

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

 \times F

Details	
Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (8kB)
Controller Series	CY8C20xx6
RAM Size	1K x 8
Interface	I ² C, SPI
Number of I/O	13
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	16-UFQFN
Supplier Device Package	16-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20236-24lkxit

Email: info@E-XFL.COM

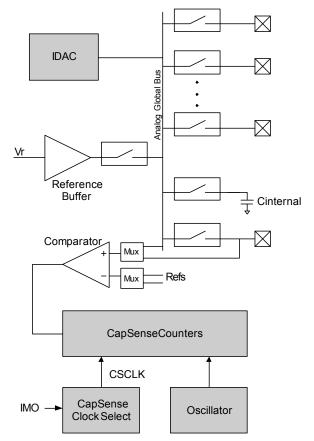
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC[®] Functional Overview

The PSoC family consists of on-chip Controller devices. These devices are designed to replace multiple traditional MCU-based components with one, low cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The architecture for this device family, as shown in the Logic Block Diagram on page 2, is comprised of three main areas: the Core, the CapSense Analog System, and the System Resources (including a full speed USB port). A common, versatile bus allows connection between I/O and the analog system. Each CY8C20x36/46/66/96 PSoC Device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 36 general purpose IO (GPIO) are also included. The GPIO provides access to the MCU and analog mux.

PSoC Core


The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO (internal main oscillator) and ILO (internal low speed oscillator). The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard architecture microprocessor.

System Resources provide additional capability, such as configurable USB and I2C slave/SPI master-slave communication interface, three 16-bit programmable timers, and various system resets supported by the M8C.

The Analog System is composed of the CapSense PSoC block and an internal 1.2V analog reference, which together support capacitive sensing of up to 36 inputs.

CapSense Analog System

The Analog System contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports.

Figure 1. Analog System Block Diagram

Analog Multiplexer System

The Analog Mux Bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.

Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces, such as sliders and touchpads.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

When designing capacitive sensing applications, refer to the latest signal-to-noise signal level requirements Application Notes, which can be found under http://www.cypress.com > Documentation > Application Notes. In general, and unless otherwise noted in the relevant Application Notes, the minimum signal-to-noise ratio (SNR) for CapSense applications is 5:1.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions.

The PSoC development process can be summarized in the following four steps:

- 1. Select Components
- 2. Configure Components
- 3. Organize and Connect
- 4. Generate, Verify, and Debug

Select Components

Both the system-level and chip-level views provide a library of pre-built, pre-tested hardware peripheral components. In the system-level view these components are called "drivers" and correspond to inputs (a thermistor, for example), outputs (a brushless DC fan, for example), communication interfaces (I²C-bus, for example), and the logic to control how they interact with one another (called valuators).

In the chip-level view the components are called "user modules." User modules make selecting and implementing peripheral devices simple, and come in analog, digital, and programmable system-on-chip varieties.

Configure Components

Each of the components you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a Pulse Width Modulator (PWM) User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus.

Both the system-level drivers and chip-level user modules are documented in data sheets that are viewed directly in PSoC Designer. These data sheets explain the internal operation of the component and provide performance specifications. Each data sheet describes the use of each user module parameter or driver property, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins, or connect system-level inputs, outputs, and communication interfaces to each other with valuator functions.

In the system-level view selecting a potentiometer driver to control a variable speed fan driver and setting up the valuators to control the fan speed based on input from the pot selects, places, routes, and configures a programmable gain amplifier (PGA) to buffer the input from the potentiometer, an analog-todigital converter (ADC) to convert the potentiometer's output to a digital signal, and a PWM to control the fan.

In the chip-level view, you perform the selection, configuration, and routing so that you have complete control over the use of all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system.

Both system-level and chip-level designs generate software based on your design. The chip-level design provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed. The system-level design also generates a C main() program that completely controls the chosen application and contains placeholders for custom code at strategic positions allowing you to further refine the software without disrupting the generated code.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Table 1. Acronyms

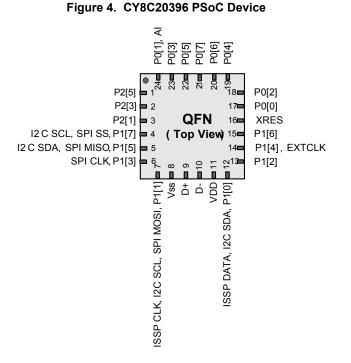
Acronym	Description
AC	alternating current
API	application programming interface
CPU	central processing unit
DC	direct current
FSR	full scale range
GPIO	general purpose I/O
GUI	graphical user interface
ICE	in-circuit emulator
ILO	internal low speed oscillator
IMO	internal main oscillator
I/O	input/output
LSb	least-significant bit
LVD	low voltage detect
MSb	most-significant bit
POR	power on reset
PPOR	precision power on reset
PSoC®	Programmable System-on-Chip™
SLIMO	slow IMO
SRAM	static random access memory

Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 11 on page 17 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal.



24-Pin QFN with USB

Table 4. Pin Definitions - CY8C20396 PSoC Device [2, 3]

Pin No. Digital Analog Name Description 1 I/O I P2[5] Image: Construct of the second se	Dischla	Тур	be	Nama	Description
1 1	PIN NO.	Digital	Analog	Name	Description
3 I/O I P2[1] 4 IOHR I P1[7] I2C SCL, SPI SS 5 IOHR I P1[5] I2C SDA, SPI MISO 6 IOHR I P1[3] SPI CLK 7 IOHR I P1[1] ISSP CLK, I2C SCL, SPI MOSI 8 Power VSS Ground 9 I/O I D+ USB D+ 10 I/O I D+ USB D- 11 Power VDD Supply 12 IOHR I P1[2] 14 IOHR I P1[2] 14 IOHR I P1[6] 15 IOHR I P1[6] 16 RESET INPUT XRES Active high external reset with internal pull down 17 IOH I P0[0] 18 IOH I P0[4] 20 IOH I P0[6] 21 IOH I	1	I/O	I	P2[5]	
4 IOHR I P1[7] I2C SCL, SPI SS 5 IOHR I P1[5] I2C SDA, SPI MISO 6 IOHR I P1[3] SPI CLK 7 IOHR I P1[1] ISSP CLK, I2C SCL, SPI MOSI 8 Power VSS Ground 9 I/O I D+ USB D+ 10 I/O I D- USB D- 11 Power VDD Supply 12 IOHR I P1[2] 14 IOHR I P1[2] 14 IOHR I P1[4] Optional external clock input (EXTCLK) 15 IOHR I P1[6] I 16 RESET INPUT XRES Active high external reset with internal pull down 17 IOH I P0[0] 18 IOH I P0[4] 20 IOH I P0[5] 23 IOH I P0[3] <td>2</td> <td>I/O</td> <td>I</td> <td>P2[3]</td> <td></td>	2	I/O	I	P2[3]	
5 IOHR I P1[5] I2C SDA, SPI MISO 6 IOHR I P1[5] I2C SDA, SPI MISO 6 IOHR I P1[3] SPI CLK 7 IOHR I P1[1] ISSP CLK, I2C SCL, SPI MOSI 8 Power VSS Ground 9 I/O I D+ USB D+ 10 I/O I D- USB D- 11 Power VDD Supply 12 IOHR I P1[0] ISSP DATA, I2C SDA 13 IOHR I P1[2] 14 IOHR I P1[4] Optional external clock input (EXTCLK) 15 IOHR I P1[6] I 16 RESET INPUT XRES Active high external reset with internal pull down 17 IOH I P0[2] I 18 IOH I P0[4] I 20 IOH I P0[5] I	3	I/O	I	P2[1]	
6 IOHR I P1[3] SPI CLK 7 IOHR I P1[1] ISSP CLK, I2C SCL, SPI MOSI 8 Power VSS Ground 9 I/O I D+ USB D+ 10 I/O I D- USB D- 11 Power VDD Supply 12 IOHR I P1[0] ISSP DATA, I2C SDA 13 IOHR I P1[2] 14 IOHR I P1[2] 14 IOHR I P1[4] Optional external clock input (EXTCLK) 15 IOHR I P1[6] 16 RESET INPUT XRES Active high external reset with internal pull down 17 IOH I P0[0] 18 IOH I P0[4] 20 IOH I P0[6] 21 IOH I P0[5] <	4	IOHR	I	P1[7]	I2C SCL, SPI SS
7 IOHR I P1[1] ISSP CLK, I2C SCL, SPI MOSI 8 Power VSS Ground 9 I/O I D+ USB D+ 10 I/O I D- USB D- 11 Power VDD Supply 12 IOHR I P1[0] ISSP DATA, I2C SDA 13 IOHR I P1[2] 14 IOHR I P1[4] Optional external clock input (EXTCLK) 15 IOHR I P1[6] 16 RESET INPUT XRES Active high external reset with internal pull down 17 IOH I P0[0] 18 IOH I P0[4] 20 IOH I P0[6] 21 IOH I P0[5] 23 IOH I P0[3] Integrating input 24 IOH I P0[1] Integrating input CP Power VSS Thermal pa	5	IOHR	I	P1[5]	I2C SDA, SPI MISO
8 Power VSS Ground 9 I/O I D+ USB D+ 10 I/O I D- USB D- 11 Power VDD Supply 12 IOHR I P1[0] ISSP DATA, I2C SDA 13 IOHR I P1[2] 14 IOHR I P1[2] 14 IOHR I P1[4] Optional external clock input (EXTCLK) 15 IOHR I P1[6] 16 RESET INPUT XRES Active high external reset with internal pull down 17 IOH I P0[0] 18 IOH I P0[2] 19 IOH I P0[6] 20 IOH I P0[5] 23 IOH I P0[3] 24 IOH I P0[1] Integrating input 24 IOH I P0[1] Integrating input	6	IOHR	I	P1[3]	SPI CLK
9 I/O I D+ USB D+ 10 I/O I D- USB D- 11 Power VDD Supply 12 IOHR I P1[0] ISSP DATA, I2C SDA 13 IOHR I P1[2] 14 IOHR I P1[4] Optional external clock input (EXTCLK) 15 IOHR I P1[6] 16 RESET INPUT XRES Active high external reset with internal pull down 17 IOH I P0[0] 18 IOH I P0[2] 19 IOH I P0[4] 20 IOH I P0[6] 21 IOH I P0[5] 23 IOH I P0[3] Integrating input 24 IOH I P0[1] Integrating input CP Power VSS Thermal pad must be	7	IOHR	I	P1[1]	ISSP CLK, I2C SCL, SPI MOSI
10I/OID-USB D-11PowerVDDSupply12IOHRIP1[0]ISSP DATA, I2C SDA13IOHRIP1[2]14IOHRIP1[4]Optional external clock input (EXTCLK)15IOHRIP1[6]16RESET INPUTXRESActive high external reset with internal pull down17IOHIP0[0]18IOHIP0[2]19IOHIP0[4]20IOHIP0[6]21IOHIP0[5]23IOHIP0[3]24IOHIP0[1]CPPowerVSSThermal pad must be	8	Pov	ver	VSS	Ground
11PowerVDDSupply12IOHRIP1[0]ISSP DATA, I2C SDA13IOHRIP1[2]14IOHRIP1[4]Optional external clock input (EXTCLK)15IOHRIP1[6]16RESET INPUTXRESActive high external reset with internal pull down17IOHIP0[0]18IOHIP0[2]19IOHIP0[4]20IOHIP0[6]21IOHIP0[5]23IOHIP0[3]24IOHIP0[1]CPPowerVSSThermal pad must be	9	I/O	I	D+	USB D+
12IOHRIP1[0]ISSP DATA, I2C SDA13IOHRIP1[2]14IOHRIP1[4]Optional external clock input (EXTCLK)15IOHRIP1[6]16RESET INPUTXRESActive high external reset with internal pull down17IOHIP0[0]18IOHIP0[2]19IOHIP0[4]20IOHIP0[6]21IOHIP0[5]23IOHIP0[3]24IOHIP0[1]CPPowerVSSThermal pad must be	10	I/O	I	D-	USB D-
13IOHRIP1[2]14IOHRIP1[4]Optional external clock input (EXTCLK)15IOHRIP1[6]16RESET INPUTXRESActive high external reset with internal pull down17IOHIP0[0]18IOHIP0[2]19IOHIP0[4]20IOHIP0[6]21IOHIP0[5]23IOHIP0[3]24IOHIP0[1]CPPowerVSSThermal pad must be	11	Pov	ver	VDD	Supply
14IOHRIP1[4]Optional external clock input (EXTCLK)15IOHRIP1[6]16RESET INPUTXRESActive high external reset with internal pull down17IOHIP0[0]18IOHIP0[2]19IOHIP0[4]20IOHIP0[6]21IOHIP0[5]23IOHIP0[3]24IOHIP0[1]CPPowerVSSThermal pad must be	12	IOHR	I	P1[0]	ISSP DATA, I2C SDA
15IOHRIP1[6]16RESET INPUTXRESActive high external reset with internal pull down17IOHIP0[0]18IOHIP0[2]19IOHIP0[4]20IOHIP0[6]21IOHIP0[5]23IOHIP0[3]24IOHIP0[1]CPPowerVSSThermal pad must be	13	IOHR	I	P1[2]	
16RESET INPUTXRESActive high external reset with internal pull down17IOHIP0[0]18IOHIP0[2]19IOHIP0[4]20IOHIP0[6]21IOHIP0[7]22IOHIP0[5]23IOHIP0[3]24IOHIP0[1]CPPowerVSSThermal pad must be	14	IOHR	I	P1[4]	
internal pull down 17 IOH I P0[0] 18 IOH I P0[2] 19 IOH I P0[4] 20 IOH I P0[6] 21 IOH I P0[7] 22 IOH I P0[5] 23 IOH I P0[3] Integrating input 24 IOH I P0[1] Integrating input CP Power VSS Thermal pad must be	15	IOHR	I	P1[6]	
18 IOH I P0[2] 19 IOH I P0[4] 20 IOH I P0[6] 21 IOH I P0[7] 22 IOH I P0[5] 23 IOH I P0[3] Integrating input 24 IOH I P0[1] Integrating input CP Power VSS Thermal pad must be	16	RESET	INPUT	XRES	Active high external reset with internal pull down
19 IOH I P0[4] 20 IOH I P0[6] 21 IOH I P0[7] 22 IOH I P0[5] 23 IOH I P0[3] 24 IOH I P0[1] CP Power VSS Thermal pad must be	17	IOH	I	P0[0]	
20 IOH I P0[6] 21 IOH I P0[7] 22 IOH I P0[5] 23 IOH I P0[3] Integrating input 24 IOH I P0[1] Integrating input CP Power VSS Thermal pad must be	18	IOH	I	P0[2]	
21 IOH I P0[7] 22 IOH I P0[5] 23 IOH I P0[3] 24 IOH I P0[1] Integrating input CP Power VSS	19	IOH	I	P0[4]	
22 IOH I P0[5] 23 IOH I P0[3] Integrating input 24 IOH I P0[1] Integrating input CP Power VSS Thermal pad must be	20	IOH	I	P0[6]	
23 IOH I P0[3] Integrating input 24 IOH I P0[1] Integrating input CP Power VSS Thermal pad must be	21	IOH	I	P0[7]	
24 IOH I P0[1] Integrating input CP Power VSS Thermal pad must be	22	IOH	I	P0[5]	
CP Power VSS Thermal pad must be	23	IOH	I	P0[3]	Integrating input
CP Power VSS Thermal pad must be connected to Ground	24	IOH	I	P0[1]	Integrating input
	CP	Pov	ver	VSS	Thermal pad must be connected to Ground

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

32-Pin QFN

Table 5. Pin Definitions - CY8C20436, CY8C20446, CY8C20466 PSoC Device $^{\left[2,\;3\right]}$

Pin	Ту	/pe	Name	Description	Figure 5. CY8C20436, CY8C20446, CY8C20466 PSoC Device
No.	Digital	Analog		Description	ददद ददद
1	IOH	I	P0[1]	Integrating input	Vss PO[3], Vdd PO[6], PO[6], PO[6],
2	I/O	I	P2[7]		
3	I/O	I	P2[5]	Crystal output (XOut)	AI, P0[1]
4	I/O	I	P2[3]	Crystal input (XIn)	Al, P2[7] = 2 23 = P2[6], Al
5	I/O	I	P2[1]		AI, XOut, P2[5] = 3 22 = P2[4], AI
6	I/O	I	P3[3]		AI, XIn, P2[3] 44 QFN 21 P2[2], AI AI, P2[1] 5 (Top View) 20 P2[0], AI
7	I/O	Ι	P3[1]		Al, P3[3] 6 (100 view) 20 4 (2[6], 74
8	IOHR	I	P1[7]	I2C SCL, SPI SS	
9	IOHR	I	P1[5]	I2C SDA, SPI MISO	Al, P3[1] ■ 7 18 ■ P3[0], Al Al, I2C SCL, SPI SS, P1[7] ■ 8 17 ■ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10	IOHR	I	P1[3]	SPI CLK.	
11	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI.	212 213 214 212 214 212 214 212 212 212 212 212
12	Po	wer	Vss	Ground connection.	AI,
13	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA., SPI CLK	A, SPIMISO, AI, SPICLK, CL, SPIMOSI, SDA, SPICLK AI, AI, EXTCLK, AI,
14	IOHR	I	P1[2]		4, SPIM AI, SPIM CL, SPI A SDA, SPI AI, EXTC
15	IOHR	I	P1[4]	Optional external clock input (EXTCLK)	AI, I2C SDA, SPI MISO, P1[5] AI, SPI CLK, P1[3] AI, CLK ⁴ , I2C SCL, SPI MOSI, P1[7] VS AI, DATA ¹ , I2C SDA, SPI CLK, P1[0] AI, P1[2] AI, EXTCLK, P1[6]
16	IOHR	I	P1[6]		- LK ⁴ ≜TA
17	Input		XRES	Active high external reset with internal pull down	A C A A A A A A A A A A A A A A A A A A
18	I/O	I	P3[0]		
19	I/O	I	P3[2]		
20	I/O	I	P2[0]		
21	I/O	I	P2[2]		
22	I/O	I	P2[4]		
23	I/O	I	P2[6]		
24	IOH	I	P0[0]		
25	IOH	I	P0[2]		
26	IOH	I	P0[4]		
27	IOH	I	P0[6]		
28	Po	wer	Vdd	Supply voltage	
29	IOH	I	P0[7]		
30	IOH	I	P0[5]]
31	IOH	I	P0[3]	Integrating input]
32	Po	wer	Vss	Ground connection]
СР	Po	wer	Vss	Center pad must be connected to ground]

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

48-Pin SSOP

Table 7. Pin Definitions - CY8C20536, CY8C20546, and CY8C20566 PSoC Device $\ensuremath{^{[2]}}$

					1		0.10	000-00	01/0	00540		
Pin No.	Digital	Analog	Name	Description	Figu	ure 6.	CY8	AI, P0[AI, P0[AI, P0[7] p⁰ 1	;20546, a	48 🗖	VDD
1	IOH	1	P0[7]					AI, P0[AI, P0[P0[6], AI P0[4], AI
2	IOH	1	P0[5]					AI P0[1] 🖬 4		45 🗖	P0[2], AI
3	IOH	1	P0[3]				хт	AI, P2[ALOUT, P2]				P0[0], Al P2[6], Al
4	IOH		P0[1]					TALIN, P2[3	3] 🖬 7		42 🗖	P2[4], AI
5	I/O	1	P2[7]					AI, P2[1] = 8 C = 9			P2[2], Al P2[0], Al
6	1/O		P2[5]	XTAL Out				N	C 🗖 10			P3[6], Al
7	1/O		P2[3]	XTAL In					3] = 11 1] = 12			P3[4], Al P3[2], Al
8	1/O		P2[1]		1			N	C 🖬 13	SSOP	36 🗖	P3[0], AI
9		·	NC	No connection	1				7] = 14 5] = 15			XRES
10			NC	No connection					3] = 16		34 = 33 =	
11	I/O	1	P4[3]		1			AI, P3[1] 日 17		32 🗖	NC
12	1/O		P4[1]					N	C 🖬 18 C 🔳 19		31 - 30 -	
13		•	NC	No connection				SPI SS, P1[I MISO, P1[29 🗖	NC
14	I/O	1	P3[7]			120 3		PI CLK, P1			27	P1[6], AI P1[4], EXT CLK
15	1/0	I	P3[5]		TC CL	.K, I2C S		I MOSI, P1[1] = 23		26	P1[2], Al
16	I/O	1	P3[3]					V5	S ■ 24		25	P1[0], TC DATA, I2C SDA, SPI CLK
17	I/O	I	P3[1]									
18			NC	No connection								
19			NC	No connection								
20	IOHR	1	P1[7]	I2C SCL, SPI SS								
21	IOHR	I	P1[5]	I2C SDA, SPI MISO								
22	IOHR	I	P1[3]	SPI CLK	1							
23	IOHR	I	P1[1]	TC CLK ^[1] , I2C SCL, SPI MOSI	1							
24			VSS	Ground Pin								
25	IOHR	I	P1[0]	TC DATA ^[1] , I2C SDA, SPI CLK								
26	IOHR	I	P1[2]									
27	IOHR	I	P1[4]	EXT CLK								
28	IOHR	I	P1[6]									
29			NC	No connection								
30			NC	No connection								
31			NC	No connection								
32			NC	No connection	Pin No.	Digital	Analog	Name			Des	scription
33			NC	No connection	41	I/O	Ι	P2[2]				
34			NC	No connection	42	I/O	Ι	P2[4]				
35			XRES	Active high external reset with internal pull down	43	I/O	I	P2[6]				
36	I/O	I	P3[0]		44	IOH	Ι	P0[0]				
37	I/O	I	P3[2]		45	IOH	Ι	P0[2]				
38	I/O	I	P3[4]		46	IOH	Ι	P0[4]				
39	I/O	I	P3[6]		47	IOH	I	P0[6]				
40	I/O	I	P2[0]		48	Powe	er	Vdd	Power	Pin		

LEGEND A = Analog, I = Input, O = Output, NC = No Connection, H = 5 mA High Output Drive, R = Regulated Output Option.

48-Pin QFN OCD

The 48-pin QFN part is for the CY8C20066 On-Chip Debug (OCD) PSoC device. Note that this part is only used for in-circuit debugging.^[4]

Pin No.	Digital	Analog	Name	Description			Fiç	gure 9. (CY8C20066 PSoC Device VI (1900) VI (1900)
1			OCDOE	OCD mode direction pin					
2	I/O	I	P2[7]				OCD		₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩
3	I/O	I	P2[5]	Crystal output (XOut)			A, F2	2[7] = 2	35 = P2[4], AI
4	I/O	Ι	P2[3]	Crystal input (XIn)			Out, P2	2[5] = 3	34 ■ P2[2], AI 33 ■ P2[0], AI
5	I/O	Ι	P2[1]			AI, J		2[3] = 4 2[1] = 5	32 = P4[2], AI
6	I/O	Ι	P4[3]				AI, P4	[3] = 6	QFN 31 = P4[0], AI
7	I/O	I	P4[1]					[1] = 7	(Top View) 30 = P3[6], Al 29 = P3[4], Al
8	I/O	I	P3[7]					5[7] = 8 5[5] = 9	29 4 P3[4], Al 28 4 P3[2], Al
9	I/O	I	P3[5]				AI, P3	[3] = 10	27 = P3[0], AI
10	I/O	I	P3[3]		AL 12C		AI, P3	[1] 1 11	26 Z XRES
11	I/O	I	P3[1]		AI, 120	, OOE, OF 1	00,11		± ♀ ♀ └ ♀ € ♀ ≳ ≳ ≳ ≳ ≈ ₹ ²⁵ ■ P1[6], Al
12	IOHR	I	P1[7]	I2C SCL, SPI SS				1[5]	P1[1] D + 1 D + 1 D + 1 P1[2] P1[4]
13	IOHR	I	P1[5]	I2C SDA, SPI MISO				AI, P	H CLK, AI, PT[3] -, SPI MOSI, PT[1] V Vdd A, SPI CLK, PT[0] AI, EXTCLK, PT[4] AI, EXTCLK, PT[4]
14			CCLK	OCD CPU clock output				ľSO,	I MO
15			HCLK	OCD high speed clock output				MIG	AI, E. SPI C
16	IOHR	I	P1[3]	SPI CLK.				2C SDA, SPI MISO, AI, P1[5]	S SCI SD
17	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI				2C SI	.6, 12C
18	Pow	er	Vss	Ground connection					DAT
19	I/O		D+	USB D+					A, CLK ⁶ , I2C SCL, SPI CLK, AI H TI[3] Al, CLK ⁶ , I2C SCL, SPI MOSI, P1[1] Vss D - Al, DATA ¹ , I2C SDA, SPI CLK, P1[0] Al, DATA ¹ , I2C SDA, SPI CLK, P1[0] Al, EXTCLK, P1[4]
20	I/O		D-	USB D-					
21	Pow	er	Vdd	Supply voltage					
22	IOHR	Ι	P1[0]	ISSP DATA ⁽¹⁾ , I2C SDA, SPI CLK					
23	IOHR	Ι	P1[2]		Pin No.	Digital	Analog	Name	Description
24	IOHR	1	P1[4]	Optional external clock input (EXTCLK)	37	IOH	1	P0[0]	
25	IOHR	I	P1[6]		38	IOH	I	P0[2]	
26	Inpu	ıt	XRES	Active high external reset with internal pull down	39	IOH	I	P0[4]	
27	I/O	I	P3[0]		40	IOH	I	P0[6]	
28	I/O	I	P3[2]		41	Pow	er	Vdd	Supply voltage
29	I/O	I	P3[4]		42			OCDO	OCD even data I/O
30	I/O	I	P3[6]		43			OCDE	OCD odd data output
31	I/O	I	P4[0]		44	IOH	Ι	P0[7]	
32	I/O	I	P4[2]		45	IOH	Ι	P0[5]	
33	I/O	I	P2[0]		46	IOH	Ι	P0[3]	Integrating input
34	I/O	Ι	P2[2]		47	Pow	er	Vss	Ground connection
35	I/O	Ι	P2[4]		48	IOH	Ι	P0[1]	
36	I/O	I	P2[6]		CP	Pow	er	Vss	Center pad must be connected to ground

Table 10. Pin Definitions - CY8C20066 PSoC Device ^[2, 3]

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Note

4. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.

Table 15. 3.0V to 5.5V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{OH10}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH = 1 mA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.20	-	-	V
V _{OL}	Low Output Voltage	IOL = 25 mA, Vdd > 3.3V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V _{IL}	Input Low Voltage		-	-	0.80	V
V _{IH}	Input High Voltage		2.00	-		V
V _H	Input Hysteresis Voltage		-	80	-	mV
I _{IL}	Input Leakage (Absolute Value)		_	0.001	1	μA
C _{PIN}	Pin Capacitance	Package and pin dependent Temp = 25°C	0.5	1.7	5	pF

Table 16. 2.4V to 3.0V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull up Resistor		4	5.6	8	kΩ
V _{OH1}	High Output Voltage Port 2 or 3 Pins	IOH < 10 μA, maximum of 10 mA source current in all IOs	Vdd - 0.2	-	-	V
V _{OH2}	High Output Voltage Port 2 or 3 Pins	IOH = 0.2 mA, maximum of 10 mA source current in all IOs	Vdd - 0.4	-	-	V
V _{OH3}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH < 10 μA, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	_	V
V _{OH4}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 2 mA, maximum of 10 mA source current in all IOs	Vdd - 0.5	_	_	V
V _{OH5A}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH < 10 μA, Vdd > 2.4V, maximum of 20 mA source current in all IOs	1.50	1.80	2.1	V
V _{OH6A}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH = 1 mA, Vdd > 2.4V, maximum of 20 mA source current in all IOs	1.20	_	_	V
V _{OL}	Low Output Voltage	IOL = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V _{IL}	Input Low Voltage		_	_	0.72	V
V _{IH}	Input High Voltage		1.4	-		V
V _H	Input Hysteresis Voltage		_	80	-	mV
IIL	Input Leakage (Absolute Value)		-	0.001	1	μA
C _{PIN}	Capacitive Load on Pins	Package and pin dependent Temp = 25 ^o C	0.5	1.7	5	pF

Table 17. 1.71V to 2.4V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull up Resistor		4	5.6	8	kΩ
V _{OH1}	High Output Voltage Port 2 or 3 Pins	IOH = 10 μA, maximum of 10 mA source current in all I/Os	Vdd - 0.2	_	-	V
V _{OH2}	High Output Voltage Port 2 or 3 Pins	IOH = 0.5 mA, maximum of 10 mA source current in all I/Os	Vdd - 0.5	-	-	V
V _{OH3}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 100 μA, maximum of 10 mA source current in all I/Os	Vdd - 0.2	-	_	V
V _{OH4}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 2 mA, maximum of 10 mA source current in all I/Os	Vdd - 0.5	-	_	V
V _{OL}	Low Output Voltage	IOL = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	-	0.4	V
V _{IL}	Input Low Voltage		-	-	0.3 x Vdd	V
V _{IH}	Input High Voltage		0.65 x Vdd	_		V

Table 17. 1.71V to 2.4V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _H	Input Hysteresis Voltage		-	80	-	mV
IIL	Input Leakage (Absolute Value)		-	0.001	1	μA
C _{PIN}	Capacitive Load on Pins	Package and pin dependent Temp = 25 ^o C	0.5	1.7	5	pF

Table 18.DC Characteristics – USB Interface

Symbol	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ Pull Up Resistance	With idle bus	0.900	-	1.575	kΩ
Rusba	USB D+ Pull Up Resistance	While receiving traffic	1.425	-	3.090	kΩ
Vohusb	Static Output High		2.8	-	3.6	V
Volusb	Static Output Low			-	0.3	V
Vdi	Differential Input Sensitivity		0.2	-		V
Vcm	Differential Input Common Mode Range		0.8	-	2.5	V
Vse	Single Ended Receiver Threshold		0.8	-	2.0	V
Cin	Transceiver Capacitance			-	50	pF
lio	Hi-Z State Data Line Leakage	On D+ or D- line	-10	-	+10	μA
Rps2	PS/2 Pull Up Resistance		3	5	7	kΩ
Rext	External USB Series Resistor	In series with each USB pin	21.78	22.0	22.22	Ω

DC Analog Mux Bus Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 19. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
000	Switch Resistance to Common Analog Bus		_	-	800	Ω
R _{GND}	Resistance of Initialization Switch to Vss		_	Ι	800	Ω

The maximum pin voltage for measuring $\rm R_{SW}$ and $\rm R_{GND}$ is 1.8V

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 20. DC Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
	Low Power Comparator (LPC) common mode	Maximum voltage limited to Vdd	0.0	-	1.8	V
I _{LPC}	LPC supply current		-	10	40	μA
V _{OSLPC}	LPC voltage offset		-	2.5	30	mV

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 23. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{PPOR0} V _{PPOR1} V _{PPOR2} V _{PPOR3}	Vdd Value for PPOR Trip PORLEV[1:0] = 00b, HPOR = 0 PORLEV[1:0] = 00b, HPOR = 1 PORLEV[1:0] = 01b, HPOR = 1 PORLEV[1:0] = 10b, HPOR = 1	Vdd must be greater than or equal to 1.71V during startup, reset from the XRES pin, or reset from watchdog.	1.61 —	1.66 2.36 2.60 2.82	1.71 2.41 2.66 2.95	V V V V
$\begin{array}{c} V_{LVD0} \\ V_{LVD1} \\ V_{LVD2} \\ V_{LVD3} \\ V_{LVD4} \\ V_{LVD5} \\ V_{LVD6} \\ V_{LVD7} \end{array}$	Vdd Value for LVD Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b		2.40 ^[6] 2.64 ^[7] 2.85 ^[8] 2.95 3.06 1.84 1.75 ^[9] 4.62	2.45 2.71 2.92 3.02 3.13 1.90 1.80 4.73	2.51 2.78 2.99 3.09 3.20 2.32 1.84 4.83	V V V V V V V

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Vdd _{IWRITE}	Supply Voltage for Flash Write Operations		1.71	_	5.25	V
I _{DDP}	Supply Current During Programming or Verify		-	5	25	mA
V _{ILP}	Input Low Voltage During Programming or Verify	See the appropriate DC General Purpose IO Specifications on page 19	-	-	V _{IL}	V
V _{IHP}	Input High Voltage During Programming or Verify	See appropriate DC General Purpose IO Specifications on page 19 table on pages 15 or 16	V _{IH}	-	_	V
I _{ILP}	Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify	Driving internal pull down resistor	-	-	0.2	mA
I _{IHP}	Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify	Driving internal pull down resistor	_	-	1.5	mA
V _{OLP}	Output Low Voltage During Programming or Verify		-	-	Vss + 0.75	V
V _{OHP}	Output High Voltage During Programming or Verify	See appropriate DC General Purpose IO Specifications on page 19 table on page 16. For Vdd > 3V use V _{OH4} in Table 13 on page 18.	V _{OH}	-	Vdd	V
Flash _{ENPB}	Flash Write Endurance	Erase/write cycles per block	50,000	-	-	-
Flash _{DR}	Flash Data Retention	Following maximum Flash write cycles; ambient temperature of 55°C	10	20	-	Years

Notes

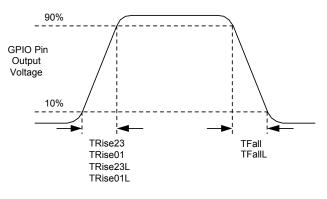
- 6. Always greater than 50 mV above V_{PPOR1} voltage for falling supply. 7. Always greater than 50 mV above V_{PPOR2} voltage for falling supply. 8. Always greater than 50 mV above V_{PPOR3} voltage for falling supply. 9. Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 25. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
F _{CPU}	CPU Frequency		5.7	-	25.2	MHz
F _{32K1}	Internal Low Speed Oscillator Frequency		19	32	50	kHz
F _{IMO24}	Internal Main Oscillator Frequency at 24 MHz Setting		22.8	24	25.2	MHz
F _{IMO12}	Internal Main Oscillator Frequency at 12 MHz Setting		11.4	12	12.6	MHz
F _{IMO6}	Internal Main Oscillator Frequency at 6 MHz Setting		5.7	6.0	6.3	MHz
DCIMO	Duty Cycle of IMO		40	50	60	%
T _{RAMP}	Supply Ramp Time		20	-	-	μS
T _{XRST}	External Reset Pulse Width at Power Up	After supply voltage is valid	1			ms
T _{XRST2}	External Reset Pulse Width after Power Up ^[10]	Applies after part has booted	10			μS



AC General Purpose IO Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. **Table 26.** AC GPIO Specifications

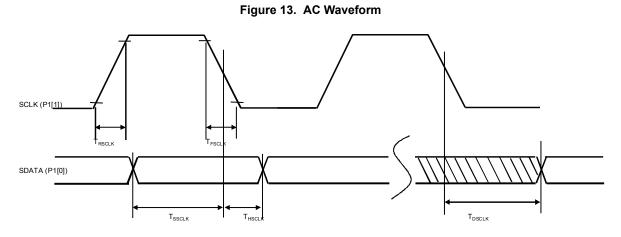

Symbol	Description	Conditions	Min	Тур	Мах	Units
F _{GPIO}	GPIO Operating Frequency	Normal Strong Mode Port 0, 1	0	-	6 MHz for 1.71V <vdd<2.4v< td=""><td>MHz</td></vdd<2.4v<>	MHz
			0	-	12 MHz for 2.4V <vdd<5.5v< td=""><td></td></vdd<5.5v<>	
TRise23	Rise Time, Strong Mode, Cload = 50 pF Ports 2 or 3	Vdd = 3.0 to 3.6V, 10% – 90%	15	-	80	ns
TRise23L	Rise Time, Strong Mode Low Supply, Cload = 50 pF, Ports 2 or 3	Vdd = 1.71 to 3.0V, 10% – 90%	15	-	80	ns
TRise01	Rise Time, Strong Mode, Cload = 50 pF Ports 0 or 1	Vdd = 3.0 to 3.6V, 10% – 90% LDO enabled or disabled	10	-	50	ns
TRise01L	Rise Time, Strong Mode Low Supply, Cload = 50 pF, Ports 0 or 1	Vdd = 1.71 to 3.0V, 10% – 90% LDO enabled or disabled	10	-	80	ns
TFall	Fall Time, Strong Mode, Cload = 50 pF All Ports	Vdd = 3.0 to 3.6V, 10% – 90%	10	-	50	ns
TFallL	Fall Time, Strong Mode Low Supply, Cload = 50 pF, All Ports	Vdd = 1.71 to 3.0V, 10% – 90%	10	_	70	ns

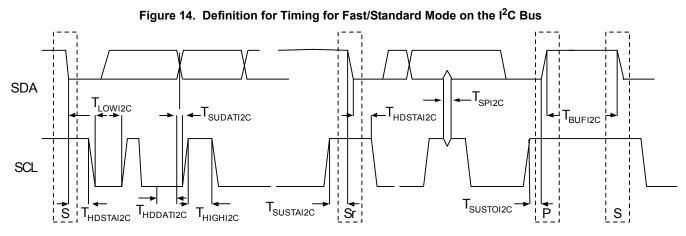
Figure 12. GPIO Timing Diagram

AC Programming Specifications

The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{RSCLK}	Rise Time of SCLK		1	-	20	ns
T _{FSCLK}	Fall Time of SCLK		1	-	20	ns
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK		40	_	-	ns
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK		40	-	-	ns
F _{SCLK}	Frequency of SCLK		0	_	8	MHz
T _{ERASEB}	Flash Erase Time (Block)		-	-	18	ms
T _{WRITE}	Flash Block Write Time		-	-	25	ms
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	3.6 < Vdd	-	_	60	ns
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	$3.0 \leq Vdd \leq 3.6$	-	-	85	ns
T _{DSCLK2}	Data Out Delay from Falling Edge of SCLK	$1.71 \leq Vdd \leq 3.0$	-	-	130	ns
T _{XRST3}	External Reset Pulse Width after Power Up	Required to enter programming mode when coming out of sleep	263	-	-	μS

Table 32. AC Programming Specifications



AC I2C Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 33. AC Characteristics of the I2C SDA and SCL Pins

Symbol	Description		Standard Mode		Fast Mode	
			Мах	Min	Max	
F _{SCLI2C}	SCL Clock Frequency	0	100	0	400	kHz
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.	4.0	_	0.6	-	μS
T _{LOWI2C}	LOW Period of the SCL Clock	4.7	-	1.3	-	μs
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	-	0.6	-	μS
T _{SUSTAI2C}	Setup Time for a Repeated START Condition	4.7	-	0.6	-	μs
T _{HDDATI2C}	Data Hold Time	0	-	0	-	μS
T _{SUDATI2C}	Data Setup Time	250	-	100 ^[11]	I	ns
T _{SUSTOI2C}	Setup Time for STOP Condition	4.0	-	0.6	I	μS
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition	4.7	-	1.3	_	μS
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	_	_	0	50	ns

Note

11. A Fast-Mode I2C-bus device can be used in a Standard Mode I2C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU:DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

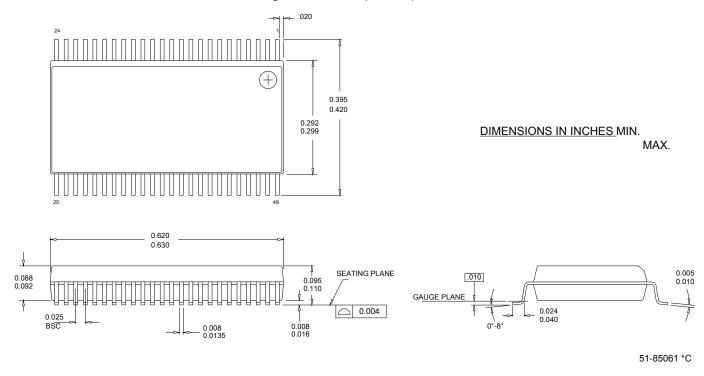
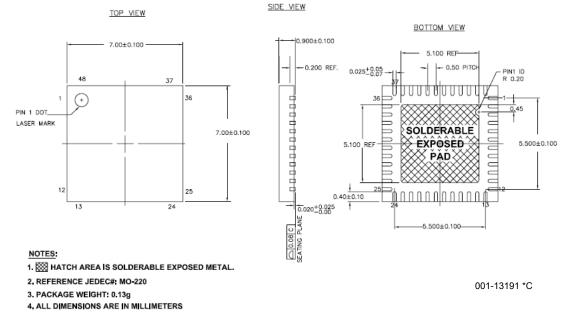



Figure 19. 48-Pin (7x7 mm) QFN

Important Notes

- For information on the preferred dimensions for mounting QFN packages, see the following Application Note at http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.
- Pinned vias for thermal conduction are not required for the low power PSoC device.

Thermal Impedances

Table 36. Thermal Impedances per Package

Package	Typical θ _{JA} ^[12]
16 QFN	32.69 ^o C/W
24 QFN ^[13]	20.90°C/W
32 QFN ^[13]	19.51°C/W
48 SSOP	69 ^o C/W
48 QFN ^[13]	17.68°C/W

Solder Reflow Peak Temperature

This table lists the minimum solder reflow peak temperature to achieve good solderability.

Table 37. Solder Reflow Peak Temperature

Package	Minimum Peak Temperature ^[14]	Maximum Peak Temperature
16 QFN	240°C	260°C
24 QFN	240°C	260°C
32 QFN	240°C	260°C
48 SSOP	220°C	260°C
48 QFN	240°C	260°C

<sup>Notes
12. T_J = T_A + Power x θ_{JA}.
13. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.
14. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5°C with Sn-Pb or 245 ± 5°C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.</sup>

Device Programmers

All device programmers are purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- Three Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

Accessories (Emulation and Programming)

Table 38. Emulation and Programming Accessories

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Part Number	Pin Package	Flex-Pod Kit ^[15]	Foot Kit ^[16]	Adapter ^[17]
CY8C20236-24LKXI	16 QFN	CY3250-20266QFN	CY3250-16QFN-RK	See note 15
CY8C20246-24LKXI	16 QFN	CY3250-20266QFN	CY3250-16QFN-FK	See note 17
CY8C20336-24LQXI	24 QFN	CY3250-20366QFN	CY3250-24QFN-FK	See note 15
CY8C20346-24LQXI	24 QFN	CY3250-20366QFN	CY3250-24QFN-FK	See note 17
CY8C20396-24LQXI	24 QFN		Not Available	
CY8C20436-24LQXI	32 QFN	CY3250-20466QFN	CY3250-32QFN-RK	See note 15
CY8C20446-24LQXI	32 QFN	CY3250-20466QFN	CY3250-32QFN-FK	See note 17
CY8C20466-24LQXI	32 QFN	CY3250-20466QFN	CY3250-32QFN-FK	See note 17
CY8C20496-24LQXI	32 QFN		Not Available	
CY8C20536-24PVXI	48 SSOP	CY3250-20X66	CY3250-48SSOP-FK	See note 17
CY8C20546-24PVXI	48 SSOP	CY3250-20X66	CY3250-48SSOP-FK	See note 17
CY8C20566-24PVXI	48 SSOP	CY3250-20X66	CY3250-48SSOP-FK	See note 17
CY8C20636-24LTXI	48 QFN	CY3250-20666QFN	CY3250-48QFN-FK	See note 17
CY8C20646-24LTXI	48 QFN	CY3250-20666QFN	CY3250-48QFN-FK	See note 17
CY8C20666-24LTXI	48 QFN	CY3250-20666QFN	CY3250-48QFN-FK	See note 17

Third-Party Tools

Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.

Build a PSoC Emulator into Your Board

For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, refer Application Note "Debugging - Build a PSoC Emulator into Your Board - AN2323" at http://www.cypress.com/?rID2748.

Notes

16. Foot kit includes surface mount feet that can be soldered to the target PCB.

^{15.} Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

^{17.} Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

Ordering Information

The following table lists the CY8C20x36/46/66/96 PSoC devices' key package features and ordering codes.

Table 39. PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	CapSense Blocks	Digital I/O Pins	Analog Inputs ^[18]	XRES Pin	USB
16-Pin (3x3x0.6mm) QFN	CY8C20236-24LKXI	8K	1K	1	13	13	Yes	No
16-Pin (3x3x0.6mm) QFN (Tape and Reel)	CY8C20236-24LKXIT	8K	1K	1	13	13	Yes	No
16 Pin (3x3 x 0.6 mm) QFN	CY8C20246-24LKXI	16K	2K	1	13	13	Yes	No
16 Pin (3x3 x 0.6 mm) QFN (Tape and Reel)	CY8C20246-24LKXIT	16K	2K	1	13	13	Yes	No
24-Pin (4x4x0.6mm) QFN	CY8C20336-24LQXI	8K	1K	1	20	20	Yes	No
24-Pin (4x4x0.6mm) QFN (Tape and Reel)	CY8C20336-24LQXIT	8K	1K	1	20	20	Yes	No
24 Pin (4x4 x 0.6 mm) QFN	CY8C20346-24LQXI	16K	2K	1	20	20	Yes	No
24 Pin (4x4 x 0.6 mm) QFN (Tape and Reel)	CY8C20346-24LQXIT	16K	2K	1	20	20	Yes	No
24-Pin (4x4x0.6mm) QFN	CY8C20396-24LQXI	16K	2K	1	19	19	Yes	Yes
24-Pin (4x4x0.6mm) QFN (Tape and Reel)	CY8C20396-24LQXIT	16K	2K	1	19	19	Yes	Yes
32-Pin (5x5x0.6mm) QFN	CY8C20436-24LQXI	8K	1K	1	28	28	Yes	No
32-Pin (5x5x0.6mm) QFN (Tape and Reel)	CY8C20436-24LQXIT	8K	1K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN	CY8C20446-24LQXI	16K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN (Tape and Reel)	CY8C20446-24LQXIT	16K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN	CY8C20466-24LQXI	32K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN (Tape and Reel)	CY8C20466-24LQXIT	32K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN	CY8C20496-24LQXI	16K	2K	1	25	25	Yes	No
32 Pin (5x5 x 0.6 mm) QFN (Tape and Reel)	CY8C20496-24LQXIT	16K	2K	1	25	25	Yes	No
48-Pin SSOP	CY8C20536-24PVXI	8K	1K	1	36	36	Yes	No
48-Pin SSOP (Tape and Reel)	CY8C20536-24PVXIT	8K	1K	1	36	36	Yes	No
48-Pin SSOP	CY8C20546-24PVXI	16K	2K	1	36	36	Yes	No
48-Pin SSOP (Tape and Reel)	CY8C20546-24PVXIT	16K	2K	1	36	36	Yes	No
48-Pin SSOP	CY8C20566-24PVXI	32K	2K	1	36	36	Yes	No
48-Pin SSOP (Tape and Reel)	CY8C20566-24PVXIT	32K	2K	1	36	36	Yes	No
48 Pin (7x7 mm) QFN	CY8C20636-24LTXI	8K	1K	1	36	36	Yes	No
48 Pin (7x7 mm) QFN (Tape and Reel)	CY8C20636-24LTXIT	8K	1K	1	36	36	Yes	No
48 Pin (7x7 mm) QFN	CY8C20646-24LTXI	16K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN (Tape and Reel)	CY8C20646-24LTXIT	16K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN	CY8C20666-24LTXI	32K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN (Tape and Reel)	CY8C20666-24LTXIT	32K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN (OCD) ^[4]	CY8C20066-24LTXI	32K	2K	1	36	36	Yes	Yes

Notes

18. Dual-function Digital I/O Pins also connect to the common analog mux.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products		PSoC Solutions	
PSoC	psoc.cypress.com	General	psoc.cypress.com/solutions
Clocks & Buffers	clocks.cypress.com	Low Power/Low Voltage	psoc.cypress.com/low-power
Wireless	wireless.cypress.com	Precision Analog	psoc.cypress.com/precision-analog
Memories	memory.cypress.com	LCD Drive	psoc.cypress.com/lcd-drive
Image Sensors	image.cypress.com	CAN 2.0b	psoc.cypress.com/can
		USB	psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2007-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-12696 Rev. *E

Revised April 24, 2009

Page 39 of 39

PSoC Designer[™] is a trademark and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document may be the trademarks of their respective holders.