

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are angineered to

Details

·XF

Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY8C20xx6
RAM Size	2K x 8
Interface	I ² C, SPI
Number of I/O	20
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	24-UFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20346-24lqxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

PSoC[®] Functional Overview

The PSoC family consists of on-chip Controller devices. These devices are designed to replace multiple traditional MCU-based components with one, low cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The architecture for this device family, as shown in the Logic Block Diagram on page 2, is comprised of three main areas: the Core, the CapSense Analog System, and the System Resources (including a full speed USB port). A common, versatile bus allows connection between I/O and the analog system. Each CY8C20x36/46/66/96 PSoC Device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 36 general purpose IO (GPIO) are also included. The GPIO provides access to the MCU and analog mux.

PSoC Core

The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO (internal main oscillator) and ILO (internal low speed oscillator). The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard architecture microprocessor.

System Resources provide additional capability, such as configurable USB and I2C slave/SPI master-slave communication interface, three 16-bit programmable timers, and various system resets supported by the M8C.

The Analog System is composed of the CapSense PSoC block and an internal 1.2V analog reference, which together support capacitive sensing of up to 36 inputs.

CapSense Analog System

The Analog System contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports.

Figure 1. Analog System Block Diagram

Analog Multiplexer System

The Analog Mux Bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.

Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces, such as sliders and touchpads.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

When designing capacitive sensing applications, refer to the latest signal-to-noise signal level requirements Application Notes, which can be found under http://www.cypress.com > Documentation > Application Notes. In general, and unless otherwise noted in the relevant Application Notes, the minimum signal-to-noise ratio (SNR) for CapSense applications is 5:1.

Additional System Resources

System Resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The merits of each system resource are listed here:

- The I2C slave/SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- The I2C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power-On-Reset) circuit eliminates the need for a system supervisor.
- An internal reference provides an absolute reference for capacitive sensing.
- A register-controlled bypass mode allows the user to disable the LDO.
- Standard Cypress PSoC IDE tools are available for debugging the CY8C20x36/46/66/96 family of parts. However, the additional trace length and a minimal ground plane in the Flex-Pod can create noise problems that make it difficult to debug the design. A custom bonded On-Chip Debug (OCD) device is available in an 48-pin QFN package. The OCD device is recommended for debugging designs that have high current and/or high analog accuracy requirements. The QFN package is compact and is connected to the ICE through a high density connector.

Getting Started

The quickest way to understand PSoC silicon is to read this data sheet and then use the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the PSoC[®] Programmable System-on-Chip[™] Technical Reference Manual for CY8C20x36/46/66/96 PSoC Devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device data sheets on the web at www.cypress.com/psoc.

Application Notes

Application notes are an excellent introduction to the wide variety of possible PSoC designs. They are located here: www.cypress.com/psoc. Select Application Notes under the Documentation tab.

Development Kits

PSoC Development Kits are available online from Cypress at www.cypress.com/shop and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops) is available online at www.cypress.com/training. The training covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to www.cypress.com/cypros.

Solutions Library

Visit our growing library of solution focused designs at www.cypress.com/solutions. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

For assistance with technical issues, search KnowledgeBase articles and forums at www.cypress.com/support. If you cannot find an answer to your question, call technical support at 1-800-541-4736.

Development Tools

PSoC Designer is a Microsoft[®] Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows XP and Windows Vista.

This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and built-in support for third-party assemblers and C compilers.

PSoC Designer also supports C language compilers developed specifically for the devices in the PSoC family.

PSoC Designer Software Subsystems

System-Level View

The system-level view is a drag-and-drop visual embedded system design environment based on PSoC Express. In this view you solve design problems the same way you might think about the system. Select input and output devices based upon system requirements. Add a communication interface and define the interface to the system (registers). Define when and how an output device changes state based upon any/all other system devices. Based upon the design, PSoC Designer automatically selects one or more PSoC devices that match your system requirements.

PSoC Designer generates all embedded code, then compiles and links it into a programming file for a specific PSoC device.

Chip-Level View

The chip-level view is a more traditional integrated development environment (IDE) based on PSoC Designer 4.x. You choose a base device to work with and then select different onboard analog and digital components called user modules that use the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters. You configure the user modules for your chosen application and connect them to each other and to the proper pins. Then you generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration allows for changing configurations at run time.

Hybrid Designs

You can begin in the system-level view, allow it to choose and configure your user modules, routing, and generate code, then switch to the chip-level view to gain complete control over onchip resources. All views of the project share common code editor, builder, and common debug, emulation, and programming tools.

Code Generation Tools

PSoC Designer supports multiple third-party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours.

Assemblers. The assemblers allow assembly code to be merged seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices.

The optimizing C compilers provide all the features of C tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and program and read and write data memory, read and write I/O registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help for the user. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer in getting started.

In-Circuit Emulator

A low cost, high functionality In-Circuit Emulator (ICE) is available for development support. This hardware has the capability to program single devices.

The emulator consists of a base unit that connects to the PC by way of a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24 MHz) operation.

24-Pin QFN

Table 3. Pin Definitions - CY8C20336, CY8C20346 ^[2, 3]

Pin	Ту	pe	Nomo	Description
No.	Digital	Analog	name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	I/O	I	P2[1]	
4	IOHR	I	P1[7]	I2C SCL, SPI SS
5	IOHR	-	P1[5]	I2C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI
8			NC	No connection
9	Power		Vss	Ground connection
10	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK
11	IOHR	I	P1[2]	
12	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
13	IOHR	I	P1[6]	
14	In	put	XRES	Active high external reset with internal pull down
15	I/O	I	P2[0]	
16	IOH	I	P0[0]	
17	IOH		P0[2]	
18	IOH	-	P0[4]	
19	IOH	I	P0[6]	
20	Po	wer	Vdd	Supply voltage
21	IOH	-	P0[7]	
22	IOH	I	P0[5]	
23	IOH	I	P0[3]	Integrating input
24	IOH	Ι	P0[1]	Integrating input
CP	Po	wer	Vss	Center pad must be connected to ground

Figure 3. CY8C20336, CY8C20346 PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Note
3. The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.

24-Pin QFN with USB

Table 4. Pin Definitions - CY8C20396 PSoC Device [2, 3]

Din No	Тур	be	Namo	Description
FILLING.	Digital	Analog	Name	Description
1	I/O	Ι	P2[5]	
2	I/O	I	P2[3]	
3	I/O	I	P2[1]	
4	IOHR	Ι	P1[7]	I2C SCL, SPI SS
5	IOHR	I	P1[5]	I2C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK, I2C SCL, SPI MOSI
8	Pov	ver	VSS	Ground
9	I/O	I	D+	USB D+
10	I/O	I	D-	USB D-
11	Pov	ver	VDD	Supply
12	IOHR	I	P1[0]	ISSP DATA, I2C SDA
13	IOHR	I	P1[2]	
14	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
15	IOHR	I	P1[6]	
16	RESET	INPUT	XRES	Active high external reset with internal pull down
17	IOH	I	P0[0]	
18	IOH	I	P0[2]	
19	IOH	I	P0[4]	
20	IOH	I	P0[6]	
21	IOH	I	P0[7]	
22	IOH	I	P0[5]	
23	IOH	I	P0[3]	Integrating input
24	IOH	I	P0[1]	Integrating input
CP	Pov	ver	VSS	Thermal pad must be connected to Ground

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

32-Pin QFN

Table 5. Pin Definitions - CY8C20436, CY8C20446, CY8C20466 PSoC Device $^{\left[2,\;3\right]}$

Pin	Ту	/pe	Namo	Description	Figure 5. CY8C20436, CY8C20446, CY8C20466 PSoC Device
No.	Digital	Analog	Name	Description	ददद ददद
1	IOH	I	P0[1]	Integrating input	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2	I/O	I	P2[7]		
3	I/O	I	P2[5]	Crystal output (XOut)	
4	I/O	I	P2[3]	Crystal input (XIn)	Al, P2[7] = 2 23 = P2[6], Al
5	I/O	I	P2[1]		AI, XOut, P2[5] = 3 22 = P2[4], AI
6	I/O	I	P3[3]		AI, XIn, P2[3] = 4 QFN 21 = P2[2], AI AI P2[1] = 5 (Top View) 20 = P2[0] AI
7	I/O	I	P3[1]		Al, P3[3] = 6 (100 view) 23 = 12[3], 70
8	IOHR	I	P1[7]	I2C SCL, SPI SS	AI, P3[1] = 7 18 = P3[0], AI
9	IOHR	I	P1[5]	I2C SDA, SPI MISO	
10	IOHR	I	P1[3]	SPI CLK.	
11	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI.	
12	Po	wer	Vss	Ground connection.	ALLK, J
13	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA., SPI CLK	
14	IOHR	I	P1[2]		, SP L, Sr H, E, SP
15	IOHR	I	P1[4]	Optional external clock input (EXTCLK)	
16	IOHR	Ι	P1[6]		ATA, 12
17	Input XRES		XRES	Active high external reset with internal pull down	A, C, A A, D, C
18	I/O	Ι	P3[0]		
19	I/O	Ι	P3[2]		
20	I/O	Ι	P2[0]		
21	I/O	Ι	P2[2]		
22	I/O	1	P2[4]		
23	I/O	1	P2[6]		
24	IOH	I	P0[0]		
25	IOH	I	P0[2]		-
26	IOH	I	P0[4]		-
27	IOH	I	P0[6]		
28	Po	wer	Vdd	Supply voltage	-
29	IOH	I	P0[7]		-
30	IOH	I	P0[5]		
31	IOH	I	P0[3]	Integrating input	
32	Po	wer	Vss	Ground connection	
СР	Po	wer	Vss	Center pad must be connected to ground	

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

48-Pin SSOP

п

Table 7. Pin Definitions - CY8C20536, CY8C20546, and CY8C20566 PSoC Device $\ensuremath{^{[2]}}$

No.	ital	log	News	Description	Figu	ure 6.	CY8	3C20536	, CY8C2054	46, ar	nd CY8C20566	SPSoC Device
in	Dig	۸na	Name	Description				AI, P0[7] = ⁰ 1		48 🗖 VDD	
1	— 10н	1	P0[7]					AI, P0[AI P0[5] = 2 3] = 3		47 P0[6], Al	
2		1	P0[5]		-			AI P0[1] = 4		45 P0[2], Al	
2	IOH		P0[3]				хт		7] = 5 5] = 6		44 P0[0], AI	
4	IOH		P0[1]				X	(TALIN, P2[3	6] = 7		43 = P2[0], Al 42 = P2[4], Al	
5	1/0		P2[7]		-			AI, P2[1 N] = 8 C = 9		41 P2[2], Al	
6	1/0	I	P2[5]	XTAL Out	-			N	C = 10		39 P3[6], AI	
7	1/0	1	P2[3]	XTAL In				AI, P4[AI, P4[3] = 11 1] = 12 = ==		38 ■ P3[4], AI	
8	I/O	1	P2[1]					N		OP	36 P 3[0], AI	
9			NC	No connection				AI, P3[AI, P3[7] = 14 5] = 15		35 XRES	
10			NC	No connection				AI, P3[3] = 16		33 N C	
11	I/O	1	P4[3]					AI, P3[1] = 17		32 NC	
12	I/O	I	P4[1]					N			30 NC	
13			NC	No connection		120 120 S	CSCL, DASP	SPI SS, P1[] PI MISO P1[]	7] = 20 5] = 21		29 NC	
14	I/O	I	P3[7]			.200	57 (, 01	SPI CLK, P1[3]= 22		27 P1[4], EXT CL	_K
15	I/O	I	P3[5]		TC CL	.K, I2C S	CL, SF	PI MOSI, P1[VS	1] □ 23 S □ 24		26 ■ P1[2], AI	
16	I/O	I	P3[3]					•••			23 - 1 1[0], 10 8/1	
17	I/O	1	P3[1]		1							
18			NC	No connection								
19			NC	No connection								
20	IOHR	I	P1[7]	I2C SCL, SPI SS								
21	IOHR	-	P1[5]	I2C SDA, SPI MISO								
22	IOHR	-	P1[3]	SPI CLK								
23	IOHR	1	P1[1]	TC CLK ^[1] , I2C SCL, SPI MOSI								
24			VSS	Ground Pin								
25	IOHR	Ι	P1[0]	TC DATA ^[1] , I2C SDA, SPI CLK								
26	IOHR	Ι	P1[2]									
27	IOHR	I	P1[4]	EXT CLK								
28	IOHR	I	P1[6]									
29			NC	No connection								
30			NC	No connection								
31			NC	No connection								
32			NC	No connection	Pin No.	Digital	Analog	Name			Description	
33			NC	No connection	41	I/O	Ι	P2[2]				
34			NC	No connection	42	I/O	I	P2[4]				
35			XRES	Active high external reset with internal pull down	43	I/O	I	P2[6]				
36	I/O	I	P3[0]		44	IOH	1	P0[0]				
37	I/O		P3[2]		45	IOH	1	P0[2]				
38	I/O	I	P3[4]		46	IOH	Ι	P0[4]				
39	I/O	I	P3[6]		47	IOH	Ι	P0[6]				
40	I/O	1	P2[0]		48	Powe	er	Vdd	Power Pin			

LEGEND A = Analog, I = Input, O = Output, NC = No Connection, H = 5 mA High Output Drive, R = Regulated Output Option.

ਵੋ ਕ ਕ ਕ

48-Pin QFN

Table 8. Pin Definitions - CY8C20636 PSoC Device ^[2, 3]

Pin No.	Digital	Analog	Name	Description				Figu
1			NC	No connection				
2	I/O	I	P2[7]					
3	I/O	I	P2[5]	Crystal output (XOut)				AI,I
4	I/O	Ι	P2[3]	Crystal input (XIn)			AI,	XOut, I
5	I/O	Ι	P2[1]				A	AI, I
6	I/O	Ι	P4[3]					AI,I
7	I/O	Ι	P4[1]					AI,I AI
8	I/O	Ι	P3[7]					AI,I
9	I/O	I	P3[5]					AI,I
10	I/O	Ι	P3[3]			AI. 12 C	SCL. S	AI SPISS.
11	I/O	Ι	P3[1]			, -	, -	,
12	IOHR	I	P1[7]	I2C SCL, SPI SS				
13	IOHR	I	P1[5]	I2C SDA, SPI MISO				
14			NC	No connection				
15			NC	No connection				
16	IOHR	1	P1[3]	SPI CLK				
17	IOHR	1	P1[1]	ISSP CLK ^[1] . I2C SCL. SPI MOSI				
18	Pow	/er	Vss	Ground connection				
19		-	DNU					
20			DNU					
21	Pow	/er	Vdd	Supply voltage				
22	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK				
23	IOHR	I	P1[2]					
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)				
25	IOHR	Ι	P1[6]					
26	Inp	ut	XRES	Active high external reset with internal pull down				
27	I/O	I	P3[0]					
28	I/O	Ι	P3[2]					
29	I/O	I	P3[4]		Pin No.	Digital	Analog	Nar
30	I/O	Ι	P3[6]		40	IOH	I	P0[6
31	I/O	Ι	P4[0]		41	Pov	ver	Vdd
32	I/O	I	P4[2]		42			NC
33	I/O	I	P2[0]		43			NC
34	I/O	I	P2[2]		44	IOH	1	P0[7
35	I/O	1	P2[4]		45	IOH	1	P0[5
36	I/O	Ι	P2[6]		46	IOH	1	P0[3
37	IOH	1	P0[0]		47	Pov	ver	Vss
38	IOH	1	P0[2]		48	IOH	1	P0[1
39	IOH	I	P0[4]		CP	Pov	ver	Vss
		L			L	<u> </u>		<u> </u>

Figure 7. CY8C20636 PSoC Device

ৰ ৰৰৰ

			A B B B B B B B B B B B B B B B B B B B
			■ 1 ⁴ 4 4 4 4 4 4 4 8 8 8 6 6 36 P2[6],Al
	AI,	XOut, P2[5]	■ 3 34 P2[2] AI
	A	, XIn , P2[3]	■ 4 33■ P2[0] AI
		AI , P2[1] AI , P4[3]	QFN 31 C P4[2],AI
		AI, P4[1]	■ 7 (Top View) 30■ P3[6] AI
		AI , P3[7] AI , P3[5]	P 8 29 P3[4], Al P 9 28 P3[2] Al
		AI, P3[3]	P 10 27 C P3[0], AI
AL 12 C		AI P3[1]	
AI, 12 0	, 50L, 5	100,11[7]	
			P1[5] NC NC NC VC NC NC NC NC NC NC NC NC NC NC NC NC NC
			AI, F AI, F AI, F AI, F
			L CLK, PI MISO, EXTO
			SPI N SDA, SPI N AI, S
			, 12C S
			I2C : MTA ¹
			A, C A, C
1	_		
ital	log	Namo	Description
Dig	Ana	Name	Description
IOH		P0[6]	
Po	ver	Vdd	Supply voltage
		NC	No connection
		NC	No connection
IOH	I	P0[7]	
IOH	I	P0[5]	
IOH	Ι	P0[3]	Integrating input
Po	wer	Vss	Ground connection
IOH	1	P0[1]	

Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

48-Pin QFN OCD

The 48-pin QFN part is for the CY8C20066 On-Chip Debug (OCD) PSoC device. Note that this part is only used for in-circuit debugging.^[4]

Pin No.	Digital	Analog	Name	Description			Fiç	gure 9. (マ	CY8C20066 PSoC Device 로 로 다 다 다 고 로 로 로 2 번 번 번 번 번 번 번 번 번 번
1			OCDOE	OCD mode direction pin					
2	I/O	I	P2[7]				OCD		- 4 4 4 7 4 7 7 8 8 8 5 36 ■ P2[6], AI
3	I/O	I	P2[5]	Crystal output (XOut)			A, F2	2[7] = 2	35 = P2[4], AI
4	I/O	I	P2[3]	Crystal input (XIn)		AI, X	Out, P2	2[5] = 3	34 e P2[2], AI
5	I/O	I	P2[1]			AI, J	AL P2	2[3] 4 2[1] 5	33 P 2[0], AI 32 P 4[2], AI
6	I/O	I	P4[3]				AI , P4	[3] = 6	QFN 31 = P4[0], AI
7	I/O	I	P4[1]				AI, P4	[1] = 7	(Top View) 30 = P3[6], Al
8	I/O	I	P3[7]				AI, P3 AI, P3	8[5] = 9	29 - 5(4), Al 28 - P3(2), Al
9	I/O	Ι	P3[5]				AI, P3	[3] = 10	27 = P3[0], Al
10	I/O	Ι	P3[3]				AI, P3		
11	I/O	Ι	P3[1]		AI, 120	, 30L, 3FI	133, FI		⁴ 4 4 4 6 8 7 7 7 8 7 8 7 9 9 10 , A
12	IOHR	Ι	P1[7]	I2C SCL, SPI SS				1[5]	[4] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4
13	IOHR	I	P1[5]	I2C SDA, SPI MISO				₹ F	
14			CCLK	OCD CPU clock output				so, i	MOS A A A A A A A A A A A A A A A A A A A
15			HCLK	OCD high speed clock output				M IA	A, SPI CI
16	IOHR	Ι	P1[3]	SPI CLK.				DA, S	s sources and sour
17	IOHR	Ι	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI				SC SI	⁶ , 12C
18	Pow	er	Vss	Ground connection				<u>u</u>	CLK
19	I/O		D+	USB D+					Al, Al,
20	I/O		D-	USB D-					
21	Pow	er	Vdd	Supply voltage					
22	IOHR	I	P1[0]	ISSP DATA ⁽¹⁾ , I2C SDA, SPI CLK					
23	IOHR	I	P1[2]		Pin No.	Digital	Analog	Name	Description
24	IOHR	Ι	P1[4]	Optional external clock input (EXTCLK)	37	IOH	Ι	P0[0]	
25	IOHR		P1[6]		38	IOH	Ι	P0[2]	
26	Inpu	ut	XRES	Active high external reset with internal pull down	39	IOH	I	P0[4]	
27	I/O	Ι	P3[0]		40	IOH	Ι	P0[6]	
28	I/O	-	P3[2]		41	Pow	rer	Vdd	Supply voltage
29	I/O	Ι	P3[4]		42			OCDO	OCD even data I/O
30	I/O	Ι	P3[6]		43			OCDE	OCD odd data output
31	I/O	I	P4[0]		44	IOH	Ι	P0[7]	
32	I/O	Ι	P4[2]		45	IOH	Ι	P0[5]	
33	I/O	Ι	P2[0]		46	IOH	Ι	P0[3]	Integrating input
34	I/O	Ι	P2[2]		47	Pow	rer	Vss	Ground connection
35	I/O	Ι	P2[4]		48	IOH	Ι	P0[1]	
36	I/O		P2[6]		CP	Pow	er	Vss	Center pad must be connected to ground

Table 10. Pin Definitions - CY8C20066 PSoC Device ^[2, 3]

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Note

4. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 14. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
Vdd	Supply Voltage	Refer the table DC POR and LVD Specifications on page 24	1.71	-	5.5	V
I _{DD24}	Supply Current, IMO = 24 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	2.88	4.0	mA
I _{DD12}	Supply Current, IMO = 12 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	_	1.71	2.6	mA
I _{DD6}	Supply Current, IMO = 6 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	-	1.16	1.8	mA
I _{SB0}	Deep Sleep Current	Vdd = 3.0V, T _A = 25°C, I/O regulator turned off	-	0.1	-	μΑ
I _{SB1}	Standby Current with POR, LVD and Sleep Timer	Vdd = 3.0V, T _A = 25°C, I/O regulator turned off	_	1.07	1.5	μA

DC General Purpose IO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0V to 5.5V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, 2.4V to 3.0V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 1.71V to 2.4V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 15. 3.0V to 5.5V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull up Resistor		4	5.6	8	kΩ
V _{OH1}	High Output Voltage Port 2 or 3 Pins	IOH \leq 10 μ A, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	_	V
V _{OH2}	High Output Voltage Port 2 or 3 Pins	IOH = 1 mA, maximum of 20 mA source current in all IOs	Vdd - 0.9	_	-	V
V _{OH3}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH < 10 μ A, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	-	V
V _{OH4}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 5 mA, maximum of 20 mA source current in all IOs	Vdd - 0.9	_	-	V
V _{OH5}	High Output Voltage Port 1 Pins with LDO Regulator Enabled for 3V Out	IOH < 10 μ A, Vdd > 3.1V, maximum of 4 IOs all sourcing 5 mA	2.85	3.00	3.3	V
V _{OH6}	High Output Voltage Port 1 Pins with LDO Regulator Enabled for 3V Out	IOH = 5 mA, Vdd > 3.1V, maximum of 20 mA source current in all IOs	2.20	_	_	V
V _{OH7}	High Output Voltage Port 1 Pins with LDO Enabled for 2.5V Out	IOH < 10 μA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	2.35	2.50	2.75	V
V _{OH8}	High Output Voltage Port 1 Pins with LDO Enabled for 2.5V Out	IOH = 2 mA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.90	_	-	V
V _{OH9}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH < 10 μ A, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.60	1.80	2.1	V

Table 15. 3.0V to 5.5V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{OH10}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH = 1 mA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.20	-	-	V
V _{OL}	Low Output Voltage	IOL = 25 mA, Vdd > 3.3V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	_	0.75	V
V _{IL}	Input Low Voltage		-	-	0.80	V
V _{IH}	Input High Voltage		2.00	-		V
V _H	Input Hysteresis Voltage		-	80	-	mV
IIL	Input Leakage (Absolute Value)		-	0.001	1	μΑ
C _{PIN}	Pin Capacitance	Package and pin dependent Temp = 25°C	0.5	1.7	5	pF

Table 17. 1.71V to 2.4V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _H	Input Hysteresis Voltage		-	80	-	mV
IIL	Input Leakage (Absolute Value)		-	0.001	1	μA
C _{PIN}	Capacitive Load on Pins	Package and pin dependent Temp = 25 ^o C	0.5	1.7	5	pF

Table 18.DC Characteristics – USB Interface

Symbol	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ Pull Up Resistance	With idle bus	0.900	-	1.575	kΩ
Rusba	USB D+ Pull Up Resistance	While receiving traffic	1.425	-	3.090	kΩ
Vohusb	Static Output High		2.8	-	3.6	V
Volusb	Static Output Low			-	0.3	V
Vdi	Differential Input Sensitivity		0.2	-		V
Vcm	Differential Input Common Mode Range		0.8	-	2.5	V
Vse	Single Ended Receiver Threshold		0.8	-	2.0	V
Cin	Transceiver Capacitance			-	50	pF
lio	Hi-Z State Data Line Leakage	On D+ or D- line	-10	-	+10	μA
Rps2	PS/2 Pull Up Resistance		3	5	7	kΩ
Rext	External USB Series Resistor	In series with each USB pin	21.78	22.0	22.22	Ω

DC Analog Mux Bus Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 19. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
R _{SW}	Switch Resistance to Common Analog Bus		-	-	800	Ω
R _{GND}	Resistance of Initialization Switch to Vss		_	-	800	Ω

The maximum pin voltage for measuring $\rm R_{SW}$ and $\rm R_{GND}$ is 1.8V

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 20. DC Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
V _{LPC}	Low Power Comparator (LPC) common mode	Maximum voltage limited to Vdd	0.0	-	1.8	V
I _{LPC}	LPC supply current		-	10	40	μΑ
V _{OSLPC}	LPC voltage offset		_	2.5	30	mV

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 25. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{CPU}	CPU Frequency		5.7	-	25.2	MHz
F _{32K1}	Internal Low Speed Oscillator Frequency		19	32	50	kHz
F _{IMO24}	Internal Main Oscillator Frequency at 24 MHz Setting		22.8	24	25.2	MHz
F _{IMO12}	Internal Main Oscillator Frequency at 12 MHz Setting		11.4	12	12.6	MHz
F _{IMO6}	Internal Main Oscillator Frequency at 6 MHz Setting		5.7	6.0	6.3	MHz
DC _{IMO}	Duty Cycle of IMO		40	50	60	%
T _{RAMP}	Supply Ramp Time		20	-	-	μS
T _{XRST}	External Reset Pulse Width at Power Up	After supply voltage is valid	1			ms
T _{XRST2}	External Reset Pulse Width after Power Up ^[10]	Applies after part has booted	10			μS

AC General Purpose IO Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. **Table 26.** AC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{GPIO}	GPIO Operating Frequency	Normal Strong Mode Port 0, 1	0	-	6 MHz for 1.71V <vdd<2.4v< td=""><td>MHz</td></vdd<2.4v<>	MHz
			0	-	12 MHz for 2.4V <vdd<5.5v< td=""><td></td></vdd<5.5v<>	
TRise23	Rise Time, Strong Mode, Cload = 50 pF Ports 2 or 3	Vdd = 3.0 to 3.6V, 10% – 90%	15	-	80	ns
TRise23L	Rise Time, Strong Mode Low Supply, Cload = 50 pF, Ports 2 or 3	Vdd = 1.71 to 3.0V, 10% – 90%	15	-	80	ns
TRise01	Rise Time, Strong Mode, Cload = 50 pF Ports 0 or 1	Vdd = 3.0 to 3.6V, 10% – 90% LDO enabled or disabled	10	-	50	ns
TRise01L	Rise Time, Strong Mode Low Supply, Cload = 50 pF, Ports 0 or 1	Vdd = 1.71 to 3.0V, 10% – 90% LDO enabled or disabled	10	-	80	ns
TFall	Fall Time, Strong Mode, Cload = 50 pF All Ports	Vdd = 3.0 to 3.6V, 10% – 90%	10	-	50	ns
TFallL	Fall Time, Strong Mode Low Supply, Cload = 50 pF, All Ports	Vdd = 1.71 to 3.0V, 10% – 90%	10	-	70	ns

Figure 12. GPIO Timing Diagram

Table 27.AC Characteristics – USB Data Timings

Symbol	Description	Conditions	Min	Тур	Max	Units
Tdrate	Full speed data rate	Average bit rate	12-0.25%	12	12 + 0.25%	MHz
Tdjr1	Receiver data jitter tolerance	To next transition	-18.5	-	18.5	ns
Tdjr2	Receiver data jitter tolerance	To pair transition	-9	_	9	ns
Tudj1	Driver differential jitter	To next transition	-3.5	_	3.5	ns
Tudj2	Driver differential jitter	To pair transition	-4.0	-	4.0	ns
Tfdeop	Source jitter for differential transition	To SE0 transition	-2	_	5	ns
Tfeopt	Source SE0 interval of EOP		160	-	175	ns
Tfeopr	Receiver SE0 interval of EOP		82	-		ns
Tfst	Width of SE0 interval during differential transition			-	14	ns

Table 28.AC Characteristics – USB Driver

Symbol	Description	Conditions	Min	Тур	Max	Units
Tr	Transition rise time	50 pF	4	-	20	ns
Tf	Transition fall time	50 pF	4	-	20	ns
TR	Rise/fall time matching		90.00	-	111.1	%
Vcrs	Output signal crossover voltage		1.3	-	2.0	V

AC Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 29. AC Low Power Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
T _{LPC}	Comparator Response Time, 50 mV Overdrive	50 mV overdrive does not include offset voltage.			100	ns

AC Analog Mux Bus Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 30. AC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SW}	Switch Rate	Maximum pin voltage when measuring switch rate is 1.8Vp-p	_	_	6.3	MHz

AC External Clock Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 31. AC External Clock Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
F _{OSCEXT}	Frequency		0.750	-	25.2	MHz
-	High Period		20.6	-	5300	ns
_	Low Period		20.6	-	-	ns
-	Power Up IMO to Switch		150	-	-	μS

Table 34. SPI Master AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	$\begin{array}{l} V_{DD} \geq 2.4V \\ V_{DD} < 2.4V \end{array}$			6 3	MHz
DC	SCLK duty cycle			50		%
T _{SETUP}	MISO to SCLK setup time	$\begin{array}{l} V_{DD} \geq 2.4V \\ V_{DD} < 2.4V \end{array}$	60 100			ns
T _{HOLD}	SCLK to MISO hold time		40			ns
T _{OUT_VAL}	SCLK to MOSI valid time				40	ns
T _{OUT_HIGH}	MOSI high time		40			ns

Table 35. SPI Slave AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	$V_{DD} \ge 2.4V$ $V_{DD} < 2.4V$			12 6	MHz
T _{LOW}	SCLK low time		41.67			ns
T _{HIGH}	SCLK high time		41.67			ns
T _{SETUP}	MOSI to SCLK setup time		30			ns
T _{HOLD}	SCLK to MOSI hold time		50			ns
T _{SS_MISO}	SS high to MISO valid				153	ns
T _{SCLK_MISO}	SCLK to MISO valid				125	ns
T _{SS_HIGH}	SS high time				50	ns
T _{SS_CLK}	Time from SS low to first SCLK		2/SCLK			ns
T _{CLK_SS}	Time from last SCLK to SS high		2/SCLK			ns

Figure 16. 24-Pin (4x4 x 0.6 mm) QFN

Development Tool Selection

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at

http://www.cypress.com/psocdesigner and includes a free C compiler.

PSoC Programmer

PSoC Programmer is flexible enough and is used on the bench in development and is also suitable for factory programming. PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer or PSoC Express. PSoC Programmer software is compatible with both PSoC ICE Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free of cost at

http://www.cypress.com/psocprogrammer.

Development Kits

All development kits are sold at the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface enables users to run, halt, and single step the processor and view the content of specific memory locations. PSoC Designer supports the advance emulation features also. The kit includes:

- PSoC Designer Software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29x66 Family
- Cat-5 Adapter
- Mini-Eval Programming Board
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- iMAGEcraft C Compiler (Registration Required)
- ISSP Cable
- USB 2.0 Cable and Blue Cat-5 Cable
- 2 CY8C29466-24PXI 28-PDIP Chip Samples

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit enables the user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LFXI PSoC device. Special features of the board include both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of bread boarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB Board
- LCD Module
- MIniProg Programming Unit
- Mini USB Cable
- PSoC Designer and Example Projects CD
- Getting Started Guide
- Wire Pack

Document History Page

Document Title: CY8C20x36/46/66/96 CapSense [®] Applications Document Number: 001-12696				
Revision	ECN	Origin of Change	Submission Date	Description of Change
**	766857	HMT	See ECN	New silicon and document (Revision **).
*A	1242866	НМТ	See ECN	Add features. Update all applicable sections. Update specs. Fix 24-pin QFN pinout moving pins inside. Update package revisions. Update and add to Emulation and Programming Accessories table.
*В	2174006	AESA	See ECN	Added 48-Pin SSOP Part Pinout Modified symbol R_{VDD} to R_{GND} in Table DC Analog Mux Bus Specification Added footnote in Table DC Analog Mux Bus Specification Added 16K FLASH Parts. Updated Notes, Package Diagrams and Ordering Information table. Updated Thermal Impedance and Solder Reflow tables
*C	2587518	TOF/JASM/MNU/ HMT	10/13/08	Converted from Preliminary to Final Fixed broken links. Updated data sheet template. Added operating voltage ranges with USB ADC resolution changed from 10-bit to 8-bit Included ADC specifications table Included Comparator specification table Included Voh7, Voh8, Voh9, Voh10 specs Flash data retention – condition added to Note Input leakage spec changed to 1 µA max GPIO rise time for ports 0,1 and ports 2,3 made common AC Programming specifications updated Included AC Programming cycle timing diagram AC SPI specification updated The VIH for 3.0 <vdd<2.4 1.6="" 2.0<br="" changed="" from="" to="">Added USB specification Added SPI CLK to P1[0] Updated package diagrams Updated thermal impedances for QFN packages Updated F_{GPIO} parameter in Table 23 Updated voltage ranges for F_{SPIM} and F_{SPIS} in Table 30 Update Development Tools, add Designing with PSoC Designer. Edit, fix links, notes and table format. Update R_{IN} formula, fix TRise parameter names in GPIO figure, fix Switch Rate note. Update maximum data in Table 20. DC POR and LVD Specifications.</vdd<2.4>
*D	2649637	SNV/AESA	03/17/2009	Changed title to "CY8C20x36/46/66, CY8C20396 CapSense™ Applications". Updated data sheet Features, pin information, and ordering information sections. Updated package diagram 001-42168 to *C.
*E	2700196	SNV/PYRS	04/30/2009	Added part numbers CY8C20496, CY8C20536, CY8C20546, CY8C20636, CY8C20646 Updated Features on page 1 Added 48-Pin QFN without USB pin Diagram and Pin Definition table Added 32-Pin QFN (with USB) package Added SPI Master and Slave AC Specificatons Updated Emulations and Programming Accessories Table on page 33 Updated Ordering Information on page 37 Removed reference to Hi-Tech C Compiler in Development Tool Selection on page 35