

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are angineered to

Details

Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (8kB)
Controller Series	CY8C20xx6
RAM Size	1K x 8
Interface	I ² C, SPI
Number of I/O	28
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20436-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

PSoC[®] Functional Overview

The PSoC family consists of on-chip Controller devices. These devices are designed to replace multiple traditional MCU-based components with one, low cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The architecture for this device family, as shown in the Logic Block Diagram on page 2, is comprised of three main areas: the Core, the CapSense Analog System, and the System Resources (including a full speed USB port). A common, versatile bus allows connection between I/O and the analog system. Each CY8C20x36/46/66/96 PSoC Device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 36 general purpose IO (GPIO) are also included. The GPIO provides access to the MCU and analog mux.

PSoC Core

The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO (internal main oscillator) and ILO (internal low speed oscillator). The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard architecture microprocessor.

System Resources provide additional capability, such as configurable USB and I2C slave/SPI master-slave communication interface, three 16-bit programmable timers, and various system resets supported by the M8C.

The Analog System is composed of the CapSense PSoC block and an internal 1.2V analog reference, which together support capacitive sensing of up to 36 inputs.

CapSense Analog System

The Analog System contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports.

Figure 1. Analog System Block Diagram

Analog Multiplexer System

The Analog Mux Bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.

Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces, such as sliders and touchpads.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

When designing capacitive sensing applications, refer to the latest signal-to-noise signal level requirements Application Notes, which can be found under http://www.cypress.com > Documentation > Application Notes. In general, and unless otherwise noted in the relevant Application Notes, the minimum signal-to-noise ratio (SNR) for CapSense applications is 5:1.

Pinouts

The CY8C20x36/46/66/96 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O and connection to the common analog bus. However, Vss, Vdd, and XRES are not capable of Digital I/O.

16-Pin QFN (No E-Pad)

Pin	Ту	pe	Namo	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	IOHR	I	P1[7]	I2C SCL, SPI SS
4	IOHR	I	P1[5]	I2C SDA, SPI MISO
5	IOHR	I	P1[3]	SPI CLK
6	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI
7	Po	wer	Vss	Ground connection
8	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK
9	IOHR	I	P1[2]	
10	IOHR	I	P1[4]	Optional external clock (EXTCLK)
11	Inj	put	XRES	Active high external reset with internal pull down
12	IOH	I	P0[4]	
13	Po	wer	Vdd	Supply voltage
14	IOH	I	P0[7]	
15	IOH	I	P0[3]	Integrating input
16	IOH	I	P0[1]	Integrating input

Table 2. Pin Definitions - CY8C20236, CY8C20246 PSoC Device [2]

Figure 2. CY8C20236, CY8C20246 PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

1. These are the ISSP pins, which are not High Z at POR (Power On Reset).

2. During power up or reset event, device P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter any issues.

24-Pin QFN

Table 3. Pin Definitions - CY8C20336, CY8C20346 ^[2, 3]

Pin	Ту	pe	Nomo	Description
No.	Digital	Analog	name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	I/O	I	P2[1]	
4	IOHR	I	P1[7]	I2C SCL, SPI SS
5	IOHR	-	P1[5]	I2C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI
8			NC	No connection
9	Po	wer	Vss	Ground connection
10	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK
11	IOHR	I	P1[2]	
12	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
13	IOHR	I	P1[6]	
14	In	put	XRES	Active high external reset with internal pull down
15	I/O	I	P2[0]	
16	IOH	I	P0[0]	
17	IOH		P0[2]	
18	IOH	-	P0[4]	
19	IOH	I	P0[6]	
20	Po	wer	Vdd	Supply voltage
21	IOH	-	P0[7]	
22	IOH	I	P0[5]	
23	IOH	I	P0[3]	Integrating input
24	IOH	Ι	P0[1]	Integrating input
CP	Po	wer	Vss	Center pad must be connected to ground

Figure 3. CY8C20336, CY8C20346 PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Note
3. The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.

32-Pin QFN

Table 5. Pin Definitions - CY8C20436, CY8C20446, CY8C20466 PSoC Device $^{\left[2,\;3\right]}$

Pin	Ту	/pe	Namo	Description	Figure 5. CY8C20436, CY8C20446, CY8C20466 PSoC Device
No.	Digital	Analog	Name	Description	ददद ददद
1	IOH	I	P0[1]	Integrating input	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2	I/O	I	P2[7]		
3	I/O	I	P2[5]	Crystal output (XOut)	
4	I/O	I	P2[3]	Crystal input (XIn)	Al, P2[7] = 2 23 = P2[6], Al
5	I/O	I	P2[1]		AI, XOut, P2[5] = 3 22 = P2[4], AI
6	I/O	I	P3[3]		AI, XIn, P2[3] = 4 QFN 21 = P2[2], AI
7	I/O	I	P3[1]		Al, P3[3] = 6 (100 view) 23 = 12[3], 70
8	IOHR	I	P1[7]	I2C SCL, SPI SS	AI, P3[1] = 7 18 = P3[0], AI
9	IOHR	I	P1[5]	I2C SDA, SPI MISO	
10	IOHR	I	P1[3]	SPI CLK.	
11	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI.	
12	Po	wer	Vss	Ground connection.	ALLK, J
13	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA., SPI CLK	
14	IOHR	I	P1[2]		, SP L, Sr H, E, SP
15	IOHR	I	P1[4]	Optional external clock input (EXTCLK)	
16	IOHR	Ι	P1[6]		ATA, 12
17	In	put	XRES	Active high external reset with internal pull down	A, C, A A, D, C
18	I/O	Ι	P3[0]		
19	I/O	Ι	P3[2]		
20	I/O	Ι	P2[0]		
21	I/O	Ι	P2[2]		
22	I/O	1	P2[4]		
23	I/O	1	P2[6]		
24	IOH	I	P0[0]		
25	IOH	I	P0[2]		-
26	IOH	I	P0[4]		-
27	IOH	I	P0[6]		
28	Po	wer	Vdd	Supply voltage	-
29	IOH	I	P0[7]		-
30	IOH	I	P0[5]		
31	IOH	I	P0[3]	Integrating input	
32	Po	wer	Vss	Ground connection	
СР	Po	wer	Vss	Center pad must be connected to ground	

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

32-Pin QFN (with USB)

Table 6. Pin Definitions - CY8C20496 PSoC Device ^[2, 3]

Pin	Ту	/pe	Nome	Description					
No.	Digital	Analog	Name	Description					
1	IOH	I	P0[1]						
2	I/O	I	P2[5]	XTAL Out					
3	I/O	I	P2[3]	XTAL In					
4	I/O	I	P2[1]						
5	IOHR	I	P1[7]	I2C SCL, SPI SS					
6	IOHR	I	P1[5]	I2C SDA, SPI MISO					
7	IOHR	I	P1[3]	SPI CLK					
8	IOHR	I	P1[1]	TC CLK, I2C SCL, SPI MOSI					
9	Po	wer	V _{SS}	Ground Pin					
10			D+	USB PHY					
11		I	D-	USB PHY					
12	Po	wer	Vdd	Power pin					
13	IOHR	I	P1[0]	TC DATA*, I2C SDA, SPI CLKI					
14	IOHR	I	P1[2]						
15	IOHR	I	P1[4]	EXTCLK					
16	IOHR	I	P1[6]						
17	In	put	XRES	Active high external reset with internal pull down					
18	I/O	I	P3[0]						
19	I/O	I	P3[2]						
20	I/O	I	P2[0]						
21	I/O	I	P2[2]						
22	I/O	I	P2[4]						
23	I/O	I	P2[6]						
24	IOH	I	P0[0]						
25	IOH	I	P0[2]						
26	IOH	I	P0[4]						
27	IOH	I	P0[6]						
28	Po	wer	Vdd	Power Pin					
29	IOH	I	P0[7]						
30	IOH	I	P0[5]						
31	IOH	I	P0[3]						
32	Po	wer	Vss	Ground Pin					

	3], AI	5], AI	7], AI	Ð	6], AI	4], AI	2], AI	
<pre>>></pre>	Pol	Pol]04	۸d	Pol	Pol	lod	
AI, P0[1] XTAL OUT, P2[5] 2 XTAL IN, P2[3] 4 I2C SCL, SPI SS, P1[7] 5 I2C SDA, SPI MISO, P1[5] 7 TC CLK, I2C SCL, SPI MOSI,P1[1] 8 5 5 5 5 5 5 5 5 5 5 5 5 5	USB PHY, D+ 7 10 31	USB PHY D- 📙 11) 30	Vdd 12 12 29	TC, DATA ¹ , I2C SDA, SPI CLK, P1[0] 13 0 2 1 28	AI, P1[2] 1 4 3 . Z 27	AI, EXTCLK, P1[4] = 15 😴 26=	24' L1[6] 16 19 18 18 18 18 18 18 18 18 18 18 18 18 18	P0[0], AI P2[6], AI P2[4], AI P2[2], AI P3[0], AI XRES

Figure 5. CY8C20496 PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

48-Pin QFN with USB

Table 9. Pin Definitions - CY8C20646, CY8C20666 PSoC Device $^{\left[2,\;3\right]}$

Pin No.	Digital	Analog	Name	Description			Figur	e 8. CY	8C20646, CY8C20666 PSoC Device 8C20646, CY8C20666 PSoC Device マロン マロン マロン マロン マロン マロン マロン マロン マロン マロン
1			NC	No connection					
2	I/O	Ι	P2[7]					NC 1	8 4 9 9 4 7 7 7 7 7 9 8 8 6 6 6 8 P2[6], AI
3	I/O	Ι	P2[5]	Crystal output (XOut)		^		, P2[7] = 2	35 P 2[4],AI
4	I/O	Ι	P2[3]	Crystal input (XIn)		~	Al, Xln	, P2[3] = 4	33 = P2[2],Al
5	I/O	Ι	P2[1]				AI	, P2[1] = 5	32 P 4[2],AI
6	I/O	I	P4[3]				AI	, P4[3] =6	
7	I/O	I	P4[1]				AI	, P4[1] P 7 , P3[7] P 8	(100 View) 30 P P3[0],Al 29 P P3[4], Al
8	I/O	I	P3[7]				AI	, P3[5] P 9	28 = P3[2],AI
9	I/O	I	P3[5]				AI	, P3[3] = 10	0 27 E P3[0], AI
10	I/O	I	P3[3]		AI, I	2C SCL,	SPI SS	, P1[7] =1;	20 7 10 0 ~ 0 0 0 - 0 0 725 P1[6], Al
11	I/O	Ι	P3[1]						
12	IOHR	I	P1[7]	I2C SCL, SPI SS					7[5] NC NC NC NC NC NC NC NC NC NC NC NC NC
13	IOHR	I	P1[5]	I2C SDA, SPI MISO					AI, F SSI, F LK, P LK, P
14			NC	No connection					
15			NC	No connection					SPI M SPI (SDA, AI, E
16	IOHR	I	P1[3]	SPI CLK					
17	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI					2C S TA1, K ⁶ , I2
18	Pow	ver	Vss	Ground connection	1				
19	I/O		D+	USB D+					4 4
20	I/O		D-	USB D-					
21	Pow	er	Vdd	Supply voltage					
22	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK					
23	IOHR	Ι	P1[2]						
24	IOHR	Ι	P1[4]	Optional external clock input (EXTCLK)					
25	IOHR	I	P1[6]						
26	Inp	ut	XRES	Active high external reset with internal pull down					
27	I/O	- 1	P3[0]						
28	I/O	I	P3[2]			1		-	1
29	I/O	I	P3[4]		Pin No.	Digital	Analog	Name	Description
30	I/O	-	P3[6]		40	IOH	I	P0[6]	
31	I/O	-	P4[0]		41	Po	wer	Vdd	Supply voltage
32	I/O	Ι	P4[2]		42			NC	No connection
33	I/O	Ι	P2[0]		43			NC	No connection
34	I/O	I	P2[2]		44	IOH	Ι	P0[7]	
35	I/O	Ι	P2[4]		45	IOH	Ι	P0[5]	
36	I/O	Ι	P2[6]		46	IOH	Ι	P0[3]	Integrating input
37	IOH	Ι	P0[0]		47	Po	wer	Vss	Ground connection
38	IOH	Ι	P0[2]		48	IOH	Ι	P0[1]	
39	IOH	I	P0[4]		CP	Po	wer	Vss	Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

48-Pin QFN OCD

The 48-pin QFN part is for the CY8C20066 On-Chip Debug (OCD) PSoC device. Note that this part is only used for in-circuit debugging.^[4]

Pin No.	Digital	Analog	Name	Description			Fiç	gure 9. (マ	CY8C20066 PSoC Device 로 로 다 다 다 고 로 로 로 2 번 번 번 번 번 번 번 번 번 번
1			OCDOE	OCD mode direction pin					
2	I/O	I	P2[7]				OCD		- 4 4 4 7 4 7 7 8 8 8 5 36 ■ P2[6], AI
3	I/O	I	P2[5]	Crystal output (XOut)			A, F2	2[7] = 2	35 = P2[4], AI
4	I/O	I	P2[3]	Crystal input (XIn)		AI, X	Out, P2	2[5] = 3	34 e P2[2], AI
5	I/O	I	P2[1]			AI, J	AL P2	2[3] 4 2[1] 5	33 P 2[0], AI 32 P 4[2], AI
6	I/O	I	P4[3]				AI , P4	[3] = 6	QFN 31 = P4[0], AI
7	I/O	I	P4[1]				AI, P4	[1] = 7	(Top View) 30 P3[6], Al
8	I/O	I	P3[7]				AI, P3 AI, P3	8[5] = 9	29 - 5(4), Al 28 - P3(2), Al
9	I/O	Ι	P3[5]				AI, P3	[3] = 10	27 = P3[0], Al
10	I/O	Ι	P3[3]				AI, P3	[1] 1 1	
11	I/O	Ι	P3[1]		AI, 120	, 30L, 3FI	133, FI		⁴ 4 4 4 6 8 7 7 7 8 7 8 7 9 9 10 , A
12	IOHR	Ι	P1[7]	I2C SCL, SPI SS				1[5]	[4] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4
13	IOHR	I	P1[5]	I2C SDA, SPI MISO				₹ F	
14			CCLK	OCD CPU clock output				so, i	MOS A A A A A A A A A A A A A A A A A A A
15			HCLK	OCD high speed clock output				M IA	A, SPI CI
16	IOHR	Ι	P1[3]	SPI CLK.				DA, S	s sources and sour
17	IOHR	Ι	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI				SC SI	⁶ , 12C
18	Pow	er	Vss	Ground connection				<u>u</u>	CLK
19	I/O		D+	USB D+					Al, Al,
20	I/O		D-	USB D-					
21	Pow	er	Vdd	Supply voltage					
22	IOHR	I	P1[0]	ISSP DATA ⁽¹⁾ , I2C SDA, SPI CLK					
23	IOHR	I	P1[2]		Pin No.	Digital	Analog	Name	Description
24	IOHR	Ι	P1[4]	Optional external clock input (EXTCLK)	37	IOH	Ι	P0[0]	
25	IOHR		P1[6]		38	IOH	Ι	P0[2]	
26	Inpu	ut	XRES	Active high external reset with internal pull down	39	IOH	I	P0[4]	
27	I/O	Ι	P3[0]		40	IOH	Ι	P0[6]	
28	I/O	-	P3[2]		41	Pow	rer	Vdd	Supply voltage
29	I/O	Ι	P3[4]		42			OCDO	OCD even data I/O
30	I/O	Ι	P3[6]		43			OCDE	OCD odd data output
31	I/O	I	P4[0]		44	IOH	Ι	P0[7]	
32	I/O	Ι	P4[2]		45	IOH	Ι	P0[5]	
33	I/O	Ι	P2[0]		46	IOH	Ι	P0[3]	Integrating input
34	I/O	Ι	P2[2]		47	Pow	rer	Vss	Ground connection
35	I/O	Ι	P2[4]		48	IOH	Ι	P0[1]	
36	I/O		P2[6]		CP	Pow	er	Vss	Center pad must be connected to ground

Table 10. Pin Definitions - CY8C20066 PSoC Device ^[2, 3]

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Note

4. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x36/46/66/96 PSoC devices. For the latest electrical specifications, confirm that you have the most recent data sheet by visiting the web at http://www.cypress.com/psoc.

The following table lists the units of measure that are used in this section.

Table 11. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	mA	milli-ampere
dB	decibels	ms	milli-second
fF	femto farad	mV	milli-volts
Hz	hertz	nA	nanoampere
KB	1024 bytes	ns	nanosecond
Kbit	1024 bits	nV	nanovolts
kHz	kilohertz	Ω	ohm
ksps	kilo samples per second	pA	picoampere
kΩ	kilohm	pF	picofarad
MHz	megahertz	рр	peak-to-peak
MΩ	megaohm	ppm	parts per million
μΑ	microampere	ps	picosecond
μF	microfarad	sps	samples per second
μН	microhenry	S	sigma: one standard deviation
μs	microsecond	V	volts
μW	microwatts		

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 12. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage Temperature	Higher storage temperatures reduces data retention time. Recommended Storage Temperature is $+25^{\circ}C \pm 25^{\circ}C$. Extended duration storage temperatures above $85^{\circ}C$ degrades reliability.	-55	+25	+125	ů
Vdd	Supply Voltage Relative to Vss		-0.5	-	+6.0	V
V _{IO}	DC Input Voltage		Vss – 0.5	-	Vdd + 0.5	V
V _{IOZ}	DC Voltage Applied to Tri-state		Vss -0.5	-	Vdd + 0.5	V
I _{MIO}	Maximum Current into any Port Pin		-25	—	+50	mA
ESD	Electro Static Discharge Voltage	Human Body Model ESD	2000	—	-	V
LU	Latch up Current	In accordance with JESD78 standard	_	_	200	mA

Operating Temperature

Table 13. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Мах	Units
T _A	Ambient Temperature		-40	-	+85	°C
TJ	Operational Die Temperature	The temperature rise from ambient to junction is package specific. Refer the table Thermal Impedances per Package on page 34. The user must limit the power consumption to comply with this requirement.	-40	-	+100	°C

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 14. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
Vdd	Supply Voltage	Refer the table DC POR and LVD Specifications on page 24	1.71	-	5.5	V
I _{DD24}	Supply Current, IMO = 24 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	2.88	4.0	mA
I _{DD12}	Supply Current, IMO = 12 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	1.71	2.6	mA
I _{DD6}	Supply Current, IMO = 6 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	-	1.16	1.8	mA
I _{SB0}	Deep Sleep Current	Vdd = 3.0V, T _A = 25°C, I/O regulator turned off	-	0.1	-	μΑ
I _{SB1}	Standby Current with POR, LVD and Sleep Timer	Vdd = 3.0V, T _A = 25°C, I/O regulator turned off	_	1.07	1.5	μA

DC General Purpose IO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0V to 5.5V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, 2.4V to 3.0V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 1.71V to 2.4V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 15. 3.0V to 5.5V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull up Resistor		4	5.6	8	kΩ
V _{OH1}	High Output Voltage Port 2 or 3 Pins	IOH \leq 10 μ A, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	_	V
V _{OH2}	High Output Voltage Port 2 or 3 Pins	IOH = 1 mA, maximum of 20 mA source current in all IOs	Vdd - 0.9	_	-	V
V _{OH3}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH < 10 μ A, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	-	V
V _{OH4}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 5 mA, maximum of 20 mA source current in all IOs	Vdd - 0.9	_	-	V
V _{OH5}	High Output Voltage Port 1 Pins with LDO Regulator Enabled for 3V Out	IOH < 10 μ A, Vdd > 3.1V, maximum of 4 IOs all sourcing 5 mA	2.85	3.00	3.3	V
V _{OH6}	High Output Voltage Port 1 Pins with LDO Regulator Enabled for 3V Out	IOH = 5 mA, Vdd > 3.1V, maximum of 20 mA source current in all IOs	2.20	_	_	V
V _{OH7}	High Output Voltage Port 1 Pins with LDO Enabled for 2.5V Out	IOH < 10 μA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	2.35	2.50	2.75	V
V _{OH8}	High Output Voltage Port 1 Pins with LDO Enabled for 2.5V Out	IOH = 2 mA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.90	_	-	V
V _{OH9}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH < 10 μ A, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.60	1.80	2.1	V

Table 15. 3.0V to 5.5V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{OH10}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH = 1 mA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.20	-	-	V
V _{OL}	Low Output Voltage	IOL = 25 mA, Vdd > 3.3V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	_	0.75	V
V _{IL}	Input Low Voltage		-	-	0.80	V
V _{IH}	Input High Voltage		2.00	-		V
V _H	Input Hysteresis Voltage		-	80	-	mV
IIL	Input Leakage (Absolute Value)		-	0.001	1	μA
C _{PIN}	Pin Capacitance	Package and pin dependent Temp = 25°C	0.5	1.7	5	pF

Table 17. 1.71V to 2.4V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _H	Input Hysteresis Voltage		-	80	-	mV
IIL	Input Leakage (Absolute Value)		-	0.001	1	μA
C _{PIN}	Capacitive Load on Pins	Package and pin dependent Temp = 25 ^o C	0.5	1.7	5	pF

Table 18.DC Characteristics – USB Interface

Symbol	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ Pull Up Resistance	With idle bus	0.900	-	1.575	kΩ
Rusba	USB D+ Pull Up Resistance	While receiving traffic	1.425	-	3.090	kΩ
Vohusb	Static Output High		2.8	-	3.6	V
Volusb	Static Output Low			-	0.3	V
Vdi	Differential Input Sensitivity		0.2	-		V
Vcm	Differential Input Common Mode Range		0.8	-	2.5	V
Vse	Single Ended Receiver Threshold		0.8	-	2.0	V
Cin	Transceiver Capacitance			-	50	pF
lio	Hi-Z State Data Line Leakage	On D+ or D- line	-10	-	+10	μA
Rps2	PS/2 Pull Up Resistance		3	5	7	kΩ
Rext	External USB Series Resistor	In series with each USB pin	21.78	22.0	22.22	Ω

DC Analog Mux Bus Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 19. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
R _{SW}	Switch Resistance to Common Analog Bus		-	-	800	Ω
R _{GND}	Resistance of Initialization Switch to Vss		_	-	800	Ω

The maximum pin voltage for measuring $\rm R_{SW}$ and $\rm R_{GND}$ is 1.8V

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 20. DC Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
V _{LPC}	Low Power Comparator (LPC) common mode	Maximum voltage limited to Vdd	0.0	-	1.8	V
I _{LPC}	LPC supply current		-	10	40	μΑ
V _{OSLPC}	LPC voltage offset		_	2.5	30	mV

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 25. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{CPU}	CPU Frequency		5.7	-	25.2	MHz
F _{32K1}	Internal Low Speed Oscillator Frequency		19	32	50	kHz
F _{IMO24}	Internal Main Oscillator Frequency at 24 MHz Setting		22.8	24	25.2	MHz
F _{IMO12}	Internal Main Oscillator Frequency at 12 MHz Setting		11.4	12	12.6	MHz
F _{IMO6}	Internal Main Oscillator Frequency at 6 MHz Setting		5.7	6.0	6.3	MHz
DC _{IMO}	Duty Cycle of IMO		40	50	60	%
T _{RAMP}	Supply Ramp Time		20	-	-	μS
T _{XRST}	External Reset Pulse Width at Power Up	After supply voltage is valid	1			ms
T _{XRST2}	External Reset Pulse Width after Power Up ^[10]	Applies after part has booted	10			μS

AC Programming Specifications

The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{RSCLK}	Rise Time of SCLK		1	-	20	ns
T _{FSCLK}	Fall Time of SCLK		1	-	20	ns
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK		40	-	-	ns
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK		40	-	-	ns
F _{SCLK}	Frequency of SCLK		0	-	8	MHz
T _{ERASEB}	Flash Erase Time (Block)		-	-	18	ms
T _{WRITE}	Flash Block Write Time		-	-	25	ms
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	3.6 < Vdd	-	-	60	ns
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	$3.0 \leq Vdd \leq 3.6$	-	-	85	ns
T _{DSCLK2}	Data Out Delay from Falling Edge of SCLK	$1.71 \leq Vdd \leq 3.0$	-	-	130	ns
T _{XRST3}	External Reset Pulse Width after Power Up	Required to enter programming mode when coming out of sleep	263	-	-	μs

Table 32. AC Programming Specifications

Packaging Information

This section illustrates the packaging specifications for the CY8C20x36/46/66/96 PSoC device, along with the thermal impedances for each package.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled PSoC Emulator Pod Dimensions at http://www.cypress.com/design/MR10161.

Figure 15. 16-pin QFN No E-pad 3x3mm Package Outline (Sawn)

001-09116 *D

Figure 16. 24-Pin (4x4 x 0.6 mm) QFN

Thermal Impedances

Table 36. Thermal Impedances per Package

Package	Typical θ _{JA} ^[12]
16 QFN	32.69 ^o C/W
24 QFN ^[13]	20.90°C/W
32 QFN ^[13]	19.51°C/W
48 SSOP	69°C/W
48 QFN ^[13]	17.68°C/W

Solder Reflow Peak Temperature

This table lists the minimum solder reflow peak temperature to achieve good solderability.

Table 37. Solder Reflow Peak Temperature

Package	Minimum Peak Temperature ^[14]	Maximum Peak Temperature
16 QFN	240°C	260 ^o C
24 QFN	240°C	260°C
32 QFN	240°C	260°C
48 SSOP	220°C	260 ^o C
48 QFN	240°C	260°C

<sup>Notes
12. T_J = T_A + Power x θ_{JA}.
13. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.
14. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5°C with Sn-Pb or 245 ± 5°C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.</sup>

Device Programmers

All device programmers are purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- Three Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

Accessories (Emulation and Programming)

Table 38. Emulation and Programming Accessories

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Part Number	Pin Package	Flex-Pod Kit ^[15]	Foot Kit ^[16]	Adapter ^[17]
CY8C20236-24LKXI	16 QFN	CY3250-20266QFN	CY3250-16QFN-RK	See note 15
CY8C20246-24LKXI	16 QFN	CY3250-20266QFN	CY3250-16QFN-FK	See note 17
CY8C20336-24LQXI	24 QFN	CY3250-20366QFN	CY3250-24QFN-FK	See note 15
CY8C20346-24LQXI	24 QFN	CY3250-20366QFN	CY3250-24QFN-FK	See note 17
CY8C20396-24LQXI	24 QFN		Not Available	·
CY8C20436-24LQXI	32 QFN	CY3250-20466QFN	CY3250-32QFN-RK	See note 15
CY8C20446-24LQXI	32 QFN	CY3250-20466QFN	CY3250-32QFN-FK	See note 17
CY8C20466-24LQXI	32 QFN	CY3250-20466QFN	CY3250-32QFN-FK	See note 17
CY8C20496-24LQXI	32 QFN		Not Available	·
CY8C20536-24PVXI	48 SSOP	CY3250-20X66	CY3250-48SSOP-FK	See note 17
CY8C20546-24PVXI	48 SSOP	CY3250-20X66	CY3250-48SSOP-FK	See note 17
CY8C20566-24PVXI	48 SSOP	CY3250-20X66	CY3250-48SSOP-FK	See note 17
CY8C20636-24LTXI	48 QFN	CY3250-20666QFN	CY3250-48QFN-FK	See note 17
CY8C20646-24LTXI	48 QFN	CY3250-20666QFN	CY3250-48QFN-FK	See note 17
CY8C20666-24LTXI	48 QFN	CY3250-20666QFN	CY3250-48QFN-FK	See note 17

Third-Party Tools

Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.

Build a PSoC Emulator into Your Board

For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, refer Application Note "Debugging - Build a PSoC Emulator into Your Board - AN2323" at http://www.cypress.com/?rID2748.

Notes

16. Foot kit includes surface mount feet that can be soldered to the target PCB.

^{15.} Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

^{17.} Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products		PSOC Solutions	
PSoC	psoc.cypress.com	General	psoc.cypress.com/solutions
Clocks & Buffers	clocks.cypress.com	Low Power/Low Voltage	psoc.cypress.com/low-power
Wireless	wireless.cypress.com	Precision Analog	psoc.cypress.com/precision-analog
Memories	memory.cypress.com	LCD Drive	psoc.cypress.com/lcd-drive
Image Sensors	image.cypress.com	CAN 2.0b	psoc.cypress.com/can
		USB	psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2007-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-12696 Rev. *E

Revised April 24, 2009

Page 39 of 39

PSoC Designer[™] is a trademark and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document may be the trademarks of their respective holders.