

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

### Embedded - Microcontrollers - Application Specific

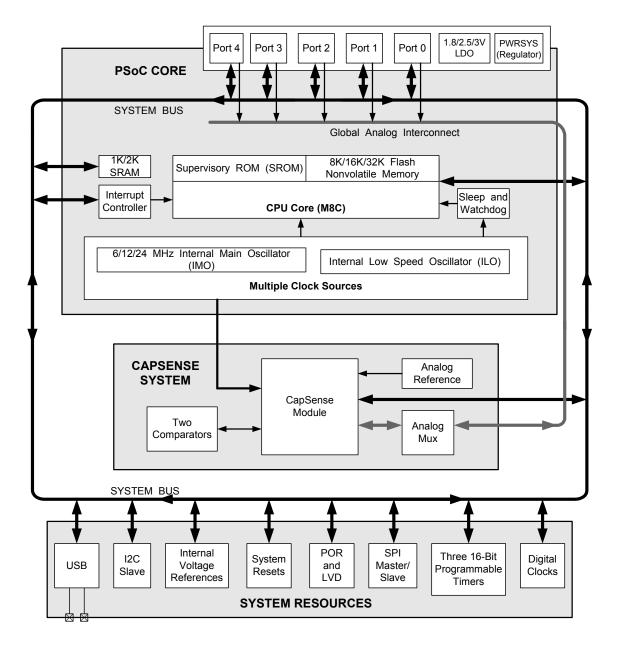
represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

#### What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are analyzared to

#### Details

XF


| 2 0 0 0 0 0             |                                                                             |
|-------------------------|-----------------------------------------------------------------------------|
| Product Status          | Obsolete                                                                    |
| Applications            | Capacitive Sensing                                                          |
| Core Processor          | M8C                                                                         |
| Program Memory Type     | FLASH (32kB)                                                                |
| Controller Series       | CY8C20xx6A                                                                  |
| RAM Size                | 2K x 8                                                                      |
| Interface               | I²C, SPI, USB                                                               |
| Number of I/O           | 36                                                                          |
| Voltage - Supply        | 1.71V ~ 5.5V                                                                |
| Operating Temperature   | -40°C ~ 85°C                                                                |
| Mounting Type           | Surface Mount                                                               |
| Package / Case          | 48-VFQFN Exposed Pad                                                        |
| Supplier Device Package | 48-QFN (7x7)                                                                |
| Purchase URL            | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20066-24ltxi |
|                         |                                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# Logic Block Diagram





## **Additional System Resources**

System Resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The merits of each system resource are listed here:

- The I2C slave/SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- The I2C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power-On-Reset) circuit eliminates the need for a system supervisor.
- An internal reference provides an absolute reference for capacitive sensing.
- A register-controlled bypass mode allows the user to disable the LDO.
- Standard Cypress PSoC IDE tools are available for debugging the CY8C20x36/46/66/96 family of parts. However, the additional trace length and a minimal ground plane in the Flex-Pod can create noise problems that make it difficult to debug the design. A custom bonded On-Chip Debug (OCD) device is available in an 48-pin QFN package. The OCD device is recommended for debugging designs that have high current and/or high analog accuracy requirements. The QFN package is compact and is connected to the ICE through a high density connector.

## **Getting Started**

The quickest way to understand PSoC silicon is to read this data sheet and then use the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the PSoC<sup>®</sup> Programmable System-on-Chip<sup>™</sup> Technical Reference Manual for CY8C20x36/46/66/96 PSoC Devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device data sheets on the web at www.cypress.com/psoc.

### **Application Notes**

Application notes are an excellent introduction to the wide variety of possible PSoC designs. They are located here: www.cypress.com/psoc. Select Application Notes under the Documentation tab.

#### **Development Kits**

PSoC Development Kits are available online from Cypress at www.cypress.com/shop and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

### Training

Free PSoC technical training (on demand, webinars, and workshops) is available online at www.cypress.com/training. The training covers a wide variety of topics and skill levels to assist you in your designs.

## **CYPros Consultants**

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to www.cypress.com/cypros.

#### **Solutions Library**

Visit our growing library of solution focused designs at www.cypress.com/solutions. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

#### **Technical Support**

For assistance with technical issues, search KnowledgeBase articles and forums at www.cypress.com/support. If you cannot find an answer to your question, call technical support at 1-800-541-4736.





## **Development Tools**

PSoC Designer is a Microsoft<sup>®</sup> Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows XP and Windows Vista.

This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and built-in support for third-party assemblers and C compilers.

PSoC Designer also supports C language compilers developed specifically for the devices in the PSoC family.

### **PSoC Designer Software Subsystems**

#### System-Level View

The system-level view is a drag-and-drop visual embedded system design environment based on PSoC Express. In this view you solve design problems the same way you might think about the system. Select input and output devices based upon system requirements. Add a communication interface and define the interface to the system (registers). Define when and how an output device changes state based upon any/all other system devices. Based upon the design, PSoC Designer automatically selects one or more PSoC devices that match your system requirements.

PSoC Designer generates all embedded code, then compiles and links it into a programming file for a specific PSoC device.

#### Chip-Level View

The chip-level view is a more traditional integrated development environment (IDE) based on PSoC Designer 4.x. You choose a base device to work with and then select different onboard analog and digital components called user modules that use the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters. You configure the user modules for your chosen application and connect them to each other and to the proper pins. Then you generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration allows for changing configurations at run time.

#### Hybrid Designs

You can begin in the system-level view, allow it to choose and configure your user modules, routing, and generate code, then switch to the chip-level view to gain complete control over onchip resources. All views of the project share common code editor, builder, and common debug, emulation, and programming tools.

#### Code Generation Tools

PSoC Designer supports multiple third-party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours.

**Assemblers.** The assemblers allow assembly code to be merged seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

**C Language Compilers.** C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices.

The optimizing C compilers provide all the features of C tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

#### Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and program and read and write data memory, read and write I/O registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

#### Online Help System

The online help system displays online, context-sensitive help for the user. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer in getting started.

#### In-Circuit Emulator

A low cost, high functionality In-Circuit Emulator (ICE) is available for development support. This hardware has the capability to program single devices.

The emulator consists of a base unit that connects to the PC by way of a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24 MHz) operation.





## **Designing with PSoC Designer**

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions.

The PSoC development process can be summarized in the following four steps:

- 1. Select Components
- 2. Configure Components
- 3. Organize and Connect
- 4. Generate, Verify, and Debug

#### Select Components

Both the system-level and chip-level views provide a library of pre-built, pre-tested hardware peripheral components. In the system-level view these components are called "drivers" and correspond to inputs (a thermistor, for example), outputs (a brushless DC fan, for example), communication interfaces (I<sup>2</sup>C-bus, for example), and the logic to control how they interact with one another (called valuators).

In the chip-level view the components are called "user modules." User modules make selecting and implementing peripheral devices simple, and come in analog, digital, and programmable system-on-chip varieties.

#### **Configure Components**

Each of the components you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a Pulse Width Modulator (PWM) User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus.

Both the system-level drivers and chip-level user modules are documented in data sheets that are viewed directly in PSoC Designer. These data sheets explain the internal operation of the component and provide performance specifications. Each data sheet describes the use of each user module parameter or driver property, and other information you may need to successfully implement your design.

#### **Organize and Connect**

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins, or connect system-level inputs, outputs, and communication interfaces to each other with valuator functions.

In the system-level view selecting a potentiometer driver to control a variable speed fan driver and setting up the valuators to control the fan speed based on input from the pot selects, places, routes, and configures a programmable gain amplifier (PGA) to buffer the input from the potentiometer, an analog-todigital converter (ADC) to convert the potentiometer's output to a digital signal, and a PWM to control the fan.

In the chip-level view, you perform the selection, configuration, and routing so that you have complete control over the use of all on-chip resources.

#### Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system.

Both system-level and chip-level designs generate software based on your design. The chip-level design provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed. The system-level design also generates a C main() program that completely controls the chosen application and contains placeholders for custom code at strategic positions allowing you to further refine the software without disrupting the generated code.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.



## Pinouts

The CY8C20x36/46/66/96 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O and connection to the common analog bus. However, Vss, Vdd, and XRES are not capable of Digital I/O.

## 16-Pin QFN (No E-Pad)

| Pin | Ту      | pe     | Name  | Description                                        |
|-----|---------|--------|-------|----------------------------------------------------|
| No. | Digital | Analog | Name  | Description                                        |
| 1   | I/O     | I      | P2[5] | Crystal output (XOut)                              |
| 2   | I/O     | I      | P2[3] | Crystal input (XIn)                                |
| 3   | IOHR    | I      | P1[7] | I2C SCL, SPI SS                                    |
| 4   | IOHR    | I      | P1[5] | I2C SDA, SPI MISO                                  |
| 5   | IOHR    | I      | P1[3] | SPI CLK                                            |
| 6   | IOHR    | I      | P1[1] | ISSP CLK <sup>[1]</sup> , I2C SCL, SPI<br>MOSI     |
| 7   | Power   |        | Vss   | Ground connection                                  |
| 8   | IOHR    | I      | P1[0] | ISSP DATA <sup>[1]</sup> , I2C SDA, SPI<br>CLK     |
| 9   | IOHR    | I      | P1[2] |                                                    |
| 10  | IOHR    | I      | P1[4] | Optional external clock<br>(EXTCLK)                |
| 11  | Inj     | put    | XRES  | Active high external reset with internal pull down |
| 12  | IOH     | I      | P0[4] |                                                    |
| 13  | Po      | wer    | Vdd   | Supply voltage                                     |
| 14  | IOH     | I      | P0[7] |                                                    |
| 15  | IOH     | I      | P0[3] | Integrating input                                  |
| 16  | IOH     | I      | P0[1] | Integrating input                                  |

## Table 2. Pin Definitions - CY8C20236, CY8C20246 PSoC Device [2]

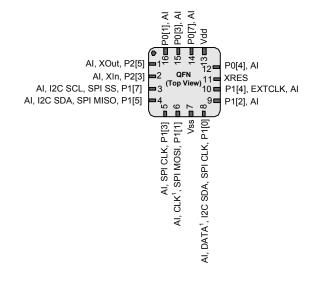


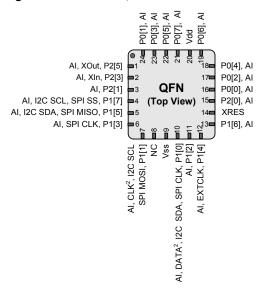

Figure 2. CY8C20236, CY8C20246 PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

1. These are the ISSP pins, which are not High Z at POR (Power On Reset).

2. During power up or reset event, device P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter any issues.




## 24-Pin QFN

## Table 3. Pin Definitions - CY8C20336, CY8C20346 <sup>[2, 3]</sup>

| Pin | Ту      | ре     | Name  | Description                                        |
|-----|---------|--------|-------|----------------------------------------------------|
| No. | Digital | Analog | Name  | Description                                        |
| 1   | I/O     | I      | P2[5] | Crystal output (XOut)                              |
| 2   | I/O     | I      | P2[3] | Crystal input (XIn)                                |
| 3   | I/O     | I      | P2[1] |                                                    |
| 4   | IOHR    | I      | P1[7] | I2C SCL, SPI SS                                    |
| 5   | IOHR    | I      | P1[5] | I2C SDA, SPI MISO                                  |
| 6   | IOHR    | I      | P1[3] | SPI CLK                                            |
| 7   | IOHR    | I      | P1[1] | ISSP CLK <sup>[1]</sup> , I2C SCL, SPI<br>MOSI     |
| 8   |         |        | NC    | No connection                                      |
| 9   | Po      | wer    | Vss   | Ground connection                                  |
| 10  | IOHR    | I      | P1[0] | ISSP DATA <sup>[1]</sup> , I2C SDA, SPI<br>CLK     |
| 11  | IOHR    | I      | P1[2] |                                                    |
| 12  | IOHR    | I      | P1[4] | Optional external clock input<br>(EXTCLK)          |
| 13  | IOHR    | I      | P1[6] |                                                    |
| 14  | In      | put    | XRES  | Active high external reset with internal pull down |
| 15  | I/O     | -      | P2[0] |                                                    |
| 16  | IOH     | I      | P0[0] |                                                    |
| 17  | IOH     | I      | P0[2] |                                                    |
| 18  | IOH     | I      | P0[4] |                                                    |
| 19  | IOH     | I      | P0[6] |                                                    |
| 20  | Po      | wer    | Vdd   | Supply voltage                                     |
| 21  | IOH     | I      | P0[7] |                                                    |
| 22  | IOH     | I      | P0[5] |                                                    |
| 23  | IOH     | I      | P0[3] | Integrating input                                  |
| 24  | IOH     | I      | P0[1] | Integrating input                                  |
| СР  | Po      | wer    | Vss   | Center pad must be connected to ground             |

#### Figure 3. CY8C20336, CY8C20346 PSoC Device



LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Note
3. The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.



## 48-Pin SSOP

Table 7. Pin Definitions - CY8C20536, CY8C20546, and CY8C20566 PSoC Device  $\ensuremath{^{[2]}}$ 

|         |         |        |       |                                                    | 1       |           | 0.10   | 000-00                        | 01/0                             | 00540     |                            |                                  |
|---------|---------|--------|-------|----------------------------------------------------|---------|-----------|--------|-------------------------------|----------------------------------|-----------|----------------------------|----------------------------------|
| Pin No. | Digital | Analog | Name  | Description                                        | Figu    | ure 6.    | CY8    | AI, P0[<br>AI, P0[<br>AI, P0[ | 7] <b>p<sup>0</sup></b> 1        | ;20546, a | 48 🗖                       | VDD                              |
| 1       | IOH     | 1      | P0[7] |                                                    |         |           |        | AI, P0[<br>AI, P0[            |                                  |           |                            | P0[6], AI<br>P0[4], AI           |
| 2       | IOH     | 1      | P0[5] |                                                    |         |           |        | AI P0[                        | 1] 🖬 4                           |           | 45 🗖                       | P0[2], AI                        |
| 3       | IOH     | 1      | P0[3] |                                                    |         |           | хт     | AI, P2[<br>ALOUT, P2]         |                                  |           |                            | P0[0], Al<br>P2[6], Al           |
| 4       | IOH     |        | P0[1] |                                                    |         |           |        | TALIN, P2[3                   | 3] 🖬 7                           |           | 42 🗖                       | P2[4], AI                        |
| 5       | I/O     | 1      | P2[7] |                                                    |         |           |        | AI, P2[1                      | ] <b>=</b> 8<br>C <b>=</b> 9     |           |                            | P2[2], Al<br>P2[0], Al           |
| 6       | 1/O     |        | P2[5] | XTAL Out                                           |         |           |        | N                             | C 🗖 10                           |           |                            | P3[6], Al                        |
| 7       | 1/O     |        | P2[3] | XTAL In                                            |         |           |        |                               | 3] <b>=</b> 11<br>1] <b>=</b> 12 |           |                            | P3[4], Al<br>P3[2], Al           |
| 8       | 1/O     |        | P2[1] |                                                    | 1       |           |        | N                             | C 🖬 13                           | SSOP      | 36 🗖                       | P3[0], AI                        |
| 9       |         | ·      | NC    | No connection                                      | 1       |           |        |                               | 7] <b>=</b> 14<br>5] <b>=</b> 15 |           |                            | XRES                             |
| 10      |         |        | NC    | No connection                                      |         |           |        |                               | 3] <b>=</b> 16                   |           | 34 <b>=</b><br>33 <b>=</b> |                                  |
| 11      | I/O     | 1      | P4[3] |                                                    | 1       |           |        | AI, P3[                       | 1] <b>日</b> 17                   |           | 32 🗖                       | NC                               |
| 12      | 1/O     |        | P4[1] |                                                    |         |           |        | N                             | C 🖬 18<br>C 🔳 19                 |           | 31 <b>-</b><br>30 <b>-</b> |                                  |
| 13      |         |        | NC    | No connection                                      |         |           |        | SPI SS, P1[<br>I MISO, P1[    |                                  |           | 29 🗖                       | NC                               |
| 14      | I/O     | 1      | P3[7] |                                                    |         | 120 3     |        | PI CLK, P1                    |                                  |           | 27                         | P1[6], AI<br>P1[4], EXT CLK      |
| 15      | 1/0     | I      | P3[5] |                                                    | TC CL   | .K, I2C S |        | I MOSI, P1[                   | 1] <b>=</b> 23                   |           | 26                         | P1[2], Al                        |
| 16      | I/O     | 1      | P3[3] |                                                    |         |           |        | V5                            | S <b>■</b> 24                    |           | 25                         | P1[0], TC DATA, I2C SDA, SPI CLK |
| 17      | I/O     | I      | P3[1] |                                                    |         |           |        |                               |                                  |           |                            |                                  |
| 18      |         |        | NC    | No connection                                      |         |           |        |                               |                                  |           |                            |                                  |
| 19      |         |        | NC    | No connection                                      |         |           |        |                               |                                  |           |                            |                                  |
| 20      | IOHR    | 1      | P1[7] | I2C SCL, SPI SS                                    |         |           |        |                               |                                  |           |                            |                                  |
| 21      | IOHR    | I      | P1[5] | I2C SDA, SPI MISO                                  |         |           |        |                               |                                  |           |                            |                                  |
| 22      | IOHR    | I      | P1[3] | SPI CLK                                            | 1       |           |        |                               |                                  |           |                            |                                  |
| 23      | IOHR    | I      | P1[1] | TC CLK <sup>[1]</sup> , I2C SCL, SPI MOSI          | 1       |           |        |                               |                                  |           |                            |                                  |
| 24      |         |        | VSS   | Ground Pin                                         |         |           |        |                               |                                  |           |                            |                                  |
| 25      | IOHR    | I      | P1[0] | TC DATA <sup>[1]</sup> , I2C SDA, SPI CLK          |         |           |        |                               |                                  |           |                            |                                  |
| 26      | IOHR    | I      | P1[2] |                                                    |         |           |        |                               |                                  |           |                            |                                  |
| 27      | IOHR    | I      | P1[4] | EXT CLK                                            |         |           |        |                               |                                  |           |                            |                                  |
| 28      | IOHR    | I      | P1[6] |                                                    |         |           |        |                               |                                  |           |                            |                                  |
| 29      |         |        | NC    | No connection                                      |         |           |        |                               |                                  |           |                            |                                  |
| 30      |         |        | NC    | No connection                                      |         |           |        |                               |                                  |           |                            |                                  |
| 31      |         |        | NC    | No connection                                      |         |           |        |                               |                                  |           |                            |                                  |
| 32      |         |        | NC    | No connection                                      | Pin No. | Digital   | Analog | Name                          |                                  |           | Des                        | scription                        |
| 33      |         |        | NC    | No connection                                      | 41      | I/O       | Ι      | P2[2]                         |                                  |           |                            |                                  |
| 34      |         |        | NC    | No connection                                      | 42      | I/O       | Ι      | P2[4]                         |                                  |           |                            |                                  |
| 35      |         |        | XRES  | Active high external reset with internal pull down | 43      | I/O       | I      | P2[6]                         |                                  |           |                            |                                  |
| 36      | I/O     | I      | P3[0] |                                                    | 44      | IOH       | Ι      | P0[0]                         |                                  |           |                            |                                  |
| 37      | I/O     | I      | P3[2] |                                                    | 45      | IOH       | Ι      | P0[2]                         |                                  |           |                            |                                  |
| 38      | I/O     | I      | P3[4] |                                                    | 46      | IOH       | Ι      | P0[4]                         |                                  |           |                            |                                  |
| 39      | I/O     | I      | P3[6] |                                                    | 47      | IOH       | I      | P0[6]                         |                                  |           |                            |                                  |
| 40      | I/O     | I      | P2[0] |                                                    | 48      | Powe      | er     | Vdd                           | Power                            | Pin       |                            |                                  |

LEGEND A = Analog, I = Input, O = Output, NC = No Connection, H = 5 mA High Output Drive, R = Regulated Output Option.



## Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

## Table 12. Absolute Maximum Ratings

| Symbol           | Description                       | Conditions                                                                                                                                                                                    | Min       | Тур | Max       | Units |
|------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|-----------|-------|
| T <sub>STG</sub> | Storage Temperature               | Higher storage temperatures reduces data<br>retention time. Recommended Storage<br>Temperature is +25°C ± 25°C. Extended<br>duration storage temperatures above 85°C<br>degrades reliability. | -55       | +25 | +125      | °C    |
| Vdd              | Supply Voltage Relative to Vss    |                                                                                                                                                                                               | -0.5      | Ι   | +6.0      | V     |
| V <sub>IO</sub>  | DC Input Voltage                  |                                                                                                                                                                                               | Vss – 0.5 | -   | Vdd + 0.5 | V     |
| V <sub>IOZ</sub> | DC Voltage Applied to Tri-state   |                                                                                                                                                                                               | Vss -0.5  | -   | Vdd + 0.5 | V     |
| I <sub>MIO</sub> | Maximum Current into any Port Pin |                                                                                                                                                                                               | -25       | -   | +50       | mA    |
| ESD              | Electro Static Discharge Voltage  | Human Body Model ESD                                                                                                                                                                          | 2000      | -   | -         | V     |
| LU               | Latch up Current                  | In accordance with JESD78 standard                                                                                                                                                            | _         | -   | 200       | mA    |

## **Operating Temperature**

## Table 13. Operating Temperature

| Symbol         | Description                 | Conditions                                                                                                                                                                                                           | Min | Тур | Мах  | Units |
|----------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|-------|
| T <sub>A</sub> | Ambient Temperature         |                                                                                                                                                                                                                      | -40 | -   | +85  | °C    |
| TJ             | Operational Die Temperature | The temperature rise from ambient to junction<br>is package specific. Refer the table Thermal<br>Impedances per Package on page 34. The<br>user must limit the power consumption to<br>comply with this requirement. | -40 | -   | +100 | °C    |



## Table 15. 3.0V to 5.5V DC GPIO Specifications (continued)

| Symbol            | Description                                                         | Conditions                                                                                                                                                                                 | Min  | Тур   | Max  | Units |
|-------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------|-------|
| V <sub>OH10</sub> | High Output Voltage<br>Port 1 Pins with LDO Enabled for 1.8V<br>Out | IOH = 1 mA, Vdd > 2.7V, maximum of<br>20 mA source current in all IOs                                                                                                                      | 1.20 | -     | -    | V     |
| V <sub>OL</sub>   | Low Output Voltage                                                  | IOL = 25 mA, Vdd > 3.3V, maximum of<br>60 mA sink current on even port pins (for<br>example, P0[2] and P1[4]) and 60 mA sink<br>current on odd port pins (for example, P0[3]<br>and P1[5]) | -    | -     | 0.75 | V     |
| V <sub>IL</sub>   | Input Low Voltage                                                   |                                                                                                                                                                                            | -    | -     | 0.80 | V     |
| V <sub>IH</sub>   | Input High Voltage                                                  |                                                                                                                                                                                            | 2.00 | -     |      | V     |
| V <sub>H</sub>    | Input Hysteresis Voltage                                            |                                                                                                                                                                                            | -    | 80    | -    | mV    |
| I <sub>IL</sub>   | Input Leakage (Absolute Value)                                      |                                                                                                                                                                                            | _    | 0.001 | 1    | μA    |
| C <sub>PIN</sub>  | Pin Capacitance                                                     | Package and pin dependent<br>Temp = 25°C                                                                                                                                                   | 0.5  | 1.7   | 5    | pF    |



## **DC POR and LVD Specifications**

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 23. DC POR and LVD Specifications

| Symbol                                                                                                                      | Description                                                                                                                                                            | Conditions                                                                                                  | Min                                                                                                                      | Тур                                                          | Max                                                          | Units                           |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------|
| V <sub>PPOR0</sub><br>V <sub>PPOR1</sub><br>V <sub>PPOR2</sub><br>V <sub>PPOR3</sub>                                        | Vdd Value for PPOR Trip<br>PORLEV[1:0] = 00b, HPOR = 0<br>PORLEV[1:0] = 00b, HPOR = 1<br>PORLEV[1:0] = 01b, HPOR = 1<br>PORLEV[1:0] = 10b, HPOR = 1                    | Vdd must be greater than or equal to 1.71V during startup, reset from the XRES pin, or reset from watchdog. | 1.61<br>—                                                                                                                | 1.66<br>2.36<br>2.60<br>2.82                                 | 1.71<br>2.41<br>2.66<br>2.95                                 | V<br>V<br>V<br>V                |
| $\begin{array}{c} V_{LVD0} \\ V_{LVD1} \\ V_{LVD2} \\ V_{LVD3} \\ V_{LVD4} \\ V_{LVD5} \\ V_{LVD6} \\ V_{LVD7} \end{array}$ | Vdd Value for LVD Trip<br>VM[2:0] = 000b<br>VM[2:0] = 001b<br>VM[2:0] = 010b<br>VM[2:0] = 011b<br>VM[2:0] = 100b<br>VM[2:0] = 101b<br>VM[2:0] = 110b<br>VM[2:0] = 111b |                                                                                                             | 2.40 <sup>[6]</sup><br>2.64 <sup>[7]</sup><br>2.85 <sup>[8]</sup><br>2.95<br>3.06<br>1.84<br>1.75 <sup>[9]</sup><br>4.62 | 2.45<br>2.71<br>2.92<br>3.02<br>3.13<br>1.90<br>1.80<br>4.73 | 2.51<br>2.78<br>2.99<br>3.09<br>3.20<br>2.32<br>1.84<br>4.83 | V<br>V<br>V<br>V<br>V<br>V<br>V |

## **DC Programming Specifications**

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

### Table 24. DC Programming Specifications

| Symbol                | Description                                                                           | Conditions                                                                                                                                           | Min             | Тур | Max             | Units |
|-----------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|-----------------|-------|
| Vdd <sub>IWRITE</sub> | Supply Voltage for Flash Write<br>Operations                                          |                                                                                                                                                      | 1.71            | _   | 5.25            | V     |
| I <sub>DDP</sub>      | Supply Current During<br>Programming or Verify                                        |                                                                                                                                                      | -               | 5   | 25              | mA    |
| V <sub>ILP</sub>      | Input Low Voltage During<br>Programming or Verify                                     | See the appropriate DC General Purpose<br>IO Specifications on page 19                                                                               | -               | -   | V <sub>IL</sub> | V     |
| V <sub>IHP</sub>      | Input High Voltage During<br>Programming or Verify                                    | See appropriate DC General Purpose IO<br>Specifications on page 19 table on pages<br>15 or 16                                                        | V <sub>IH</sub> | -   | _               | V     |
| I <sub>ILP</sub>      | Input Current when Applying Vilp<br>to P1[0] or P1[1] During<br>Programming or Verify | Driving internal pull down resistor                                                                                                                  | -               | -   | 0.2             | mA    |
| I <sub>IHP</sub>      | Input Current when Applying Vihp<br>to P1[0] or P1[1] During<br>Programming or Verify | Driving internal pull down resistor                                                                                                                  | _               | -   | 1.5             | mA    |
| V <sub>OLP</sub>      | Output Low Voltage During<br>Programming or Verify                                    |                                                                                                                                                      | -               | -   | Vss + 0.75      | V     |
| V <sub>OHP</sub>      | Output High Voltage During<br>Programming or Verify                                   | See appropriate DC General Purpose IO<br>Specifications on page 19 table on page<br>16. For Vdd > 3V use V <sub>OH4</sub> in Table 13 on<br>page 18. | V <sub>OH</sub> | -   | Vdd             | V     |
| Flash <sub>ENPB</sub> | Flash Write Endurance                                                                 | Erase/write cycles per block                                                                                                                         | 50,000          | -   | -               | -     |
| Flash <sub>DR</sub>   | Flash Data Retention                                                                  | Following maximum Flash write cycles;<br>ambient temperature of 55°C                                                                                 | 10              | 20  | -               | Years |

#### Notes

- 6. Always greater than 50 mV above V<sub>PPOR1</sub> voltage for falling supply. 7. Always greater than 50 mV above V<sub>PPOR2</sub> voltage for falling supply. 8. Always greater than 50 mV above V<sub>PPOR3</sub> voltage for falling supply. 9. Always greater than 50 mV above V<sub>PPOR0</sub> voltage for falling supply.

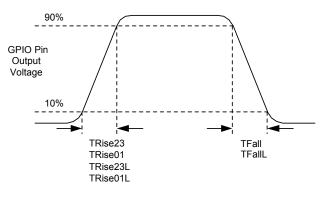


## **AC Chip-Level Specifications**

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

## Table 25. AC Chip-Level Specifications

| Symbol             | Description                                               | Conditions                    | Min  | Тур | Max  | Units |
|--------------------|-----------------------------------------------------------|-------------------------------|------|-----|------|-------|
| F <sub>CPU</sub>   | CPU Frequency                                             |                               | 5.7  | -   | 25.2 | MHz   |
| F <sub>32K1</sub>  | Internal Low Speed Oscillator Frequency                   |                               | 19   | 32  | 50   | kHz   |
| F <sub>IMO24</sub> | Internal Main Oscillator Frequency at 24<br>MHz Setting   |                               | 22.8 | 24  | 25.2 | MHz   |
| F <sub>IMO12</sub> | Internal Main Oscillator Frequency at 12<br>MHz Setting   |                               | 11.4 | 12  | 12.6 | MHz   |
| F <sub>IMO6</sub>  | Internal Main Oscillator Frequency at 6<br>MHz Setting    |                               | 5.7  | 6.0 | 6.3  | MHz   |
| DCIMO              | Duty Cycle of IMO                                         |                               | 40   | 50  | 60   | %     |
| T <sub>RAMP</sub>  | Supply Ramp Time                                          |                               | 20   | _   | -    | μS    |
| T <sub>XRST</sub>  | External Reset Pulse Width at Power Up                    | After supply voltage is valid | 1    |     |      | ms    |
| T <sub>XRST2</sub> | External Reset Pulse Width after Power Up <sup>[10]</sup> | Applies after part has booted | 10   |     |      | μS    |




## **AC General Purpose IO Specifications**

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. **Table 26.** AC GPIO Specifications

| Symbol            | Description                                                       | Conditions                                               | Min | Тур | Мах                                                          | Units |
|-------------------|-------------------------------------------------------------------|----------------------------------------------------------|-----|-----|--------------------------------------------------------------|-------|
| F <sub>GPIO</sub> | GPIO Operating Frequency                                          | Normal Strong Mode Port 0, 1                             | 0   | -   | 6 MHz for<br>1.71V <vdd<2.4v< td=""><td>MHz</td></vdd<2.4v<> | MHz   |
|                   |                                                                   |                                                          | 0   | -   | 12 MHz for<br>2.4V <vdd<5.5v< td=""><td></td></vdd<5.5v<>    |       |
| TRise23           | Rise Time, Strong Mode, Cload = 50 pF<br>Ports 2 or 3             | Vdd = 3.0 to 3.6V, 10% – 90%                             | 15  | -   | 80                                                           | ns    |
| TRise23L          | Rise Time, Strong Mode Low Supply,<br>Cload = 50 pF, Ports 2 or 3 | Vdd = 1.71 to 3.0V, 10% – 90%                            | 15  | -   | 80                                                           | ns    |
| TRise01           | Rise Time, Strong Mode, Cload = 50 pF<br>Ports 0 or 1             | Vdd = 3.0 to 3.6V, 10% – 90%<br>LDO enabled or disabled  | 10  | -   | 50                                                           | ns    |
| TRise01L          | Rise Time, Strong Mode Low Supply,<br>Cload = 50 pF, Ports 0 or 1 | Vdd = 1.71 to 3.0V, 10% – 90%<br>LDO enabled or disabled | 10  | -   | 80                                                           | ns    |
| TFall             | Fall Time, Strong Mode, Cload = 50 pF<br>All Ports                | Vdd = 3.0 to 3.6V, 10% – 90%                             | 10  | _   | 50                                                           | ns    |
| TFallL            | Fall Time, Strong Mode Low Supply,<br>Cload = 50 pF, All Ports    | Vdd = 1.71 to 3.0V, 10% – 90%                            | 10  | _   | 70                                                           | ns    |

## Figure 12. GPIO Timing Diagram





## Table 27.AC Characteristics – USB Data Timings

| Symbol | Description                                          | Conditions         | Min      | Тур | Max        | Units |
|--------|------------------------------------------------------|--------------------|----------|-----|------------|-------|
| Tdrate | Full speed data rate                                 | Average bit rate   | 12–0.25% | 12  | 12 + 0.25% | MHz   |
| Tdjr1  | Receiver data jitter tolerance                       | To next transition | -18.5    | -   | 18.5       | ns    |
| Tdjr2  | Receiver data jitter tolerance                       | To pair transition | -9       | -   | 9          | ns    |
| Tudj1  | Driver differential jitter                           | To next transition | -3.5     | -   | 3.5        | ns    |
| Tudj2  | Driver differential jitter                           | To pair transition | -4.0     | -   | 4.0        | ns    |
| Tfdeop | Source jitter for differential transition            | To SE0 transition  | -2       | -   | 5          | ns    |
| Tfeopt | Source SE0 interval of EOP                           |                    | 160      | -   | 175        | ns    |
| Tfeopr | Receiver SE0 interval of EOP                         |                    | 82       | -   |            | ns    |
| Tfst   | Width of SE0 interval during differential transition |                    |          | _   | 14         | ns    |

### Table 28.AC Characteristics – USB Driver

| Symbol | Description                     | Conditions | Min   | Тур | Max   | Units |
|--------|---------------------------------|------------|-------|-----|-------|-------|
| Tr     | Transition rise time            | 50 pF      | 4     | -   | 20    | ns    |
| Tf     | Transition fall time            | 50 pF      | 4     | -   | 20    | ns    |
| TR     | Rise/fall time matching         |            | 90.00 | -   | 111.1 | %     |
| Vcrs   | Output signal crossover voltage |            | 1.3   | -   | 2.0   | V     |

#### **AC Comparator Specifications**

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

### Table 29. AC Low Power Comparator Specifications

| Symbol           | Description                               | Conditions                                       | Min | Тур | Мах | Units |
|------------------|-------------------------------------------|--------------------------------------------------|-----|-----|-----|-------|
| T <sub>LPC</sub> | Comparator Response Time, 50 mV Overdrive | 50 mV overdrive does not include offset voltage. |     |     | 100 | ns    |

## AC Analog Mux Bus Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

## Table 30. AC Analog Mux Bus Specifications

| Symbol          | Description | Conditions                                                | Min | Тур | Max | Units |
|-----------------|-------------|-----------------------------------------------------------|-----|-----|-----|-------|
| F <sub>SW</sub> | Switch Rate | Maximum pin voltage when measuring switch rate is 1.8Vp-p | _   | _   | 6.3 | MHz   |

## **AC External Clock Specifications**

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

### Table 31. AC External Clock Specifications

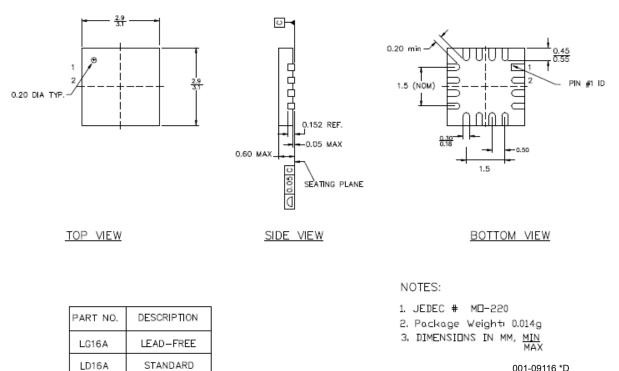
| Symbol              | Description            | Conditions | Min   | Тур | Max  | Units |
|---------------------|------------------------|------------|-------|-----|------|-------|
| F <sub>OSCEXT</sub> | Frequency              |            | 0.750 | -   | 25.2 | MHz   |
| -                   | High Period            |            | 20.6  | -   | 5300 | ns    |
| -                   | Low Period             |            | 20.6  | -   | -    | ns    |
| _                   | Power Up IMO to Switch |            | 150   | -   | -    | μs    |



## Table 34. SPI Master AC Specifications

| Symbol                | Description             | Conditions                                                       | Min       | Тур | Max    | Units |
|-----------------------|-------------------------|------------------------------------------------------------------|-----------|-----|--------|-------|
| F <sub>SCLK</sub>     | SCLK clock frequency    | $\begin{array}{l} V_{DD} \geq 2.4V \\ V_{DD} < 2.4V \end{array}$ |           |     | 6<br>3 | MHz   |
| DC                    | SCLK duty cycle         |                                                                  |           | 50  |        | %     |
| T <sub>SETUP</sub>    | MISO to SCLK setup time | $\begin{array}{l} V_{DD} \geq 2.4V \\ V_{DD} < 2.4V \end{array}$ | 60<br>100 |     |        | ns    |
| T <sub>HOLD</sub>     | SCLK to MISO hold time  |                                                                  | 40        |     |        | ns    |
| T <sub>OUT_VAL</sub>  | SCLK to MOSI valid time |                                                                  |           |     | 40     | ns    |
| T <sub>OUT_HIGH</sub> | MOSI high time          |                                                                  | 40        |     |        | ns    |

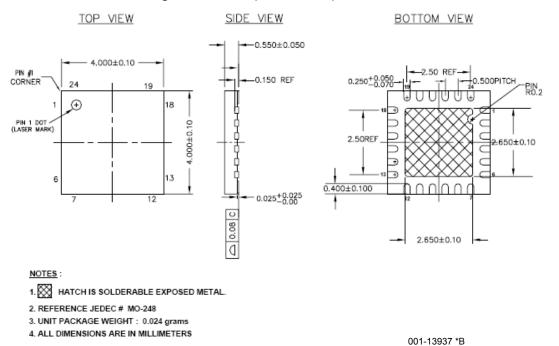
## Table 35. SPI Slave AC Specifications


| Symbol                 | Description                    | Conditions                                                       | Min    | Тур | Max     | Units |
|------------------------|--------------------------------|------------------------------------------------------------------|--------|-----|---------|-------|
| F <sub>SCLK</sub>      | SCLK clock frequency           | $\begin{array}{l} V_{DD} \geq 2.4V \\ V_{DD} < 2.4V \end{array}$ |        |     | 12<br>6 | MHz   |
| T <sub>LOW</sub>       | SCLK low time                  |                                                                  | 41.67  |     |         | ns    |
| T <sub>HIGH</sub>      | SCLK high time                 |                                                                  | 41.67  |     |         | ns    |
| T <sub>SETUP</sub>     | MOSI to SCLK setup time        |                                                                  | 30     |     |         | ns    |
| T <sub>HOLD</sub>      | SCLK to MOSI hold time         |                                                                  | 50     |     |         | ns    |
| T <sub>SS_MISO</sub>   | SS high to MISO valid          |                                                                  |        |     | 153     | ns    |
| T <sub>SCLK_MISO</sub> | SCLK to MISO valid             |                                                                  |        |     | 125     | ns    |
| T <sub>SS_HIGH</sub>   | SS high time                   |                                                                  |        |     | 50      | ns    |
| T <sub>SS_CLK</sub>    | Time from SS low to first SCLK |                                                                  | 2/SCLK |     |         | ns    |
| T <sub>CLK_SS</sub>    | Time from last SCLK to SS high |                                                                  | 2/SCLK |     |         | ns    |

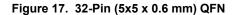


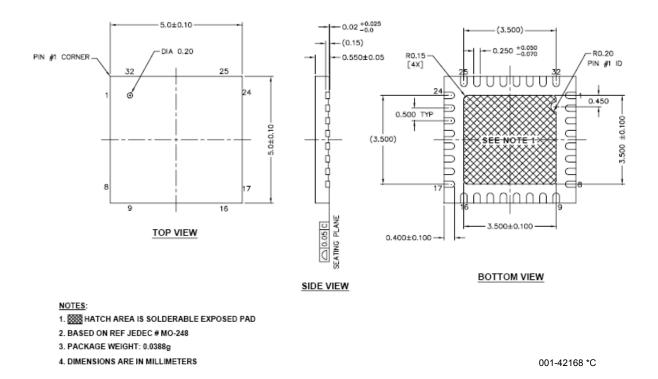
## **Packaging Information**

This section illustrates the packaging specifications for the CY8C20x36/46/66/96 PSoC device, along with the thermal impedances for each package.


Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled PSoC Emulator Pod Dimensions at http://www.cypress.com/design/MR10161.




#### Figure 15. 16-pin QFN No E-pad 3x3mm Package Outline (Sawn)


001-09116 \*D





### Figure 16. 24-Pin (4x4 x 0.6 mm) QFN









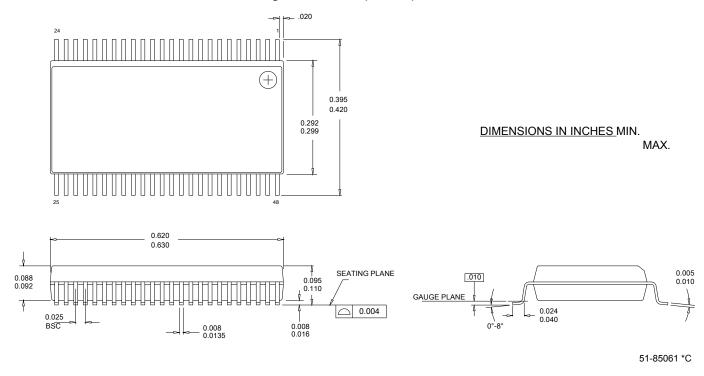
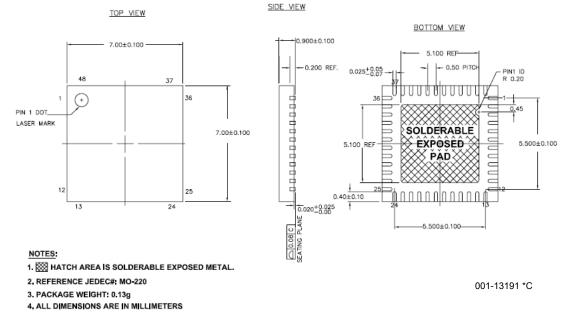




Figure 19. 48-Pin (7x7 mm) QFN



### **Important Notes**

- For information on the preferred dimensions for mounting QFN packages, see the following Application Note at http://www.amkor.com/products/notes\_papers/MLFAppNote.pdf.
- Pinned vias for thermal conduction are not required for the low power PSoC device.



#### **Device Programmers**

All device programmers are purchased from the Cypress Online Store.

#### CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- Three Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

#### Accessories (Emulation and Programming)

#### Table 38. Emulation and Programming Accessories

#### CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

| Part Number      | Pin Package | Flex-Pod Kit <sup>[15]</sup> | Foot Kit <sup>[16]</sup> | Adapter <sup>[17]</sup> |
|------------------|-------------|------------------------------|--------------------------|-------------------------|
| CY8C20236-24LKXI | 16 QFN      | CY3250-20266QFN              | CY3250-16QFN-RK          | See note 15             |
| CY8C20246-24LKXI | 16 QFN      | CY3250-20266QFN              | CY3250-16QFN-FK          | See note 17             |
| CY8C20336-24LQXI | 24 QFN      | CY3250-20366QFN              | CY3250-24QFN-FK          | See note 15             |
| CY8C20346-24LQXI | 24 QFN      | CY3250-20366QFN              | CY3250-24QFN-FK          | See note 17             |
| CY8C20396-24LQXI | 24 QFN      |                              | Not Available            | L                       |
| CY8C20436-24LQXI | 32 QFN      | CY3250-20466QFN              | CY3250-32QFN-RK          | See note 15             |
| CY8C20446-24LQXI | 32 QFN      | CY3250-20466QFN              | CY3250-32QFN-FK          | See note 17             |
| CY8C20466-24LQXI | 32 QFN      | CY3250-20466QFN              | CY3250-32QFN-FK          | See note 17             |
| CY8C20496-24LQXI | 32 QFN      |                              | Not Available            |                         |
| CY8C20536-24PVXI | 48 SSOP     | CY3250-20X66                 | CY3250-48SSOP-FK         | See note 17             |
| CY8C20546-24PVXI | 48 SSOP     | CY3250-20X66                 | CY3250-48SSOP-FK         | See note 17             |
| CY8C20566-24PVXI | 48 SSOP     | CY3250-20X66                 | CY3250-48SSOP-FK         | See note 17             |
| CY8C20636-24LTXI | 48 QFN      | CY3250-20666QFN              | CY3250-48QFN-FK          | See note 17             |
| CY8C20646-24LTXI | 48 QFN      | CY3250-20666QFN              | CY3250-48QFN-FK          | See note 17             |
| CY8C20666-24LTXI | 48 QFN      | CY3250-20666QFN              | CY3250-48QFN-FK          | See note 17             |

## **Third-Party Tools**

Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.

#### **Build a PSoC Emulator into Your Board**

For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, refer Application Note "Debugging - Build a PSoC Emulator into Your Board - AN2323" at http://www.cypress.com/?rID2748.

#### Notes

16. Foot kit includes surface mount feet that can be soldered to the target PCB.

<sup>15.</sup> Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

<sup>17.</sup> Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.



# **Ordering Information**

The following table lists the CY8C20x36/46/66/96 PSoC devices' key package features and ordering codes.

## Table 39. PSoC Device Key Features and Ordering Information

| Package                                      | Ordering Code     | Flash<br>(Bytes) | SRAM<br>(Bytes) | CapSense<br>Blocks | Digital I/O<br>Pins | Analog<br>Inputs <sup>[18]</sup> | XRES<br>Pin | USB |
|----------------------------------------------|-------------------|------------------|-----------------|--------------------|---------------------|----------------------------------|-------------|-----|
| 16-Pin (3x3x0.6mm) QFN                       | CY8C20236-24LKXI  | 8K               | 1K              | 1                  | 13                  | 13                               | Yes         | No  |
| 16-Pin (3x3x0.6mm) QFN<br>(Tape and Reel)    | CY8C20236-24LKXIT | 8K               | 1K              | 1                  | 13                  | 13                               | Yes         | No  |
| 16 Pin (3x3 x 0.6 mm) QFN                    | CY8C20246-24LKXI  | 16K              | 2K              | 1                  | 13                  | 13                               | Yes         | No  |
| 16 Pin (3x3 x 0.6 mm) QFN<br>(Tape and Reel) | CY8C20246-24LKXIT | 16K              | 2K              | 1                  | 13                  | 13                               | Yes         | No  |
| 24-Pin (4x4x0.6mm) QFN                       | CY8C20336-24LQXI  | 8K               | 1K              | 1                  | 20                  | 20                               | Yes         | No  |
| 24-Pin (4x4x0.6mm) QFN<br>(Tape and Reel)    | CY8C20336-24LQXIT | 8K               | 1K              | 1                  | 20                  | 20                               | Yes         | No  |
| 24 Pin (4x4 x 0.6 mm) QFN                    | CY8C20346-24LQXI  | 16K              | 2K              | 1                  | 20                  | 20                               | Yes         | No  |
| 24 Pin (4x4 x 0.6 mm) QFN<br>(Tape and Reel) | CY8C20346-24LQXIT | 16K              | 2K              | 1                  | 20                  | 20                               | Yes         | No  |
| 24-Pin (4x4x0.6mm) QFN                       | CY8C20396-24LQXI  | 16K              | 2K              | 1                  | 19                  | 19                               | Yes         | Yes |
| 24-Pin (4x4x0.6mm) QFN<br>(Tape and Reel)    | CY8C20396-24LQXIT | 16K              | 2K              | 1                  | 19                  | 19                               | Yes         | Yes |
| 32-Pin (5x5x0.6mm) QFN                       | CY8C20436-24LQXI  | 8K               | 1K              | 1                  | 28                  | 28                               | Yes         | No  |
| 32-Pin (5x5x0.6mm) QFN<br>(Tape and Reel)    | CY8C20436-24LQXIT | 8K               | 1K              | 1                  | 28                  | 28                               | Yes         | No  |
| 32 Pin (5x5 x 0.6 mm) QFN                    | CY8C20446-24LQXI  | 16K              | 2K              | 1                  | 28                  | 28                               | Yes         | No  |
| 32 Pin (5x5 x 0.6 mm) QFN<br>(Tape and Reel) | CY8C20446-24LQXIT | 16K              | 2K              | 1                  | 28                  | 28                               | Yes         | No  |
| 32 Pin (5x5 x 0.6 mm) QFN                    | CY8C20466-24LQXI  | 32K              | 2K              | 1                  | 28                  | 28                               | Yes         | No  |
| 32 Pin (5x5 x 0.6 mm) QFN<br>(Tape and Reel) | CY8C20466-24LQXIT | 32K              | 2K              | 1                  | 28                  | 28                               | Yes         | No  |
| 32 Pin (5x5 x 0.6 mm) QFN                    | CY8C20496-24LQXI  | 16K              | 2K              | 1                  | 25                  | 25                               | Yes         | No  |
| 32 Pin (5x5 x 0.6 mm) QFN<br>(Tape and Reel) | CY8C20496-24LQXIT | 16K              | 2K              | 1                  | 25                  | 25                               | Yes         | No  |
| 48-Pin SSOP                                  | CY8C20536-24PVXI  | 8K               | 1K              | 1                  | 36                  | 36                               | Yes         | No  |
| 48-Pin SSOP<br>(Tape and Reel)               | CY8C20536-24PVXIT | 8K               | 1K              | 1                  | 36                  | 36                               | Yes         | No  |
| 48-Pin SSOP                                  | CY8C20546-24PVXI  | 16K              | 2K              | 1                  | 36                  | 36                               | Yes         | No  |
| 48-Pin SSOP<br>(Tape and Reel)               | CY8C20546-24PVXIT | 16K              | 2K              | 1                  | 36                  | 36                               | Yes         | No  |
| 48-Pin SSOP                                  | CY8C20566-24PVXI  | 32K              | 2K              | 1                  | 36                  | 36                               | Yes         | No  |
| 48-Pin SSOP<br>(Tape and Reel)               | CY8C20566-24PVXIT | 32K              | 2K              | 1                  | 36                  | 36                               | Yes         | No  |
| 48 Pin (7x7 mm) QFN                          | CY8C20636-24LTXI  | 8K               | 1K              | 1                  | 36                  | 36                               | Yes         | No  |
| 48 Pin (7x7 mm) QFN<br>(Tape and Reel)       | CY8C20636-24LTXIT | 8K               | 1K              | 1                  | 36                  | 36                               | Yes         | No  |
| 48 Pin (7x7 mm) QFN                          | CY8C20646-24LTXI  | 16K              | 2K              | 1                  | 36                  | 36                               | Yes         | Yes |
| 48 Pin (7x7 mm) QFN<br>(Tape and Reel)       | CY8C20646-24LTXIT | 16K              | 2K              | 1                  | 36                  | 36                               | Yes         | Yes |
| 48 Pin (7x7 mm) QFN                          | CY8C20666-24LTXI  | 32K              | 2K              | 1                  | 36                  | 36                               | Yes         | Yes |
| 48 Pin (7x7 mm) QFN<br>(Tape and Reel)       | CY8C20666-24LTXIT | 32K              | 2K              | 1                  | 36                  | 36                               | Yes         | Yes |
| 48 Pin (7x7 mm) QFN (OCD) <sup>[4]</sup>     | CY8C20066-24LTXI  | 32K              | 2K              | 1                  | 36                  | 36                               | Yes         | Yes |

#### Notes

18. Dual-function Digital I/O Pins also connect to the common analog mux.



# **Document History Page**

| Revision | ECN     | Origin of Change     | Submission Date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|---------|----------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **       | 766857  | HMT                  | See ECN         | New silicon and document (Revision **).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *A       | 1242866 | HMT                  | See ECN         | Add features. Update all applicable sections. Update specs.<br>Fix 24-pin QFN pinout moving pins inside. Update package<br>revisions. Update and add to Emulation and Programming<br>Accessories table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *В       | 2174006 | AESA                 | See ECN         | Added 48-Pin SSOP Part Pinout<br>Modified symbol $R_{VDD}$ to $R_{GND}$ in Table DC Analog Mux Bus<br>Specification<br>Added footnote in Table DC Analog Mux Bus Specification<br>Added 16K FLASH Parts. Updated Notes, Package Diagrams<br>and Ordering Information table. Updated Thermal Impedance<br>and Solder Reflow tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| *C       | 2587518 | TOF/JASM/MNU/<br>HMT | 10/13/08        | Converted from Preliminary to Final<br>Fixed broken links. Updated data sheet template.<br>Added operating voltage ranges with USB<br>ADC resolution changed from 10-bit to 8-bit<br>Included ADC specifications table<br>Included Comparator specification table<br>Included Voh7, Voh8, Voh9, Voh10 specs<br>Flash data retention – condition added to Note<br>Input leakage spec changed to 1 μA max<br>GPIO rise time for ports 0,1 and ports 2,3 made common<br>AC Programming specifications updated<br>Included AC Programming cycle timing diagram<br>AC SPI specification updated<br>The VIH for 3.0 <vdd<2.4 1.6="" 2.0<br="" changed="" from="" to="">Added USB specification<br/>Added SPI CLK to P1[0]<br/>Updated package diagrams<br/>Updated thermal impedances for QFN packages<br/>Updated F<sub>GPIO</sub> parameter in Table 23<br/>Updated voltage ranges for F<sub>SPIM</sub> and F<sub>SPIS</sub> in Table 30<br/>Update Development Tools, add Designing with PSoC<br/>Designer. Edit, fix links, notes and table format. Update R<sub>IN</sub><br/>formula, fix TRise parameter names in GPIO figure, fix Switch<br/>Rate note. Update maximum data in Table 20. DC POR and<br/>LVD Specifications.</vdd<2.4> |
| *D       | 2649637 | SNV/AESA             | 03/17/2009      | Changed title to "CY8C20x36/46/66, CY8C20396<br>CapSense™ Applications". Updated data sheet Features, pin<br>information, and ordering information sections. Updated<br>package diagram 001-42168 to *C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *Ε       | 2700196 | SNV/PYRS             | 04/30/2009      | Added part numbers CY8C20496, CY8C20536, CY8C20546,<br>CY8C20636, CY8C20646<br>Updated Features on page 1<br>Added 48-Pin QFN without USB pin Diagram and Pin Definition<br>table<br>Added 32-Pin QFN (with USB) package<br>Added SPI Master and Slave AC Specificatons<br>Updated Emulations and Programming Accessories Table on<br>page 33<br>Updated Ordering Information on page 37<br>Removed reference to Hi-Tech C Compiler in Development<br>Tool Selection on page 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |