

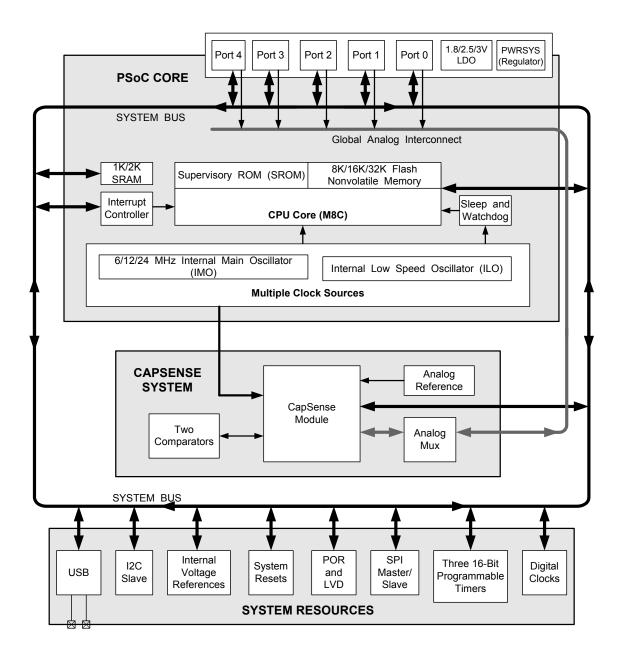
Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers - Application Specific</u>?

Application charific microcontrollars are angineered to


Details	
Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY8C20xx6
RAM Size	2K x 8
Interface	I ² C, SPI, USB
Number of I/O	19
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	24-UFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20396-24lqxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

Additional System Resources

System Resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The merits of each system resource are listed here:

- The I2C slave/SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- The I2C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power-On-Reset) circuit eliminates the need for a system supervisor.
- An internal reference provides an absolute reference for capacitive sensing.
- A register-controlled bypass mode allows the user to disable the LDO.
- Standard Cypress PSoC IDE tools are available for debugging the CY8C20x36/46/66/96 family of parts. However, the additional trace length and a minimal ground plane in the Flex-Pod can create noise problems that make it difficult to debug the design. A custom bonded On-Chip Debug (OCD) device is available in an 48-pin QFN package. The OCD device is recommended for debugging designs that have high current and/or high analog accuracy requirements. The QFN package is compact and is connected to the ICE through a high density connector.

Getting Started

The quickest way to understand PSoC silicon is to read this data sheet and then use the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the PSoC® Programmable System-on-Chip Technical Reference Manual for CY8C20x36/46/66/96 PSoC Devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device data sheets on the web at www.cypress.com/psoc.

Application Notes

Application notes are an excellent introduction to the wide variety of possible PSoC designs. They are located here: www.cypress.com/psoc. Select Application Notes under the Documentation tab.

Development Kits

PSoC Development Kits are available online from Cypress at www.cypress.com/shop and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops) is available online at www.cypress.com/training. The training covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to www.cypress.com/cypros.

Solutions Library

Visit our growing library of solution focused designs at www.cypress.com/solutions. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

For assistance with technical issues, search KnowledgeBase articles and forums at www.cypress.com/support. If you cannot find an answer to your question, call technical support at 1-800-541-4736.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions.

The PSoC development process can be summarized in the following four steps:

- 1. Select Components
- 2. Configure Components
- 3. Organize and Connect
- 4. Generate, Verify, and Debug

Select Components

Both the system-level and chip-level views provide a library of pre-built, pre-tested hardware peripheral components. In the system-level view these components are called "drivers" and correspond to inputs (a thermistor, for example), outputs (a brushless DC fan, for example), communication interfaces (I²C-bus, for example), and the logic to control how they interact with one another (called valuators).

In the chip-level view the components are called "user modules." User modules make selecting and implementing peripheral devices simple, and come in analog, digital, and programmable system-on-chip varieties.

Configure Components

Each of the components you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a Pulse Width Modulator (PWM) User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus.

Both the system-level drivers and chip-level user modules are documented in data sheets that are viewed directly in PSoC Designer. These data sheets explain the internal operation of the component and provide performance specifications. Each data sheet describes the use of each user module parameter or driver property, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins, or connect system-level inputs, outputs, and communication interfaces to each other with valuator functions.

In the system-level view selecting a potentiometer driver to control a variable speed fan driver and setting up the valuators to control the fan speed based on input from the pot selects, places, routes, and configures a programmable gain amplifier (PGA) to buffer the input from the potentiometer, an analog-to-digital converter (ADC) to convert the potentiometer's output to a digital signal, and a PWM to control the fan.

In the chip-level view, you perform the selection, configuration, and routing so that you have complete control over the use of all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system.

Both system-level and chip-level designs generate software based on your design. The chip-level design provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed. The system-level design also generates a C main() program that completely controls the chosen application and contains placeholders for custom code at strategic positions allowing you to further refine the software without disrupting the generated code.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

Page 6 of 39

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Table 1. Acronyms

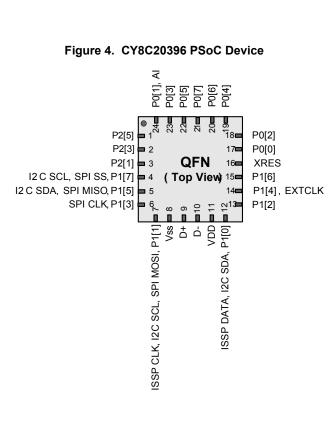
Acronym	Description
AC	alternating current
API	application programming interface
CPU	central processing unit
DC	direct current
FSR	full scale range
GPIO	general purpose I/O
GUI	graphical user interface
ICE	in-circuit emulator
ILO	internal low speed oscillator
IMO	internal main oscillator
I/O	input/output
LSb	least-significant bit
LVD	low voltage detect
MSb	most-significant bit
POR	power on reset
PPOR	precision power on reset
PSoC®	Programmable System-on-Chip™
SLIMO	slow IMO
SRAM	static random access memory

Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 11 on page 17 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal.



24-Pin QFN with USB

Table 4. Pin Definitions - CY8C20396 PSoC Device [2, 3]

Pin No.	Тур	ре	Nome	Description
PIII NO.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	
2	I/O	I	P2[3]	
3	I/O	I	P2[1]	
4	IOHR	I	P1[7]	I2C SCL, SPI SS
5	IOHR	I	P1[5]	I2C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK, I2C SCL, SPI MOSI
8	Pow	/er	VSS	Ground
9	I/O	I	D+	USB D+
10	I/O	I	D-	USB D-
11	Pow	er	VDD	Supply
12	IOHR	I	P1[0]	ISSP DATA, I2C SDA
13	IOHR	I	P1[2]	
14	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
15	IOHR	I	P1[6]	
16	RESET	INPUT	XRES	Active high external reset with internal pull down
17	IOH	I	P0[0]	
18	IOH	I	P0[2]	
19	IOH	I	P0[4]	
20	IOH	I	P0[6]	
21	IOH	I	P0[7]	
22	IOH	I	P0[5]	
23	IOH	I	P0[3]	Integrating input
24	IOH	I	P0[1]	Integrating input
СР	Pow	ver	VSS	Thermal pad must be connected to Ground

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

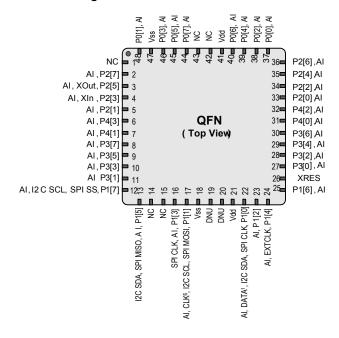
48-Pin SSOP

Table 7. Pin Definitions - CY8C20536, CY8C20546, and CY8C20566 PSoC Device $\sp[2]$

Pin No.	Digital	Analog	Name	Description	Figu	ıre 6.	CY8	C20536	, CY8C205	546, a	nd CY8C20566 PSoC Device
Pin	Dig	Ana	Hame	Bescription				AI, P0[7] 1		48 V DD
1	IOH		P0[7]						5] = 2 3] = 3		47 P0[6], AI 46 P0[4], AI
2	IOH	I	P0[5]					Al Po[1] = 4 7] = 5		45 P0[2], AI
3	IOH	I	P0[3]				XT	ALOUT, P2I	51= 6		44 P0[0], AI 43 P2[6], AI
4	IOH	I	P0[1]				Х	TALIN, P2[3 AI, P2[1	7		42 P2[4], AI
5	I/O	I	P2[7]						C = 9		41 P2[2], AI 40 P2[0], AI
6	I/O	I	P2[5]	XTAL Out					C ■ 10 3]■ 11		39 P3[6], AI
7	I/O	I	P2[3]	XTAL In					41 40	SOP	38 P3[4], AI 37 P3[2], AI
8	I/O	I	P2[1]						C = 13 7]= 14	JOF	36 P3[0], AI 35 XRES
9			NC	No connection					7] = 14 5] = 15		35 NC
10			NC	No connection				AI, P3[3]= 16		33 - NC
11	I/O	I	P4[3]						1]■ 17 C ■ 18		32 NC 31 NC
12	I/O	I	P4[1]			100	2001	N	C 🗖 19		30 NC
13			NC	No connection		I2C S	DA, SP	SPI SS, P1['I MISO, P1[7] 2 0 5] 2 1		29 NC 28 P1[6], AI
14	I/O	I	P3[7]				5	PI CLK, P1	31= 22		27 P1[4], EXT CLK
15	I/O	I	P3[5]		TC CL	K, 12C S	SCL, SP	NOSI, P1[VS	1]■ 23 S■ 24		26 P1[2], AI 25 P1[0], TC DATA, I2C SDA, SPI CLK
16	I/O	I	P3[3]								20
17	I/O	I	P3[1]								
18			NC	No connection							
19			NC	No connection							
20	IOHR	I	P1[7]	I2C SCL, SPI SS							
21	IOHR	I	P1[5]	I2C SDA, SPI MISO							
22	IOHR	I	P1[3]	SPI CLK							
23	IOHR	I	P1[1]	TC CLK ^[1] , I2C SCL, SPI MOSI							
24			VSS	Ground Pin							
25	IOHR	I	P1[0]	TC DATA ^[1] , I2C SDA, SPI CLK							
26	IOHR	I	P1[2]								
27	IOHR	I	P1[4]	EXT CLK							
28	IOHR	I	P1[6]								
29			NC	No connection							
30			NC	No connection							
31			NC	No connection							
32			NC	No connection	Pin No.	Digital	Analog	Name			Description
33			NC	No connection	41	I/O	I	P2[2]			
34			NC	No connection	42	I/O	I	P2[4]			
35			XRES	Active high external reset with internal pull down	43	I/O	I	P2[6]			
36	I/O	I	P3[0]		44	IOH	I	P0[0]			
37	I/O	1	P3[2]		45	IOH	I	P0[2]			
38	I/O	1	P3[4]		46	IOH	I	P0[4]			
39	I/O	I	P3[6]		47	IOH	I	P0[6]			
40	I/O	I	P2[0]		48	Powe	er	Vdd	Power Pin		

 $\textbf{LEGEND} \ \ A = Analog, \ I = Input, \ O = Output, \ NC = No \ Connection, \ H = 5 \ mA \ High \ Output \ Drive, \ R = Regulated \ Output \ Option.$

Document Number: 001-12696 Rev. *E Page 13 of 39



48-Pin QFN

Table 8. Pin Definitions - CY8C20636 PSoC Device [2, 3]

Pin No.	Digital	Analog	Name	Description
1			NC	No connection
2	I/O	ı	P2[7]	
3	I/O	I	P2[5]	Crystal output (XOut)
4	I/O	I	P2[3]	Crystal input (XIn)
5	I/O	I	P2[1]	
6	I/O	I	P4[3]	
7	I/O	I	P4[1]	
8	I/O	I	P3[7]	
9	I/O	I	P3[5]	
10	I/O	I	P3[3]	
11	I/O	I	P3[1]	
12	IOHR	ı	P1[7]	I2C SCL, SPI SS
13	IOHR I		P1[5]	I2C SDA, SPI MISO
14	l		NC	No connection
15			NC	No connection
16	IOHR	ı	P1[3]	SPI CLK
17	IOHR	ı	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI
18	Pow	er	Vss	Ground connection
19			DNU	
20			DNU	
21	Pow	er	Vdd	Supply voltage
22	IOHR	ı	P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK
23	IOHR	ı	P1[2]	
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
25	IOHR	I	P1[6]	
26	Input		XRES	Active high external reset with internal pull down
27	I/O	ı	P3[0]	
28	I/O	ı	P3[2]	
29	I/O	I	P3[4]	

Figure 7. CY8C20636 PSoC Device

27	1/0	ı	P3[0]					
28	I/O	I	P3[2]					
29	I/O	I	P3[4]	Pin No.	Digital	Analog	Name	Description
30	I/O	_	P3[6]	40	IOH	I	P0[6]	
31	I/O	I	P4[0]	41	Pov	ver	Vdd	Supply voltage
32	I/O	I	P4[2]	42	42		NC	No connection
33	I/O	I	P2[0]	43			NC	No connection
34	I/O	I	P2[2]	44	IOH	1	P0[7]	
35	I/O	I	P2[4]	45	IOH	1	P0[5]	
36	I/O	I	P2[6]	46	IOH	1	P0[3]	Integrating input
37	IOH	I	P0[0]	47	Power \		Vss	Ground connection
38	IOH	ı	P0[2]	48	IOH	I	P0[1]	
39	IOH	ı	P0[4]	CP Power Vss		Vss	Center pad must be connected to ground	

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Document Number: 001-12696 Rev. *E Page 14 of 39

48-Pin QFN with USB

Table 9. Pin Definitions - CY8C20646, CY8C20666 PSoC Device $^{[2,\;3]}$

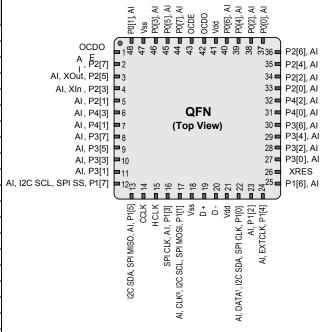
Pin No.	Digital	Analog	Name	Description
1			NC	No connection
2	I/O	I	P2[7]	
3	I/O	ı	P2[5]	Crystal output (XOut)
4	I/O	I	P2[3]	Crystal input (XIn)
5	I/O	I	P2[1]	
6	I/O	I	P4[3]	
7	I/O	ı	P4[1]	
8	I/O	ı	P3[7]	
9	I/O	ı	P3[5]	
10	I/O	ı	P3[3]	
11	I/O	I	P3[1]	
12	IOHR	ı	P1[7]	I2C SCL, SPI SS
13	IOHR I		P1[5]	I2C SDA, SPI MISO
14			NC	No connection
15			NC	No connection
16	IOHR	ı	P1[3]	SPI CLK
17	IOHR	ı	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI
18	Pow	er	Vss	Ground connection
19	I/O		D+	USB D+
20	I/O		D-	USB D-
21	Pow	er	Vdd	Supply voltage
22	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK
23	IOHR	ı	P1[2]	
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
25	IOHR	ı	P1[6]	
26	Inp	ut	XRES	Active high external reset with internal pull down
27	I/O	I	P3[0]	
28	I/O	ı	P3[2]	
29	I/O	I	P3[4]	

Figure 8. CY8C20646, CY8C20666 PSoC Device Vss P0[3], P0[7], NC NC NC Vdd P0[6], P0[4], ## 7 4 4 6 % % % % 36 P2[6], AI 35 P2[4],AI AI, P2[7] AI, XOut, P2[5] 34 P2[2],AI 33 = P2[0],AI 32 = P4[2],AI AI, XIn, P2[3] AI, P2[1] **QFN** AI, P4[3] 31 P4[0],AI AI, P4[1] 30 = P3[6],AI 29 = P3[4], AI 28 = P3[2],AI (Top View) AI, P3[7] AI, P3[5] AI, P3[3] 10 27 P3[0], AI AI, P3[1] XRES 26 AI, I2C SCL, SPI SS, P1[7] 12€ P1[6], AI AI, DATA', I2C SDA, SPI CLK, P1[0] AI, P1[2] AI, EXTCLK, P1[4] 12C SDA, SPI MISO, A I, P1[5] AI, CLK6, I2C SCL, SPI MOSI,

Analog Digital Pin Name Description No. 30 I/O P3[6] 40 ЮН P0[6] I/O P4[0] 41 31 Power Vdd Supply voltage 32 I/O 42 NC P4[2] No connection 33 I/O P2[0] 43 NC No connection 34 I/O P2[2] 44 ЮН P0[7] 1 35 I/O P2[4] 45 IOH P0[5] I/O 46 P0[3] 36 Ι P2[6] IOH Ι Integrating input 37 ЮН P0[0] 47 Power Vss Ground connection 38 ЮН P0[2] 48 IOH I P0[1] 39 IOH P0[4] CP Power Vss Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Document Number: 001-12696 Rev. *E Page 15 of 39


48-Pin QFN OCD

The 48-pin QFN part is for the CY8C20066 On-Chip Debug (OCD) PSoC device. Note that this part is only used for in-circuit debugging. $^{[4]}$

Table 10. Pin Definitions - CY8C20066 PSoC Device [2, 3]

Pin No.	Digital Analog		Name	Description
1			OCDOE	OCD mode direction pin
2	I/O	ı	P2[7]	
3	I/O	ı	P2[5]	Crystal output (XOut)
4	I/O	ı	P2[3]	Crystal input (XIn)
5	I/O	ı	P2[1]	
6	I/O	ı	P4[3]	
7	I/O	ı	P4[1]	
8	I/O	ı	P3[7]	
9	I/O		P3[5]	
10	I/O		P3[3]	
11	I/O		P3[1]	
12	IOHR		P1[7]	I2C SCL, SPI SS
13	IOHR		P1[5]	I2C SDA, SPI MISO
14			CCLK	OCD CPU clock output
15			HCLK	OCD high speed clock output
16	IOHR	ı	P1[3]	SPI CLK.
17	IOHR		P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI
18	Pow	er	Vss	Ground connection
19	I/O		D+	USB D+
20	I/O		D-	USB D-
21	Pow	er	Vdd	Supply voltage
22	IOHR	I	P1[0]	ISSP DATA ⁽¹⁾ , I2C SDA, SPI CLK
23	IOHR	ı	P1[2]	

Figure 9. CY8C20066 PSoC Device

22	IOHR	ı	P1[0]	ISSP DATA ⁽¹⁾ , I2C SDA, SPI CLK					
23	IOHR	I	P1[2]		Pin No.	Digital	Analog	Name	Description
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)	37	IOH	I	P0[0]	
25	IOHR	I	P1[6]		38	IOH	- 1	P0[2]	
26	Inpu	ut	XRES	Active high external reset with internal pull down	39	IOH	IOH I P0[4]		
27	I/O	ı	P3[0]		40	IOH	IOH I P0[
28	I/O	I	P3[2]		41	Pow	er	Vdd	Supply voltage
29	I/O	I	P3[4]		42			OCDO	OCD even data I/O
30	I/O	I	P3[6]		43			OCDE	OCD odd data output
31	I/O	I	P4[0]		44	IOH	I	P0[7]	
32	I/O	I	P4[2]		45	IOH	I	P0[5]	
33	I/O	I	P2[0]		46	IOH	IOH I		Integrating input
34	I/O	I	P2[2]		47	Power		Vss	Ground connection
35	I/O	I	P2[4]		48	IOH	I	P0[1]	
36	I/O	I	P2[6]		CP	Pow	er	Vss	Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Note

Document Number: 001-12696 Rev. *E

^{4.} This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x36/46/66/96 PSoC devices. For the latest electrical specifications, confirm that you have the most recent data sheet by visiting the web at http://www.cypress.com/psoc.

Figure 10. Voltage versus CPU Frequency

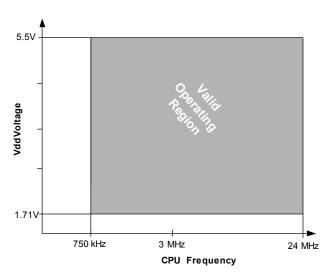
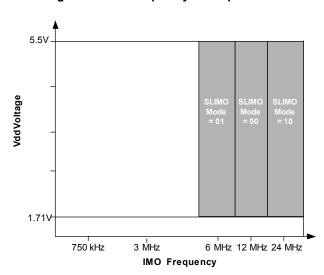



Figure 11. IMO Frequency Trim Options

The following table lists the units of measure that are used in this section.

Table 11. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	mA	milli-ampere
dB	decibels	ms	milli-second
fF	femto farad	mV	milli-volts
Hz	hertz	nA	nanoampere
KB	1024 bytes	ns	nanosecond
Kbit	1024 bits	nV	nanovolts
kHz	kilohertz	Ω	ohm
ksps	kilo samples per second	pA	picoampere
kΩ	kilohm	pF	picofarad
MHz	megahertz	рр	peak-to-peak
MΩ	megaohm	ppm	parts per million
μΑ	microampere	ps	picosecond
μF	microfarad	sps	samples per second
μН	microhenry	s	sigma: one standard deviation
μS	microsecond	V	volts
μW	microwatts		

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 12. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage Temperature	Higher storage temperatures reduces data retention time. Recommended Storage Temperature is +25°C ± 25°C. Extended duration storage temperatures above 85°C degrades reliability.	- 55	+25	+125	°C
Vdd	Supply Voltage Relative to Vss		-0.5	-	+6.0	V
V_{IO}	DC Input Voltage		Vss - 0.5	-	Vdd + 0.5	V
V_{IOZ}	DC Voltage Applied to Tri-state		Vss -0.5	_	Vdd + 0.5	V
I _{MIO}	Maximum Current into any Port Pin		-25	-	+50	mA
ESD	Electro Static Discharge Voltage	Human Body Model ESD	2000	_	-	V
LU	Latch up Current	In accordance with JESD78 standard	_	_	200	mA

Operating Temperature

Table 13. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _A	Ambient Temperature		-40	_	+85	°C
TJ	Operational Die Temperature	The temperature rise from ambient to junction is package specific. Refer the table Thermal Impedances per Package on page 34. The user must limit the power consumption to comply with this requirement.	-40	-	+100	°C

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 14. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Vdd	Supply Voltage	Refer the table DC POR and LVD Specifications on page 24	1.71	_	5.5	V
I _{DD24}	Supply Current, IMO = 24 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	2.88	4.0	mA
I _{DD12}	Supply Current, IMO = 12 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	1.71	2.6	mA
I _{DD6}	Supply Current, IMO = 6 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	-	1.16	1.8	mA
I _{SB0}	Deep Sleep Current	Vdd = $3.0V$, $T_A = 25$ °C, I/O regulator turned off	_	0.1	_	μА
I _{SB1}	Standby Current with POR, LVD and Sleep Timer	Vdd = 3.0V, T_A = 25°C, I/O regulator turned off	1	1.07	1.5	μА

DC General Purpose IO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0V to 5.5V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$, 2.4V to 3.0V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$, or 1.71V to 2.4V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 15. 3.0V to 5.5V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull up Resistor		4	5.6	8	kΩ
V _{OH1}	High Output Voltage Port 2 or 3 Pins	IOH \leq 10 μ A, maximum of 10 mA source current in all IOs	Vdd - 0.2	-	_	V
V _{OH2}	High Output Voltage Port 2 or 3 Pins	IOH = 1 mA, maximum of 20 mA source current in all IOs	Vdd - 0.9	_	_	V
V _{OH3}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH < 10 μ A, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	_	V
V _{OH4}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 5 mA, maximum of 20 mA source current in all IOs	Vdd - 0.9	_	_	V
V _{OH5}	High Output Voltage Port 1 Pins with LDO Regulator Enabled for 3V Out	IOH < 10 μ A, Vdd > 3.1V, maximum of 4 IOs all sourcing 5 mA	2.85	3.00	3.3	V
V _{OH6}	High Output Voltage Port 1 Pins with LDO Regulator Enabled for 3V Out	IOH = 5 mA, Vdd > 3.1V, maximum of 20 mA source current in all IOs	2.20	_	_	V
V _{OH7}	High Output Voltage Port 1 Pins with LDO Enabled for 2.5V Out	IOH < 10 μA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	2.35	2.50	2.75	V
V _{OH8}	High Output Voltage Port 1 Pins with LDO Enabled for 2.5V Out	IOH = 2 mA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.90	_	_	V
V _{OH9}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH < 10 μA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.60	1.80	2.1	V

Document Number: 001-12696 Rev. *E Page 19 of 39

Table 16. 2.4V to 3.0V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull up Resistor		4	5.6	8	kΩ
V _{OH1}	High Output Voltage Port 2 or 3 Pins	IOH < 10 μA, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	_	V
V _{OH2}	High Output Voltage Port 2 or 3 Pins	IOH = 0.2 mA, maximum of 10 mA source current in all IOs	Vdd - 0.4	_	_	V
V _{OH3}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH < 10 μA, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	_	V
V _{OH4}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 2 mA, maximum of 10 mA source current in all IOs	Vdd - 0.5	_	_	V
V _{OH5A}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH < 10 μ A, Vdd > 2.4V, maximum of 20 mA source current in all IOs	1.50	1.80	2.1	V
V _{OH6A}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH = 1 mA, Vdd > 2.4V, maximum of 20 mA source current in all IOs	1.20	_	_	V
V _{OL}	Low Output Voltage	IOL = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V_{IL}	Input Low Voltage		_	_	0.72	V
V _{IH}	Input High Voltage		1.4	_		V
V_{H}	Input Hysteresis Voltage		-	80	-	mV
I _{IL}	Input Leakage (Absolute Value)		-	0.001	1	μΑ
C _{PIN}	Capacitive Load on Pins	Package and pin dependent Temp = 25°C	0.5	1.7	5	pF

Table 17. 1.71V to 2.4V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull up Resistor		4	5.6	8	kΩ
V _{OH1}	High Output Voltage Port 2 or 3 Pins	IOH = 10 μA, maximum of 10 mA source current in all I/Os	Vdd - 0.2	_	-	V
V _{OH2}	High Output Voltage Port 2 or 3 Pins	IOH = 0.5 mA, maximum of 10 mA source current in all I/Os	Vdd - 0.5	_	-	V
V _{OH3}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 100 μA, maximum of 10 mA source current in all I/Os	Vdd - 0.2	-	_	V
V _{OH4}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 2 mA, maximum of 10 mA source current in all I/Os	Vdd - 0.5	-	_	V
V _{OL}	Low Output Voltage	IOL = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.4	V
V _{IL}	Input Low Voltage		_	_	0.3 x Vdd	V
V _{IH}	Input High Voltage		0.65 x Vdd	-		V

Document Number: 001-12696 Rev. *E Page 21 of 39

Comparator User Module Electrical Specifications

The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: $-40^{\circ}\text{C} \le 7.71 = 1$

Table 21. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator Response Time	50 mV overdrive		70	100	ns
Offset				2.5	30	mV
Current		Average DC current, 50 mV overdrive		20	80	μA
PSRR	Supply voltage >2V	Power Supply Rejection Ratio		80		dB
FORK	Supply voltage <2V	Power Supply Rejection Ratio		40		dB
Input Range			0		1.5	V

ADC Electrical Specifications

Table 22. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input		•			•	•
V _{IN}	Input Voltage Range	This gives 72% of maximum code	Vss		1.3	V
C _{IN}	Input Capacitance				5	pF
RES	Resolution	Settings 8, 9, or 10	8		10	Bits
S8	8-Bit Sample Rate	Data Clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)		23.4375		ksps
S10	10-Bit Sample Rate	Data Clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)		5.859		ksps
DC Accur	acy	·				
DNL ^[5]	Differential Nonlinearity	For any configuration	-1		+2	LSB
INL	Integral Nonlinearity	For any configuration	-2		+2	LSB
Eoffset	Offset Error		0	15	90	mV
I _{ADC}	Operating Current			275	350	μА
F _{CLK}	Data Clock	Source is chip's internal main oscillator. See device data sheet for accuracy.	2.25		12	MHz
PSRR	Power Supply Rejection Ration			•	•	
	PSRR (Vdd>3.0V)			24	dB	
	PSRR (2.2 < Vdd < 3.0)			30	dB	
	PSRR (2.0 < Vdd < 2.2)			12	dB	
	PSRR (Vdd < 2.0)			0	dB	
Egain	Gain Error	For any resolution	1		5	%FSR
R _{IN}	Input Resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution.	1/(500fF* Data-Clock)	1/(400fF* Data-Clock)	1/(300fF* Data-Clock)	Ω

Note

Document Number: 001-12696 Rev. *E

^{5.} Monotonicity is not guaranteed.

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 23. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{PPOR0} V _{PPOR1} V _{PPOR2} V _{PPOR3}	Vdd Value for PPOR Trip PORLEV[1:0] = 00b, HPOR = 0 PORLEV[1:0] = 00b, HPOR = 1 PORLEV[1:0] = 01b, HPOR = 1 PORLEV[1:0] = 10b, HPOR = 1	Vdd must be greater than or equal to 1.71V during startup, reset from the XRES pin, or reset from watchdog.	1.61 –	1.66 2.36 2.60 2.82	1.71 2.41 2.66 2.95	V V V
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	Vdd Value for LVD Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 101b VM[2:0] = 111b		2.40 ^[6] 2.64 ^[7] 2.85 ^[8] 2.95 3.06 1.84 1.75 ^[9] 4.62	2.45 2.71 2.92 3.02 3.13 1.90 1.80 4.73	2.51 2.78 2.99 3.09 3.20 2.32 1.84 4.83	V V V V V

DC Programming Specifications

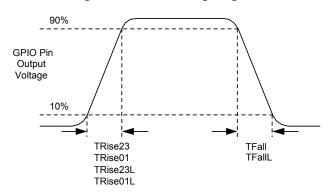
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Vdd _{IWRITE}	Supply Voltage for Flash Write Operations		1.71	-	5.25	V
I _{DDP}	Supply Current During Programming or Verify		-	5	25	mA
V _{ILP}	Input Low Voltage During Programming or Verify	See the appropriate DC General Purpose IO Specifications on page 19	-	_	V _{IL}	V
V _{IHP}	Input High Voltage During Programming or Verify	See appropriate DC General Purpose IO Specifications on page 19 table on pages 15 or 16	V _{IH}	_	_	V
I _{ILP}	Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify	Driving internal pull down resistor	-	-	0.2	mA
I _{IHP}	Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify	Driving internal pull down resistor	_	_	1.5	mA
V _{OLP}	Output Low Voltage During Programming or Verify		-	-	Vss + 0.75	V
V _{OHP}	Output High Voltage During Programming or Verify	See appropriate DC General Purpose IO Specifications on page 19 table on page 16. For Vdd > 3V use V _{OH4} in Table 13 on page 18.	V _{OH}	-	Vdd	V
Flash _{ENPB}	Flash Write Endurance	Erase/write cycles per block	50,000	_	-	-
Flash _{DR}	Flash Data Retention	Following maximum Flash write cycles; ambient temperature of 55°C	10	20	-	Years

Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

Always greater than 50 mV above V_{PPOR1} voltage for falling supply.
 Always greater than 50 mV above V_{PPOR2} voltage for falling supply.
 Always greater than 50 mV above V_{PPOR3} voltage for falling supply.

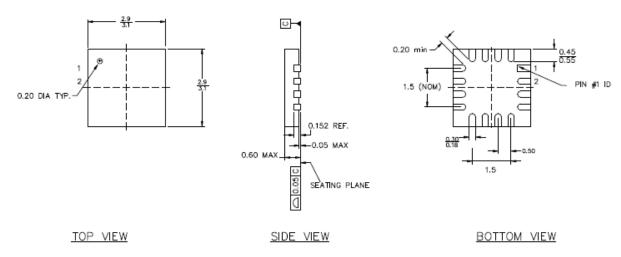

AC General Purpose IO Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 26. AC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{GPIO}	GPIO Operating Frequency	Normal Strong Mode Port 0, 1	0	_	6 MHz for 1.71V <vdd<2.4v< td=""><td>MHz</td></vdd<2.4v<>	MHz
			0	_	12 MHz for 2.4V <vdd<5.5v< td=""><td></td></vdd<5.5v<>	
TRise23	Rise Time, Strong Mode, Cload = 50 pF Ports 2 or 3	Vdd = 3.0 to 3.6V, 10% – 90%	15	_	80	ns
TRise23L	Rise Time, Strong Mode Low Supply, Cload = 50 pF, Ports 2 or 3	Vdd = 1.71 to 3.0V, 10% – 90%	15	-	80	ns
TRise01	Rise Time, Strong Mode, Cload = 50 pF Ports 0 or 1	Vdd = 3.0 to 3.6V, 10% – 90% LDO enabled or disabled	10	_	50	ns
TRise01L	Rise Time, Strong Mode Low Supply, Cload = 50 pF, Ports 0 or 1	Vdd = 1.71 to 3.0V, 10% – 90% LDO enabled or disabled	10	_	80	ns
TFall	Fall Time, Strong Mode, Cload = 50 pF All Ports	Vdd = 3.0 to 3.6V, 10% – 90%	10	_	50	ns
TFallL	Fall Time, Strong Mode Low Supply, Cload = 50 pF, All Ports	Vdd = 1.71 to 3.0V, 10% – 90%	10	_	70	ns

Figure 12. GPIO Timing Diagram



Packaging Information

This section illustrates the packaging specifications for the CY8C20x36/46/66/96 PSoC device, along with the thermal impedances for each package.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at http://www.cypress.com/design/MR10161.

Figure 15. 16-pin QFN No E-pad 3x3mm Package Outline (Sawn)

PART NO.	DESCRIPTION
LG16A	LEAD-FREE
LD16A	STANDARD

NOTES:

- 1. JEDEC # MD-220
- 2. Package Weight: 0.014g
- 3, DIMENSIONS IN MM, MIN MAX

001-09116 *D

Thermal Impedances

Table 36. Thermal Impedances per Package

Package	Typical θ _{JA} ^[12]
16 QFN	32.69°C/W
24 QFN ^[13]	20.90°C/W
32 QFN ^[13]	19.51°C/W
48 SSOP	69°C/W
48 QFN ^[13]	17.68°C/W

Solder Reflow Peak Temperature

This table lists the minimum solder reflow peak temperature to achieve good solderability.

Table 37. Solder Reflow Peak Temperature

Package	Minimum Peak Temperature ^[14]	Maximum Peak Temperature
16 QFN	240°C	260°C
24 QFN	240°C	260°C
32 QFN	240°C	260°C
48 SSOP	220°C	260°C
48 QFN	240°C	260°C

Notes
 12. T_J = T_A + Power x θ_{JA}.
 13. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.
 14. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5°C with Sn-Pb or 245 ± 5°C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

Ordering Information

The following table lists the CY8C20x36/46/66/96 PSoC devices' key package features and ordering codes.

Table 39. PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	CapSense Blocks	Digital I/O Pins	Analog Inputs ^[18]	XRES Pin	USB
16-Pin (3x3x0.6mm) QFN	CY8C20236-24LKXI	8K	1K	1	13	13	Yes	No
16-Pin (3x3x0.6mm) QFN (Tape and Reel)	CY8C20236-24LKXIT	8K	1K	1	13	13	Yes	No
16 Pin (3x3 x 0.6 mm) QFN	CY8C20246-24LKXI	16K	2K	1	13	13	Yes	No
16 Pin (3x3 x 0.6 mm) QFN (Tape and Reel)	CY8C20246-24LKXIT	16K	2K	1	13	13	Yes	No
24-Pin (4x4x0.6mm) QFN	CY8C20336-24LQXI	8K	1K	1	20	20	Yes	No
24-Pin (4x4x0.6mm) QFN (Tape and Reel)	CY8C20336-24LQXIT	8K	1K	1	20	20	Yes	No
24 Pin (4x4 x 0.6 mm) QFN	CY8C20346-24LQXI	16K	2K	1	20	20	Yes	No
24 Pin (4x4 x 0.6 mm) QFN (Tape and Reel)	CY8C20346-24LQXIT	16K	2K	1	20	20	Yes	No
24-Pin (4x4x0.6mm) QFN	CY8C20396-24LQXI	16K	2K	1	19	19	Yes	Yes
24-Pin (4x4x0.6mm) QFN (Tape and Reel)	CY8C20396-24LQXIT	16K	2K	1	19	19	Yes	Yes
32-Pin (5x5x0.6mm) QFN	CY8C20436-24LQXI	8K	1K	1	28	28	Yes	No
32-Pin (5x5x0.6mm) QFN (Tape and Reel)	CY8C20436-24LQXIT	8K	1K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN	CY8C20446-24LQXI	16K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN (Tape and Reel)	CY8C20446-24LQXIT	16K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN	CY8C20466-24LQXI	32K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN (Tape and Reel)	CY8C20466-24LQXIT	32K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN	CY8C20496-24LQXI	16K	2K	1	25	25	Yes	No
32 Pin (5x5 x 0.6 mm) QFN (Tape and Reel)	CY8C20496-24LQXIT	16K	2K	1	25	25	Yes	No
48-Pin SSOP	CY8C20536-24PVXI	8K	1K	1	36	36	Yes	No
48-Pin SSOP (Tape and Reel)	CY8C20536-24PVXIT	8K	1K	1	36	36	Yes	No
48-Pin SSOP	CY8C20546-24PVXI	16K	2K	1	36	36	Yes	No
48-Pin SSOP (Tape and Reel)	CY8C20546-24PVXIT	16K	2K	1	36	36	Yes	No
48-Pin SSOP	CY8C20566-24PVXI	32K	2K	1	36	36	Yes	No
48-Pin SSOP (Tape and Reel)	CY8C20566-24PVXIT	32K	2K	1	36	36	Yes	No
48 Pin (7x7 mm) QFN	CY8C20636-24LTXI	8K	1K	1	36	36	Yes	No
48 Pin (7x7 mm) QFN (Tape and Reel)	CY8C20636-24LTXIT	8K	1K	1	36	36	Yes	No
48 Pin (7x7 mm) QFN	CY8C20646-24LTXI	16K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN (Tape and Reel)	CY8C20646-24LTXIT	16K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN	CY8C20666-24LTXI	32K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN (Tape and Reel)	CY8C20666-24LTXIT	32K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN (OCD) ^[4]	CY8C20066-24LTXI	32K	2K	1	36	36	Yes	Yes

Notes

Document Number: 001-12696 Rev. *E Page 37 of 39

^{18.} Dual-function Digital I/O Pins also connect to the common analog mux.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

PSoC psoc.cypress.com
Clocks & Buffers clocks.cypress.com
Wireless wireless.cypress.com
Memories memory.cypress.com
Image Sensors image.cypress.com

PSoC Solutions

General psoc.cypress.com/solutions
Low Power/Low Voltage psoc.cypress.com/low-power
Precision Analog psoc.cypress.com/precision-analog
LCD Drive psoc.cypress.com/lcd-drive
CAN 2.0b psoc.cypress.com/can
USB psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2007-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-12696 Rev. *E

Revised April 24, 2009

Page 39 of 39

PSoC Designer™ is a trademark and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document may be the trademarks of their respective holders.