful comparison.

OPWM DASMA is loaded with the value corresponding to the leading edge of the PWM pulse to be generated.

DASM3B — DASM3 Data Register B $YFF41C
DASM4B — DASM4 Data Register B $YFF424
DASM9B — DASM9 Data Register B $YFF44C
DASM10B — DASM10 Data Register B $YFF454

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESET:

U U U U U U U U U U U U U U U U
MC68336/376 REGISTER SUMMARY MOTOROLA

USER’S MANUAL D-67

