Infineon Technologies - CY8C20246-24LKXI Datasheet

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

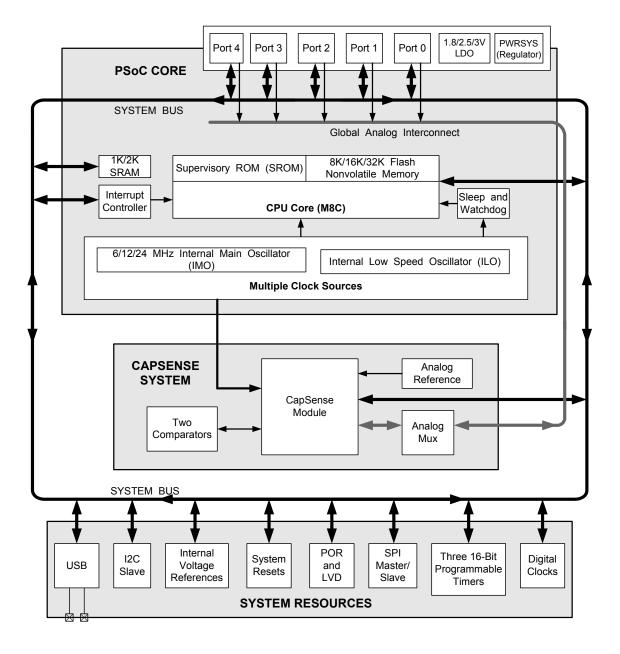
represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are angineered to

Details

ĿХF


Details	
Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY8C20xx6
RAM Size	2K x 8
Interface	I ² C, SPI
Number of I/O	13
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	16-UFQFN
Supplier Device Package	16-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20246-24lkxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

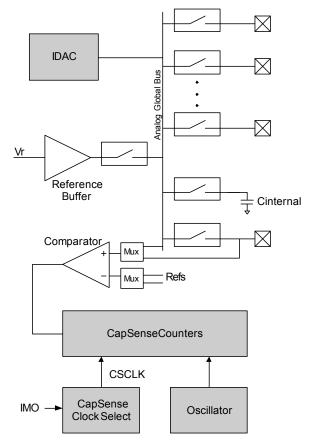
Logic Block Diagram

PSoC[®] Functional Overview

The PSoC family consists of on-chip Controller devices. These devices are designed to replace multiple traditional MCU-based components with one, low cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The architecture for this device family, as shown in the Logic Block Diagram on page 2, is comprised of three main areas: the Core, the CapSense Analog System, and the System Resources (including a full speed USB port). A common, versatile bus allows connection between I/O and the analog system. Each CY8C20x36/46/66/96 PSoC Device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 36 general purpose IO (GPIO) are also included. The GPIO provides access to the MCU and analog mux.

PSoC Core


The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO (internal main oscillator) and ILO (internal low speed oscillator). The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard architecture microprocessor.

System Resources provide additional capability, such as configurable USB and I2C slave/SPI master-slave communication interface, three 16-bit programmable timers, and various system resets supported by the M8C.

The Analog System is composed of the CapSense PSoC block and an internal 1.2V analog reference, which together support capacitive sensing of up to 36 inputs.

CapSense Analog System

The Analog System contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports.

Figure 1. Analog System Block Diagram

Analog Multiplexer System

The Analog Mux Bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.

Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces, such as sliders and touchpads.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

When designing capacitive sensing applications, refer to the latest signal-to-noise signal level requirements Application Notes, which can be found under http://www.cypress.com > Documentation > Application Notes. In general, and unless otherwise noted in the relevant Application Notes, the minimum signal-to-noise ratio (SNR) for CapSense applications is 5:1.

Development Tools

PSoC Designer is a Microsoft[®] Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows XP and Windows Vista.

This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and built-in support for third-party assemblers and C compilers.

PSoC Designer also supports C language compilers developed specifically for the devices in the PSoC family.

PSoC Designer Software Subsystems

System-Level View

The system-level view is a drag-and-drop visual embedded system design environment based on PSoC Express. In this view you solve design problems the same way you might think about the system. Select input and output devices based upon system requirements. Add a communication interface and define the interface to the system (registers). Define when and how an output device changes state based upon any/all other system devices. Based upon the design, PSoC Designer automatically selects one or more PSoC devices that match your system requirements.

PSoC Designer generates all embedded code, then compiles and links it into a programming file for a specific PSoC device.

Chip-Level View

The chip-level view is a more traditional integrated development environment (IDE) based on PSoC Designer 4.x. You choose a base device to work with and then select different onboard analog and digital components called user modules that use the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters. You configure the user modules for your chosen application and connect them to each other and to the proper pins. Then you generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration allows for changing configurations at run time.

Hybrid Designs

You can begin in the system-level view, allow it to choose and configure your user modules, routing, and generate code, then switch to the chip-level view to gain complete control over onchip resources. All views of the project share common code editor, builder, and common debug, emulation, and programming tools.

Code Generation Tools

PSoC Designer supports multiple third-party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours.

Assemblers. The assemblers allow assembly code to be merged seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices.

The optimizing C compilers provide all the features of C tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and program and read and write data memory, read and write I/O registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help for the user. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer in getting started.

In-Circuit Emulator

A low cost, high functionality In-Circuit Emulator (ICE) is available for development support. This hardware has the capability to program single devices.

The emulator consists of a base unit that connects to the PC by way of a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24 MHz) operation.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions.

The PSoC development process can be summarized in the following four steps:

- 1. Select Components
- 2. Configure Components
- 3. Organize and Connect
- 4. Generate, Verify, and Debug

Select Components

Both the system-level and chip-level views provide a library of pre-built, pre-tested hardware peripheral components. In the system-level view these components are called "drivers" and correspond to inputs (a thermistor, for example), outputs (a brushless DC fan, for example), communication interfaces (I²C-bus, for example), and the logic to control how they interact with one another (called valuators).

In the chip-level view the components are called "user modules." User modules make selecting and implementing peripheral devices simple, and come in analog, digital, and programmable system-on-chip varieties.

Configure Components

Each of the components you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a Pulse Width Modulator (PWM) User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus.

Both the system-level drivers and chip-level user modules are documented in data sheets that are viewed directly in PSoC Designer. These data sheets explain the internal operation of the component and provide performance specifications. Each data sheet describes the use of each user module parameter or driver property, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins, or connect system-level inputs, outputs, and communication interfaces to each other with valuator functions.

In the system-level view selecting a potentiometer driver to control a variable speed fan driver and setting up the valuators to control the fan speed based on input from the pot selects, places, routes, and configures a programmable gain amplifier (PGA) to buffer the input from the potentiometer, an analog-todigital converter (ADC) to convert the potentiometer's output to a digital signal, and a PWM to control the fan.

In the chip-level view, you perform the selection, configuration, and routing so that you have complete control over the use of all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system.

Both system-level and chip-level designs generate software based on your design. The chip-level design provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed. The system-level design also generates a C main() program that completely controls the chosen application and contains placeholders for custom code at strategic positions allowing you to further refine the software without disrupting the generated code.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Table 1. Acronyms

Acronym	Description
AC	alternating current
API	application programming interface
CPU	central processing unit
DC	direct current
FSR	full scale range
GPIO	general purpose I/O
GUI	graphical user interface
ICE	in-circuit emulator
ILO	internal low speed oscillator
IMO	internal main oscillator
I/O	input/output
LSb	least-significant bit
LVD	low voltage detect
MSb	most-significant bit
POR	power on reset
PPOR	precision power on reset
PSoC®	Programmable System-on-Chip™
SLIMO	slow IMO
SRAM	static random access memory

Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 11 on page 17 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal.

Pinouts

The CY8C20x36/46/66/96 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O and connection to the common analog bus. However, Vss, Vdd, and XRES are not capable of Digital I/O.

16-Pin QFN (No E-Pad)

Pin	Ту	pe	Name	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	IOHR	I	P1[7]	I2C SCL, SPI SS
4	IOHR	I	P1[5]	I2C SDA, SPI MISO
5	IOHR	I	P1[3]	SPI CLK
6	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI
7	Power		Vss	Ground connection
8	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK
9	IOHR	I	P1[2]	
10	IOHR	I	P1[4]	Optional external clock (EXTCLK)
11	Inj	put	XRES	Active high external reset with internal pull down
12	IOH	I	P0[4]	
13	Po	wer	Vdd	Supply voltage
14	IOH	I	P0[7]	
15	IOH	I	P0[3]	Integrating input
16	IOH	I	P0[1]	Integrating input

Table 2. Pin Definitions - CY8C20236, CY8C20246 PSoC Device [2]

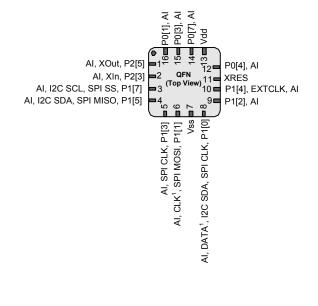


Figure 2. CY8C20236, CY8C20246 PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

1. These are the ISSP pins, which are not High Z at POR (Power On Reset).

2. During power up or reset event, device P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter any issues.

32-Pin QFN (with USB)

Table 6. Pin Definitions - CY8C20496 PSoC Device ^[2, 3]

Pin	Ту	/pe		
No.	Digital	Analog	Name	Description
1	IOH	I	P0[1]	
2	I/O	I	P2[5]	XTAL Out
3	I/O	I	P2[3]	XTAL In
4	I/O	I	P2[1]	
5	IOHR	I	P1[7]	I2C SCL, SPI SS
6	IOHR	I	P1[5]	I2C SDA, SPI MISO
7	IOHR	I	P1[3]	SPI CLK
8	IOHR	I	P1[1]	TC CLK, I2C SCL, SPI MOSI
9	Po	wer	V _{SS}	Ground Pin
10		!	D+	USB PHY
11		I	D-	USB PHY
12	Po	wer	Vdd	Power pin
13	IOHR	I	P1[0]	TC DATA*, I2C SDA, SPI CLKI
14	IOHR	I	P1[2]	
15	IOHR	I	P1[4]	EXTCLK
16	IOHR	I	P1[6]	
17	In	put	XRES	Active high external reset with internal pull down
18	I/O	I	P3[0]	
19	I/O	I	P3[2]	
20	I/O	I	P2[0]	
21	I/O	I	P2[2]	
22	I/O	I	P2[4]	
23	I/O	I	P2[6]	
24	IOH	I	P0[0]	
25	IOH	I	P0[2]	
26	IOH	I	P0[4]	
27	IOH	I	P0[6]	
28	Po	wer	Vdd	Power Pin
29	IOH	I	P0[7]	
30	IOH	I	P0[5]	
31	IOH	I	P0[3]	
32	Po	wer	Vss	Ground Pin

	Ā	Ā	Ā		¥	₹	A	
	ຕີ	2	Ĺ,	' 1 0	P0[6],	Ą,	5]	
	Ы	Pol	Pol	P>	Ы	Pol	P0[2],	
	0	0	0	0		0		
	31	30	29	28	27	26	55	
AI, P0[1] = 1							24	P0[0], AI
XTAL OUT, P2[5] 2							23	P2[6], AI
XTAL IN , P2[3] 🗖 3							22 🗖	P2[4], Al
AI, P2[1] 🗖 4			G) F	Ν		21=	P2[2], AI
I2C SCL, SPI SS, P1[7] - 5		(Тс	p '	Vie	W)	20=	P2[0], AI
I2C SDA, SPI MISO, P1[5] 🗖 6							19=	P3[2], AI
SPI CLK , P1[3] 🗖 7							18=	P3[0], AI
TC CLK, I2C SCL, SPI MOSI,P1[1] 8	_						.17=	XRES
	9	5	5	-13	4	15		
		- 0	-	₽	_	_		
<pre></pre>	ŏ	þ	Vdd	1	AI, P1[2]	14	P1[6]	
	F	Ŧ		Ϋ́	<u>п</u>	<u>п</u>	<u>г</u>	
	JSB PHY, D+	USB PHY D-		Ч	₹	AI, EXTCLK, P1[4]	AI,	
	SL	SU		Ы		E		
	2			o) ď		Ж		
				ĝ		Ę		
				ő				
				<u>e</u>				
				ΤĄ				
				DA				
				TC, DATA ¹ , 12C SDA, SPI CLK, P1[0]				

Figure 5. CY8C20496 PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

48-Pin SSOP

Table 7. Pin Definitions - CY8C20536, CY8C20546, and CY8C20566 PSoC Device $\ensuremath{^{[2]}}$

					1		0.10	000-00	01/0	00540		
Pin No.	Digital	Analog	Name	Description	Figu	ure 6.	CY8	AI, P0[AI, P0[AI, P0[7] p⁰ 1	;20546, a	48 🗖	VDD
1	IOH	1	P0[7]					AI, P0[AI, P0[P0[6], AI P0[4], AI
2	IOH	1	P0[5]					AI P0[1] 🖬 4		45 🗖	P0[2], AI
3	IOH	1	P0[3]				хт	AI, P2[ALOUT, P2]				P0[0], Al P2[6], Al
4	IOH		P0[1]					TALIN, P2[3	3] 🖬 7		42 🗖	P2[4], AI
5	I/O	1	P2[7]					AI, P2[1] = 8 C = 9			P2[2], Al P2[0], Al
6	1/O		P2[5]	XTAL Out				N	C 🗖 10			P3[6], Al
7	1/O		P2[3]	XTAL In					3] = 11 1] = 12			P3[4], Al P3[2], Al
8	1/O		P2[1]		1			N	C 🖬 13	SSOP	36 🗖	P3[0], AI
9		·	NC	No connection	1				7] = 14 5] = 15			XRES
10			NC	No connection					3] = 16		34 = 33 =	
11	I/O	1	P4[3]		1			AI, P3[1] 日 17		32 🗖	NC
12	1/O		P4[1]					N	C 🖬 18 C 🔳 19		31 - 30 -	
13		•	NC	No connection				SPI SS, P1[I MISO, P1[29 🗖	NC
14	I/O	1	P3[7]			120 3		PI CLK, P1			27	P1[6], AI P1[4], EXT CLK
15	1/0	I	P3[5]		TC CL	.K, I2C S		I MOSI, P1[1] = 23		26	P1[2], Al
16	I/O	1	P3[3]					V5	S ■ 24		25	P1[0], TC DATA, I2C SDA, SPI CLK
17	I/O	I	P3[1]									
18			NC	No connection								
19			NC	No connection								
20	IOHR	1	P1[7]	I2C SCL, SPI SS								
21	IOHR	I	P1[5]	I2C SDA, SPI MISO								
22	IOHR	I	P1[3]	SPI CLK	1							
23	IOHR	I	P1[1]	TC CLK ^[1] , I2C SCL, SPI MOSI	1							
24			VSS	Ground Pin								
25	IOHR	I	P1[0]	TC DATA ^[1] , I2C SDA, SPI CLK								
26	IOHR	I	P1[2]									
27	IOHR	I	P1[4]	EXT CLK								
28	IOHR	I	P1[6]									
29			NC	No connection								
30			NC	No connection								
31			NC	No connection								
32			NC	No connection	Pin No.	Digital	Analog	Name			Des	scription
33			NC	No connection	41	I/O	I	P2[2]				
34			NC	No connection	42	I/O	Ι	P2[4]				
35			XRES	Active high external reset with internal pull down	43	I/O	I	P2[6]				
36	I/O	I	P3[0]		44	IOH	Ι	P0[0]				
37	I/O	I	P3[2]		45	IOH	Ι	P0[2]				
38	I/O	I	P3[4]		46	IOH	Ι	P0[4]				
39	I/O	I	P3[6]		47	IOH	I	P0[6]				
40	I/O	I	P2[0]		48	Powe	er	Vdd	Power	Pin		

LEGEND A = Analog, I = Input, O = Output, NC = No Connection, H = 5 mA High Output Drive, R = Regulated Output Option.

ਵੋ ਕ ਕ ਕ

48-Pin QFN

Table 8. Pin Definitions - CY8C20636 PSoC Device ^[2, 3]

Pin No.	Digital	Analog	Name	Description				Figu
1			NC	No connection	1			
2	I/O	I	P2[7]		1			
3	I/O	Ι	P2[5]	Crystal output (XOut)	1			AI, F
4	I/O	I	P2[3]	Crystal input (XIn)	1			XOut, F I, XIn , F
5	I/O	Ι	P2[1]					AI, F
6	I/O	Ι	P4[3]					AI, F
7	I/O	Ι	P4[1]					AI, F AI, F
8	I/O	Ι	P3[7]					AI, F
9	I/O	Ι	P3[5]					AI,F AI F
10	I/O	Ι	P3[3]			AI, 12 C	SCL, S	SPI SS, F
11	I/O	Ι	P3[1]					
12	IOHR	Ι	P1[7]	I2C SCL, SPI SS				
13	IOHR	Ι	P1[5]	I2C SDA, SPI MISO				
14			NC	No connection				
15			NC	No connection				
16	IOHR	Ι	P1[3]	SPI CLK				
17	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI	1			
18	Pow	/er	Vss	Ground connection				
19			DNU					
20			DNU					
21	Pow	/er	Vdd	Supply voltage				
22	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK				
23	IOHR	I	P1[2]					
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)				
25	IOHR	Ι	P1[6]					
26	Inp	ut	XRES	Active high external reset with internal pull down				
27	I/O	Ι	P3[0]					
28	I/O	I	P3[2]		1			
29	I/O	I	P3[4]		Pin No.	Digital	Analog	Nam
30	I/O	I	P3[6]		40	IOH	I	P0[6]
31	I/O	I	P4[0]		41	Pov	ver	Vdd
32	I/O	I	P4[2]		42			NC
33	I/O	I	P2[0]		43			NC
34	I/O	I	P2[2]		44	IOH	I	P0[7]
35	I/O	I	P2[4]		45	IOH	I	P0[5]
36	I/O	I	P2[6]		46	IOH	I	P0[3]
37	IOH	I	P0[0]		47	Pov	ver	Vss
38	IOH	I	P0[2]		48	IOH	I	P0[1]
39	IOH	I	P0[4]		CP	Pov	ver	Vss

Figure 7. CY8C20636 PSoC Device

ৰ ৰৰৰ

	AI, 12 C	AI	NC AI, P2[7] XOut, P2[5] AI, P2[1] AI, P4[3] AI, P4[3] AI, P3[5] AI, P3[5] AI, P3[7] PI SS, P1[7]	2 35 P2[4] Al 3 34 P2[2] Al 4 33 P2[0] Al 5 32 P4[2] Al 6 QFN 31 7 (Top View) 30 8 29 P3[4] Al 9 28 P3[2] Al 10 27 P3[0] Al
	Digital	Analog	Name	Description
	IOH Pov	l	P0[6] Vdd	Supply voltage
	FOV	vei	NC	Supply voltage No connection
			NC	No connection
	IOH	1	P0[7]	
	IOH		P0[5]	
	IOH		P0[3]	Integrating input
	Pov		Vss	Ground connection
	IOH	I	P0[1]	

Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

48-Pin QFN with USB

Table 9. Pin Definitions - CY8C20646, CY8C20666 PSoC Device $^{\left[2,\;3\right]}$

Pin]			e 8. C`	Y8C20646, CY8C20666 PSoC Device			
No.	Digital	Analog	Name	Description		P0[1], AI Vss Vss P0[3], AI NC NC NC P0[6], AI P0[0], AI P0[0], AI						
1			NC	No connection								
2	I/O	I	P2[7]					NC -	187 7 9 9 9 7 9 9 8 8 6 36 P2[6], Al			
3	I/O	Ι	P2[5]	Crystal output (XOut)		А		, P2[7] 🗖 , P2[5] 🗖				
4	I/O	Ι	P2[3]	Crystal input (XIn)				, P2[3]				
5	I/O	1	P2[1]					, P2[1] 🗖				
6	I/O	I	P4[3]					, P4[3] 🗖 , P4[1] 🗖				
7	I/O	I	P4[1]				AL	, P3[7] 🗖	8 29 = P3[4], Al			
8	I/O	I	P3[7]					, P3[5]				
9	I/O	I	P3[5]				AI, AI	, P3[3] 🗖 , P3[1] 🗖				
10	I/O	I	P3[3]		AI, Ľ	2C SCL,	SPI SS	, P1[7] 🗖	12ऌ ≠ ⊈ ⊈ ⊈ € € € 8 5 3 5 8 8 7 8 ²⁵ ■ P1[6], Al			
11	I/O	I	P3[1]					C				
12	IOHR	I	P1[7]	I2C SCL, SPI SS					I2C SDA, SPI MISO, A I, P1[5] NC SPI CLK, A I, P1[3] AI, CLK ⁶ , I2C SCL, SPI MOSI, P1[1] VS AI, DATA ¹ , I2C SDA, SPI CLK, P1[0] AI, DATA ¹ , I2C SDA, SPI CLK, P1[0] AI, DATA ¹ , I2C SDA, SPI CLK, P1[0]			
13	IOHR	I	P1[5]	I2C SDA, SPI MISO					, A I, , AI, F AI, F CLK			
14			NC	No connection					MISC CLK SPI M			
15			NC	No connection					SPI SCL, S AI,			
16	IOHR		P1[3]	SPI CLK					SDA,			
17	IOHR		P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI					JATA,			
18	Pow	er	Vss	Ground connection					AI, C			
19	I/O		D+	USB D+								
20	I/O		D-	USB D-								
21	Pow	er	Vdd	Supply voltage								
22	IOHR		P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK								
23	IOHR	I	P1[2]									
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)								
25	IOHR	I	P1[6]									
26	Inpu	ut	XRES	Active high external reset with internal pull down								
27	I/O	I	P3[0]									
28	I/O	I	P3[2]									
29	I/O	I	P3[4]		Pin No.	Digital	Analog	Name	e Description			
30	I/O	Ι	P3[6]		40	IOH	I	P0[6]				
31	I/O	Ι	P4[0]		41	Pov	ver	Vdd	Supply voltage			
32	I/O	Ι	P4[2]		42			NC	No connection			
33	I/O	Ι	P2[0]		43			NC	No connection			
34	I/O	Ι	P2[2]		44	IOH	I	P0[7]				
35	I/O	Ι	P2[4]		45	IOH	I	P0[5]				
36	I/O	Ι	P2[6]		46	IOH	I	P0[3]	Integrating input			
37	IOH	Ι	P0[0]		47	Po	ver	Vss	Ground connection			
38	IOH	I	P0[2]		48	IOH	I	P0[1]				
30												

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

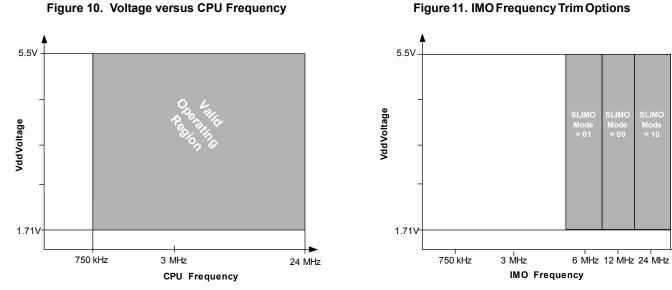
48-Pin QFN OCD

The 48-pin QFN part is for the CY8C20066 On-Chip Debug (OCD) PSoC device. Note that this part is only used for in-circuit debugging.^[4]

Pin No.	Digital	Analog	Name	Description			Fiç	gure 9. (CY8C20066 PSoC Device VI (1900) VI (1900)			
1			OCDOE	OCD mode direction pin								
2	I/O	I	P2[7]			OCDO						
3	I/O	I	P2[5]	Crystal output (XOut)			A, F2	2[7] = 2	35 = P2[4], AI			
4	I/O	Ι	P2[3]	Crystal input (XIn)			Out, P2	2[5] = 3	34 ■ P2[2], AI 33 ■ P2[0], AI			
5	I/O	Ι	P2[1]			AI, J		2[3] = 4 2[1] = 5	32 = P4[2], AI			
6	I/O	Ι	P4[3]				AI, P4	[3] = 6	QFN 31 = P4[0], AI			
7	I/O	I	P4[1]					[1] = 7	(Top View) 30 = P3[6], Al 29 = P3[4], Al			
8	I/O	I	P3[7]					5[7] = 8 5[5] = 9	29 4 P3[4], Al 28 4 P3[2], Al			
9	I/O	I	P3[5]				AI, P3	s[3] = 10	27 = P3[0], AI			
10	I/O	I	P3[3]		AL 12C		AI, P3	[1] 1 11	26 Z XRES			
11	I/O	I	P3[1]		AI, 120	, OOE, OF 1	00,11		± ♀ ♀ └ ♀ € ♀ ≳ ≳ ≳ ≳ ≈ ₹ ²⁵ ■ P1[6], Al			
12	IOHR	I	P1[7]	I2C SCL, SPI SS				1[5]	P1[1] D + 1 D + 1 D + 1 P1[2] P1[4]			
13	IOHR	I	P1[5]	I2C SDA, SPI MISO				AI, P	H CLK, AI, PT[3] -, SPI MOSI, PT[1] V Vdd A, SPI CLK, PT[0] AI, EXTCLK, PT[4] AI, EXTCLK, PT[4]			
14			CCLK	OCD CPU clock output				ľSO,	I MO			
15			HCLK	OCD high speed clock output				MIG	AI, E. SPI C			
16	IOHR	I	P1[3]	SPI CLK.				2C SDA, SPI MISO, AI, P1[5]	S SCI SD			
17	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI				2C SI	.6, 12C			
18	Pow	er	Vss	Ground connection					DAT			
19	I/O		D+	USB D+					A, CLK ⁶ , I2C SCL, SPI CLK, AI H CLK SPI CLK, AI H 713] Vss D - D - AI, DATA', I2C SDA, SPI CLK, P1[0] AI, DATA', I2C SDA, SPI CLK, P1[0] AI, EXTCLK, P1[4]			
20	I/O		D-	USB D-								
21	Pow	er	Vdd	Supply voltage								
22	IOHR	Ι	P1[0]	ISSP DATA ⁽¹⁾ , I2C SDA, SPI CLK								
23	IOHR	Ι	P1[2]		Pin No.	Digital	Analog	Name	Description			
24	IOHR	1	P1[4]	Optional external clock input (EXTCLK)	37	IOH	1	P0[0]				
25	IOHR	I	P1[6]		38	IOH	I	P0[2]				
26	Inpu	ıt	XRES	Active high external reset with internal pull down	39	IOH	I	P0[4]				
27	I/O	I	P3[0]		40	IOH	Ι	P0[6]				
28	I/O	I	P3[2]		41	Pow	er	Vdd	Supply voltage			
29	I/O	I	P3[4]		42			OCDO	OCD even data I/O			
30	I/O	I	P3[6]		43			OCDE	OCD odd data output			
31	I/O	I	P4[0]		44	IOH	Ι	P0[7]				
32	I/O	I	P4[2]		45	IOH	Ι	P0[5]				
33	I/O	I	P2[0]		46	IOH	Ι	P0[3]	Integrating input			
34	I/O	Ι	P2[2]		47	Pow	er	Vss	Ground connection			
35	I/O	Ι	P2[4]		48	IOH	Ι	P0[1]				
36	I/O	I	P2[6]		CP	Pow	er	Vss	Center pad must be connected to ground			

Table 10. Pin Definitions - CY8C20066 PSoC Device ^[2, 3]

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.


Note

4. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x36/46/66/96 PSoC devices. For the latest electrical specifications, confirm that you have the most recent data sheet by visiting the web at http://www.cypress.com/psoc.

The following table lists the units of measure that are used in this section.

Table 11. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	mA	milli-ampere
dB	decibels	ms	milli-second
fF	femto farad	mV	milli-volts
Hz	hertz	nA	nanoampere
КВ	1024 bytes	ns	nanosecond
Kbit	1024 bits	nV	nanovolts
kHz	kilohertz	Ω	ohm
ksps	kilo samples per second	pА	picoampere
kΩ	kilohm	pF	picofarad
MHz	megahertz	рр	peak-to-peak
MΩ	megaohm	ppm	parts per million
μA	microampere	ps	picosecond
μF	microfarad	sps	samples per second
μН	microhenry	S	sigma: one standard deviation
μS	microsecond	V	volts
μW	microwatts		·

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 14. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Vdd	Supply Voltage	Refer the table DC POR and LVD Specifications on page 24	1.71	-	5.5	V
I _{DD24}	Supply Current, IMO = 24 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	_	2.88	4.0	mA
I _{DD12}	Supply Current, IMO = 12 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	1.71	2.6	mA
I _{DD6}	Supply Current, IMO = 6 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	_	1.16	1.8	mA
I _{SB0}	Deep Sleep Current	Vdd = 3.0V, T _A = 25°C, I/O regulator turned off	-	0.1	-	μΑ
I _{SB1}	Standby Current with POR, LVD and Sleep Timer	Vdd = 3.0V, T_A = 25°C, I/O regulator turned off	_	1.07	1.5	μA

DC General Purpose IO Specifications

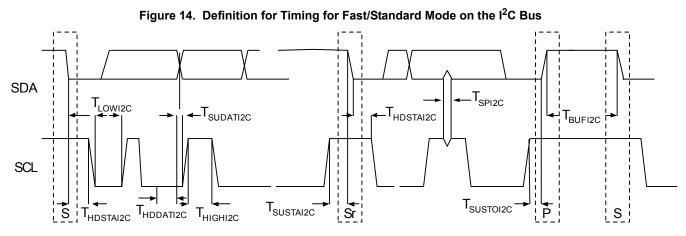
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0V to 5.5V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, 2.4V to 3.0V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 1.71V to 2.4V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 15. 3.0V to 5.5V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull up Resistor		4	5.6	8	kΩ
V _{OH1}	High Output Voltage Port 2 or 3 Pins	IOH \leq 10 μ A, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	_	V
V _{OH2}	High Output Voltage Port 2 or 3 Pins	IOH = 1 mA, maximum of 20 mA source current in all IOs	Vdd - 0.9	_	_	V
V _{OH3}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH < 10 μ A, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	-	V
V _{OH4}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 5 mA, maximum of 20 mA source current in all IOs	Vdd - 0.9	_	_	V
V _{OH5}	High Output Voltage Port 1 Pins with LDO Regulator Enabled for 3V Out	IOH < 10 μA, Vdd > 3.1V, maximum of 4 IOs all sourcing 5 mA	2.85	3.00	3.3	V
V _{OH6}	High Output Voltage Port 1 Pins with LDO Regulator Enabled for 3V Out	IOH = 5 mA, Vdd > 3.1V, maximum of 20 mA source current in all IOs	2.20	_	_	V
V _{OH7}	High Output Voltage Port 1 Pins with LDO Enabled for 2.5V Out	IOH < 10 μ A, Vdd > 2.7V, maximum of 20 mA source current in all IOs	2.35	2.50	2.75	V
V _{OH8}	High Output Voltage Port 1 Pins with LDO Enabled for 2.5V Out	IOH = 2 mA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.90	_	_	V
V _{OH9}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH < 10 μ A, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.60	1.80	2.1	V

Table 15. 3.0V to 5.5V DC GPIO Specifications (continued)

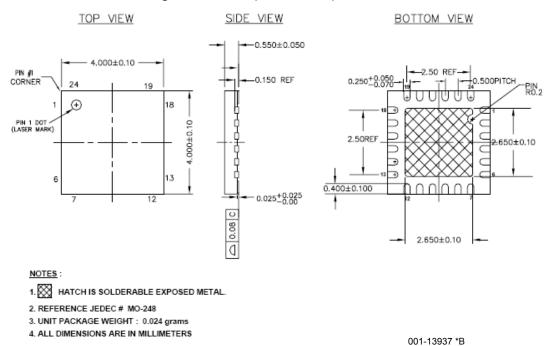
Symbol	Description	Conditions	Min	Тур	Max	Units
V _{OH10}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH = 1 mA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.20	-	-	V
V _{OL}	Low Output Voltage	IOL = 25 mA, Vdd > 3.3V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V _{IL}	Input Low Voltage		-	-	0.80	V
V _{IH}	Input High Voltage		2.00	-		V
V _H	Input Hysteresis Voltage		-	80	-	mV
I _{IL}	Input Leakage (Absolute Value)		_	0.001	1	μA
C _{PIN}	Pin Capacitance	Package and pin dependent Temp = 25°C	0.5	1.7	5	pF

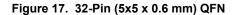


AC I2C Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 33. AC Characteristics of the I2C SDA and SCL Pins


Symbol	Description		Standard Mode		Fast Mode		
		Min	Мах	Min	Max		
F _{SCLI2C}	SCL Clock Frequency	0	100	0	400	kHz	
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.	4.0	_	0.6	-	μS	
T _{LOWI2C}	LOW Period of the SCL Clock	4.7	-	1.3	-	μs	
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	-	0.6	-	μS	
T _{SUSTAI2C}	Setup Time for a Repeated START Condition	4.7	-	0.6	-	μS	
T _{HDDATI2C}	Data Hold Time	0	-	0	-	μS	
T _{SUDATI2C}	Data Setup Time	250	-	100 ^[11]	I	ns	
T _{SUSTOI2C}	Setup Time for STOP Condition	4.0	-	0.6	I	μS	
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition	4.7	-	1.3	_	μS	
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	_	_	0	50	ns	


Note

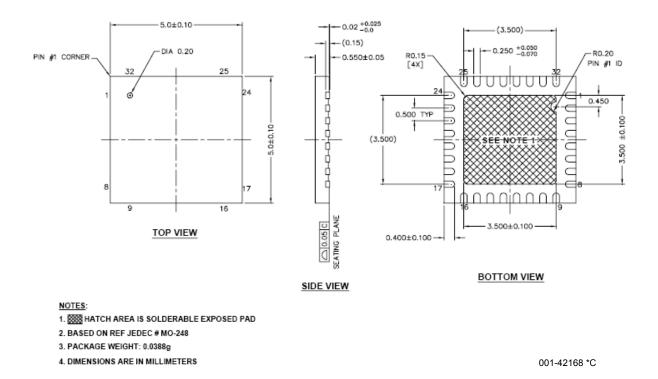

11. A Fast-Mode I2C-bus device can be used in a Standard Mode I2C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU:DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

Figure 16. 24-Pin (4x4 x 0.6 mm) QFN

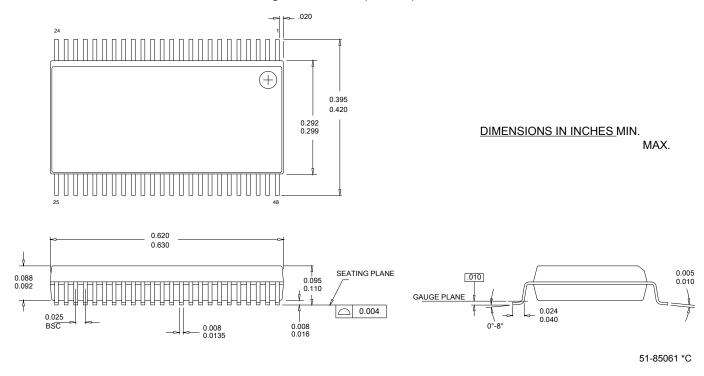
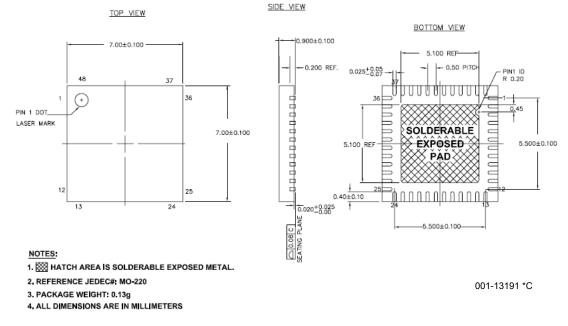



Figure 19. 48-Pin (7x7 mm) QFN

Important Notes

- For information on the preferred dimensions for mounting QFN packages, see the following Application Note at http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.
- Pinned vias for thermal conduction are not required for the low power PSoC device.

Thermal Impedances

Table 36. Thermal Impedances per Package

Package	Typical θ _{JA} ^[12]
16 QFN	32.69 ^o C/W
24 QFN ^[13]	20.90°C/W
32 QFN ^[13]	19.51°C/W
48 SSOP	69 ^o C/W
48 QFN ^[13]	17.68°C/W

Solder Reflow Peak Temperature

This table lists the minimum solder reflow peak temperature to achieve good solderability.

Table 37. Solder Reflow Peak Temperature

Package	Minimum Peak Temperature ^[14]	Maximum Peak Temperature
16 QFN	240°C	260°C
24 QFN	240°C	260°C
32 QFN	240°C	260°C
48 SSOP	220°C	260°C
48 QFN	240°C	260°C

<sup>Notes
12. T_J = T_A + Power x θ_{JA}.
13. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.
14. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5°C with Sn-Pb or 245 ± 5°C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.</sup>

Development Tool Selection

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at

http://www.cypress.com/psocdesigner and includes a free C compiler.

PSoC Programmer

PSoC Programmer is flexible enough and is used on the bench in development and is also suitable for factory programming. PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer or PSoC Express. PSoC Programmer software is compatible with both PSoC ICE Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free of cost at

http://www.cypress.com/psocprogrammer.

Development Kits

All development kits are sold at the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface enables users to run, halt, and single step the processor and view the content of specific memory locations. PSoC Designer supports the advance emulation features also. The kit includes:

- PSoC Designer Software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29x66 Family
- Cat-5 Adapter
- Mini-Eval Programming Board
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- iMAGEcraft C Compiler (Registration Required)
- ISSP Cable
- USB 2.0 Cable and Blue Cat-5 Cable
- 2 CY8C29466-24PXI 28-PDIP Chip Samples

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit enables the user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LFXI PSoC device. Special features of the board include both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of bread boarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB Board
- LCD Module
- MIniProg Programming Unit
- Mini USB Cable
- PSoC Designer and Example Projects CD
- Getting Started Guide
- Wire Pack

Ordering Information

The following table lists the CY8C20x36/46/66/96 PSoC devices' key package features and ordering codes.

Table 39. PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	CapSense Blocks	Digital I/O Pins	Analog Inputs ^[18]	XRES Pin	USB
16-Pin (3x3x0.6mm) QFN	CY8C20236-24LKXI	8K	1K	1	13	13	Yes	No
16-Pin (3x3x0.6mm) QFN (Tape and Reel)	CY8C20236-24LKXIT	8K	1K	1	13	13	Yes	No
16 Pin (3x3 x 0.6 mm) QFN	CY8C20246-24LKXI	16K	2K	1	13	13	Yes	No
16 Pin (3x3 x 0.6 mm) QFN (Tape and Reel)	CY8C20246-24LKXIT	16K	2K	1	13	13	Yes	No
24-Pin (4x4x0.6mm) QFN	CY8C20336-24LQXI	8K	1K	1	20	20	Yes	No
24-Pin (4x4x0.6mm) QFN (Tape and Reel)	CY8C20336-24LQXIT	8K	1K	1	20	20	Yes	No
24 Pin (4x4 x 0.6 mm) QFN	CY8C20346-24LQXI	16K	2K	1	20	20	Yes	No
24 Pin (4x4 x 0.6 mm) QFN (Tape and Reel)	CY8C20346-24LQXIT	16K	2K	1	20	20	Yes	No
24-Pin (4x4x0.6mm) QFN	CY8C20396-24LQXI	16K	2K	1	19	19	Yes	Yes
24-Pin (4x4x0.6mm) QFN (Tape and Reel)	CY8C20396-24LQXIT	16K	2K	1	19	19	Yes	Yes
32-Pin (5x5x0.6mm) QFN	CY8C20436-24LQXI	8K	1K	1	28	28	Yes	No
32-Pin (5x5x0.6mm) QFN (Tape and Reel)	CY8C20436-24LQXIT	8K	1K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN	CY8C20446-24LQXI	16K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN (Tape and Reel)	CY8C20446-24LQXIT	16K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN	CY8C20466-24LQXI	32K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN (Tape and Reel)	CY8C20466-24LQXIT	32K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN	CY8C20496-24LQXI	16K	2K	1	25	25	Yes	No
32 Pin (5x5 x 0.6 mm) QFN (Tape and Reel)	CY8C20496-24LQXIT	16K	2K	1	25	25	Yes	No
48-Pin SSOP	CY8C20536-24PVXI	8K	1K	1	36	36	Yes	No
48-Pin SSOP (Tape and Reel)	CY8C20536-24PVXIT	8K	1K	1	36	36	Yes	No
48-Pin SSOP	CY8C20546-24PVXI	16K	2K	1	36	36	Yes	No
48-Pin SSOP (Tape and Reel)	CY8C20546-24PVXIT	16K	2K	1	36	36	Yes	No
48-Pin SSOP	CY8C20566-24PVXI	32K	2K	1	36	36	Yes	No
48-Pin SSOP (Tape and Reel)	CY8C20566-24PVXIT	32K	2K	1	36	36	Yes	No
48 Pin (7x7 mm) QFN	CY8C20636-24LTXI	8K	1K	1	36	36	Yes	No
48 Pin (7x7 mm) QFN (Tape and Reel)	CY8C20636-24LTXIT	8K	1K	1	36	36	Yes	No
48 Pin (7x7 mm) QFN	CY8C20646-24LTXI	16K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN (Tape and Reel)	CY8C20646-24LTXIT	16K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN	CY8C20666-24LTXI	32K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN (Tape and Reel)	CY8C20666-24LTXIT	32K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN (OCD) ^[4]	CY8C20066-24LTXI	32K	2K	1	36	36	Yes	Yes

Notes

18. Dual-function Digital I/O Pins also connect to the common analog mux.