

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are analyzared to

Details

Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (32kB)
Controller Series	CY8C20xx6
RAM Size	2K x 8
Interface	I ² C, SPI
Number of I/O	28
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20466-24lqxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

Additional System Resources

System Resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The merits of each system resource are listed here:

- The I2C slave/SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- The I2C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power-On-Reset) circuit eliminates the need for a system supervisor.
- An internal reference provides an absolute reference for capacitive sensing.
- A register-controlled bypass mode allows the user to disable the LDO.
- Standard Cypress PSoC IDE tools are available for debugging the CY8C20x36/46/66/96 family of parts. However, the additional trace length and a minimal ground plane in the Flex-Pod can create noise problems that make it difficult to debug the design. A custom bonded On-Chip Debug (OCD) device is available in an 48-pin QFN package. The OCD device is recommended for debugging designs that have high current and/or high analog accuracy requirements. The QFN package is compact and is connected to the ICE through a high density connector.

Getting Started

The quickest way to understand PSoC silicon is to read this data sheet and then use the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the PSoC[®] Programmable System-on-Chip[™] Technical Reference Manual for CY8C20x36/46/66/96 PSoC Devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device data sheets on the web at www.cypress.com/psoc.

Application Notes

Application notes are an excellent introduction to the wide variety of possible PSoC designs. They are located here: www.cypress.com/psoc. Select Application Notes under the Documentation tab.

Development Kits

PSoC Development Kits are available online from Cypress at www.cypress.com/shop and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops) is available online at www.cypress.com/training. The training covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to www.cypress.com/cypros.

Solutions Library

Visit our growing library of solution focused designs at www.cypress.com/solutions. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

For assistance with technical issues, search KnowledgeBase articles and forums at www.cypress.com/support. If you cannot find an answer to your question, call technical support at 1-800-541-4736.

Pinouts

The CY8C20x36/46/66/96 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O and connection to the common analog bus. However, Vss, Vdd, and XRES are not capable of Digital I/O.

16-Pin QFN (No E-Pad)

Pin	Ту	pe	Namo	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	IOHR	I	P1[7]	I2C SCL, SPI SS
4	IOHR	I	P1[5]	I2C SDA, SPI MISO
5	IOHR	I	P1[3]	SPI CLK
6	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI
7	Power		Vss	Ground connection
8	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK
9	IOHR	I	P1[2]	
10	IOHR	I	P1[4]	Optional external clock (EXTCLK)
11	Inj	put	XRES	Active high external reset with internal pull down
12	IOH	I	P0[4]	
13	Po	wer	Vdd	Supply voltage
14	IOH	I	P0[7]	
15	IOH	I	P0[3]	Integrating input
16	IOH	I	P0[1]	Integrating input

Table 2. Pin Definitions - CY8C20236, CY8C20246 PSoC Device [2]

Figure 2. CY8C20236, CY8C20246 PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

1. These are the ISSP pins, which are not High Z at POR (Power On Reset).

2. During power up or reset event, device P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter any issues.

24-Pin QFN with USB

Table 4. Pin Definitions - CY8C20396 PSoC Device [2, 3]

Din No	Тур	be	Namo	Description
FILLING.	Digital	Analog	Name	Description
1	I/O	Ι	P2[5]	
2	I/O	Ι	P2[3]	
3	I/O	I	P2[1]	
4	IOHR	Ι	P1[7]	I2C SCL, SPI SS
5	IOHR	I	P1[5]	I2C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK, I2C SCL, SPI MOSI
8	Pov	ver	VSS	Ground
9	I/O	I	D+	USB D+
10	I/O	I	D-	USB D-
11	Pov	ver	VDD	Supply
12	IOHR	I	P1[0]	ISSP DATA, I2C SDA
13	IOHR	I	P1[2]	
14	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
15	IOHR	I	P1[6]	
16	RESET	INPUT	XRES	Active high external reset with internal pull down
17	IOH	I	P0[0]	
18	IOH	I	P0[2]	
19	IOH	I	P0[4]	
20	IOH	I	P0[6]	
21	IOH	I	P0[7]	
22	IOH	I	P0[5]	
23	IOH	I	P0[3]	Integrating input
24	IOH	I	P0[1]	Integrating input
CP	Pov	ver	VSS	Thermal pad must be connected to Ground

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

32-Pin QFN (with USB)

Table 6. Pin Definitions - CY8C20496 PSoC Device ^[2, 3]

Pin	Ту	/pe	Nome	Description				
No.	Digital	Analog	Name	Description				
1	IOH	I	P0[1]					
2	I/O	I	P2[5]	XTAL Out				
3	I/O	I	P2[3]	XTAL In				
4	I/O	I	P2[1]					
5	IOHR	I	P1[7]	I2C SCL, SPI SS				
6	IOHR	I	P1[5]	I2C SDA, SPI MISO				
7	IOHR	I	P1[3]	SPI CLK				
8	IOHR	I	P1[1]	TC CLK, I2C SCL, SPI MOSI				
9	Po	wer	V _{SS}	Ground Pin				
10			D+	USB PHY				
11		I	D-	USB PHY				
12	Po	wer	Vdd	Power pin				
13	IOHR	I	P1[0]	TC DATA*, I2C SDA, SPI CLKI				
14	IOHR	I	P1[2]					
15	IOHR	I	P1[4]	EXTCLK				
16	IOHR	I	P1[6]					
17	Input		XRES	Active high external reset with internal pull down				
18	I/O	I	P3[0]					
19	I/O	I	P3[2]					
20	I/O	I	P2[0]					
21	I/O	I	P2[2]					
22	I/O	I	P2[4]					
23	I/O	I	P2[6]					
24	IOH	I	P0[0]					
25	IOH	I	P0[2]					
26	IOH	I	P0[4]					
27	IOH	I	P0[6]					
28	Po	wer	Vdd	Power Pin				
29	IOH	I	P0[7]					
30	IOH	I	P0[5]					
31	IOH	I	P0[3]					
32	Po	wer	Vss	Ground Pin				

	3], AI	5], AI	7], AI	Ð	6], AI	4], AI	2], AI	
<pre>>></pre>	Pol	Pol]04	۸d	Pol	Pol	lod	
AI, P0[1] XTAL OUT, P2[5] 2 XTAL IN, P2[3] 4 I2C SCL, SPI SS, P1[7] 5 I2C SDA, SPI MISO, P1[5] 7 TC CLK, I2C SCL, SPI MOSI,P1[1] 8 5 5 5 5 5 5 5 5 5 5 5 5 5	USB PHY, D+ 7 10 31	USB PHY D- 📙 11) 30	Vdd 12 12 29	TC, DATA ¹ , I2C SDA, SPI CLK, P1[0] 13 0 2 1 28	AI, P1[2] 1 4 3 . Z 27	AI, EXTCLK, P1[4] = 15 😴 26=	24' L1[6] 16 19 18 18 18 18 18 18 18 18 18 18 18 18 18	P0[0], AI P2[6], AI P2[4], AI P2[2], AI P3[0], AI XRES

Figure 5. CY8C20496 PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

48-Pin SSOP

п

Table 7. Pin Definitions - CY8C20536, CY8C20546, and CY8C20566 PSoC Device $\ensuremath{^{[2]}}$

No.	ital	log	News	Description	Figu	ure 6.	CY8	3C20536	, CY8C2054	46, ar	nd CY8C20566	SPSoC Device
in	Dig	۸na	Name	Description				AI, P0[7] = ⁰ 1		48 🗖 VDD	
1	— 10н	1	P0[7]					AI, P0[AI P0[5] = 2 3] = 3		47 P0[6], Al	
2		1	P0[5]		-			AI P0[1] = 4		45 P0[2], Al	
2	IOH		P0[3]				хт		7] = 5 5] = 6		44 P0[0], AI	
4	IOH		P0[1]				X	(TALIN, P2[3	6] = 7		43 = P2[0], Al 42 = P2[4], Al	
5	1/0		P2[7]		-			AI, P2[1 N] = 8 C = 9		41 P2[2], Al	
6	1/0	I	P2[5]	XTAL Out	-			N	C = 10		39 P3[6], AI	
7	1/0	1	P2[3]	XTAL In				AI, P4[AI, P4[3] = 11 1] = 12 = ==		38 ■ P3[4], AI	
8	I/O	1	P2[1]					N		OP	36 P 3[0], AI	
9			NC	No connection				AI, P3[AI, P3[7] = 14 5] = 15		35 XRES	
10			NC	No connection				AI, P3[3] = 16		33 N C	
11	I/O	1	P4[3]					AI, P3[1] = 17		32 NC	
12	I/O	I	P4[1]					N			30 NC	
13			NC	No connection		120 120 S	CSCL, DASP	SPI SS, P1[] PI MISO P1[]	7] = 20 5] = 21		29 NC	
14	I/O	I	P3[7]			.200	57 (, 01	SPI CLK, P1[3]= 22		27 P1[4], EXT CL	_K
15	I/O	I	P3[5]		TC CL	.K, I2C S	CL, SF	PI MOSI, P1[VS	1] □ 23 S □ 24		26 ■ P1[2], AI	
16	I/O	1	P3[3]					•••			23 - 1 1[0], 10 8/1	
17	I/O	1	P3[1]		1							
18			NC	No connection								
19			NC	No connection								
20	IOHR	I	P1[7]	I2C SCL, SPI SS								
21	IOHR	-	P1[5]	I2C SDA, SPI MISO								
22	IOHR	-	P1[3]	SPI CLK								
23	IOHR	1	P1[1]	TC CLK ^[1] , I2C SCL, SPI MOSI								
24			VSS	Ground Pin								
25	IOHR	Ι	P1[0]	TC DATA ^[1] , I2C SDA, SPI CLK								
26	IOHR	Ι	P1[2]									
27	IOHR	I	P1[4]	EXT CLK								
28	IOHR	I	P1[6]									
29			NC	No connection								
30			NC	No connection								
31			NC	No connection								
32			NC	No connection	Pin No.	Digital	Analog	Name			Description	
33			NC	No connection	41	I/O	I	P2[2]				
34			NC	No connection	42	I/O	I	P2[4]				
35			XRES	Active high external reset with internal pull down	43	I/O	I	P2[6]				
36	I/O	I	P3[0]		44	IOH	1	P0[0]				
37	I/O		P3[2]		45	IOH	1	P0[2]				
38	I/O	I	P3[4]		46	IOH	Ι	P0[4]				
39	I/O	I	P3[6]		47	IOH	Ι	P0[6]				
40	I/O	1	P2[0]		48	Powe	er	Vdd	Power Pin			

LEGEND A = Analog, I = Input, O = Output, NC = No Connection, H = 5 mA High Output Drive, R = Regulated Output Option.

48-Pin QFN OCD

The 48-pin QFN part is for the CY8C20066 On-Chip Debug (OCD) PSoC device. Note that this part is only used for in-circuit debugging.^[4]

Pin No.	Digital	Analog	Name	Description	Figure 9. CY8C20066 PSoC Device						
1			OCDOE	OCD mode direction pin							
2	I/O	I	P2[7]				OCD		- 4 4 4 7 4 7 7 8 8 8 5 36 ■ P2[6], AI		
3	I/O	I	P2[5]	Crystal output (XOut)			A, F2	2[7] = 2	35 = P2[4], AI		
4	I/O	I	P2[3]	Crystal input (XIn)		AI, X	Out, P2	2[5] = 3	34 e P2[2], AI		
5	I/O	I	P2[1]			AI, J	AL P2	2[3] 4 2[1] 5	33 P 2[0], AI 32 P 4[2], AI		
6	I/O	I	P4[3]				AI , P4	[3] = 6	QFN 31 = P4[0], AI		
7	I/O	I	P4[1]				AI, P4	[1] = 7	(Top View) 30 = P3[6], Al		
8	I/O	I	P3[7]				AI, P3 AI, P3	8[5] = 9	29 - 5(4), Al 28 - P3(2), Al		
9	I/O	Ι	P3[5]				AI, P3	[3] = 10	27 = P3[0], Al		
10	I/O	Ι	P3[3]				AI, P3	[1] 1 1			
11	I/O	Ι	P3[1]		AI, 120	, 30L, 3FI	133, FI		⁴ 4 4 4 6 8 7 7 7 8 7 8 7 9 9 10 , A		
12	IOHR	Ι	P1[7]	I2C SCL, SPI SS				1[5]	[4] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4		
13	IOHR	I	P1[5]	I2C SDA, SPI MISO				₹ F			
14			CCLK	OCD CPU clock output				so, i	MOS A A A A A A A A A A A A A A A A A A A		
15			HCLK	OCD high speed clock output				M IA	A, SPI CI		
16	IOHR	Ι	P1[3]	SPI CLK.				DA, S	s sources and sour		
17	IOHR	Ι	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI				SC SI	⁶ , 12C		
18	Pow	er	Vss	Ground connection				<u>u</u>	CLK		
19	I/O		D+	USB D+					Al, Al,		
20	I/O		D-	USB D-							
21	Pow	er	Vdd	Supply voltage							
22	IOHR	I	P1[0]	ISSP DATA ⁽¹⁾ , I2C SDA, SPI CLK							
23	IOHR	I	P1[2]		Pin No.	Digital	Analog	Name	Description		
24	IOHR	Ι	P1[4]	Optional external clock input (EXTCLK)	37	IOH	Ι	P0[0]			
25	IOHR		P1[6]		38	IOH	Ι	P0[2]			
26	Inpu	ut	XRES	Active high external reset with internal pull down	39	IOH	I	P0[4]			
27	I/O	Ι	P3[0]		40	IOH	Ι	P0[6]			
28	I/O	-	P3[2]		41	Pow	rer	Vdd	Supply voltage		
29	I/O	Ι	P3[4]		42			OCDO	OCD even data I/O		
30	I/O	Ι	P3[6]		43			OCDE	OCD odd data output		
31	I/O	I	P4[0]		44	IOH	Ι	P0[7]			
32	I/O	Ι	P4[2]		45	IOH	Ι	P0[5]			
33	I/O	Ι	P2[0]		46	IOH	Ι	P0[3]	Integrating input		
34	I/O	I	P2[2]		47	Pow	rer	Vss	Ground connection		
35	I/O	Ι	P2[4]		48	IOH	Ι	P0[1]			
36	I/O		P2[6]		CP	Pow	er	Vss	Center pad must be connected to ground		

Table 10. Pin Definitions - CY8C20066 PSoC Device ^[2, 3]

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Note

4. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x36/46/66/96 PSoC devices. For the latest electrical specifications, confirm that you have the most recent data sheet by visiting the web at http://www.cypress.com/psoc.

The following table lists the units of measure that are used in this section.

Table 11. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	mA	milli-ampere
dB	decibels	ms	milli-second
fF	femto farad	mV	milli-volts
Hz	hertz	nA	nanoampere
KB	1024 bytes	ns	nanosecond
Kbit	1024 bits	nV	nanovolts
kHz	kilohertz	Ω	ohm
ksps	kilo samples per second	pA	picoampere
kΩ	kilohm	pF	picofarad
MHz	megahertz	рр	peak-to-peak
MΩ	megaohm	ppm	parts per million
μΑ	microampere	ps	picosecond
μF	microfarad	sps	samples per second
μН	microhenry	S	sigma: one standard deviation
μs	microsecond	V	volts
μW	microwatts		

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 14. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Vdd	Supply Voltage	Refer the table DC POR and LVD Specifications on page 24	1.71	-	5.5	V
I _{DD24}	Supply Current, IMO = 24 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	2.88	4.0	mA
I _{DD12}	Supply Current, IMO = 12 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	1.71	2.6	mA
I _{DD6}	Supply Current, IMO = 6 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	-	1.16	1.8	mA
I _{SB0}	Deep Sleep Current	Vdd = 3.0V, T _A = 25°C, I/O regulator turned off	-	0.1	-	μΑ
I _{SB1}	Standby Current with POR, LVD and Sleep Timer	Vdd = 3.0V, T _A = 25°C, I/O regulator turned off	_	1.07	1.5	μA

DC General Purpose IO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0V to 5.5V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, 2.4V to 3.0V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 1.71V to 2.4V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 15. 3.0V to 5.5V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull up Resistor		4	5.6	8	kΩ
V _{OH1}	High Output Voltage Port 2 or 3 Pins	IOH \leq 10 μ A, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	_	V
V _{OH2}	High Output Voltage Port 2 or 3 Pins	IOH = 1 mA, maximum of 20 mA source current in all IOs	Vdd - 0.9	_	-	V
V _{OH3}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH < 10 μ A, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	-	V
V _{OH4}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 5 mA, maximum of 20 mA source current in all IOs	Vdd - 0.9	_	-	V
V _{OH5}	High Output Voltage Port 1 Pins with LDO Regulator Enabled for 3V Out	IOH < 10 μ A, Vdd > 3.1V, maximum of 4 IOs all sourcing 5 mA	2.85	3.00	3.3	V
V _{OH6}	High Output Voltage Port 1 Pins with LDO Regulator Enabled for 3V Out	IOH = 5 mA, Vdd > 3.1V, maximum of 20 mA source current in all IOs	2.20	_	_	V
V _{OH7}	High Output Voltage Port 1 Pins with LDO Enabled for 2.5V Out	IOH < 10 μA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	2.35	2.50	2.75	V
V _{OH8}	High Output Voltage Port 1 Pins with LDO Enabled for 2.5V Out	IOH = 2 mA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.90	_	-	V
V _{OH9}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH < 10 μ A, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.60	1.80	2.1	V

Table 15. 3.0V to 5.5V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{OH10}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH = 1 mA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.20	-	-	V
V _{OL}	Low Output Voltage	IOL = 25 mA, Vdd > 3.3V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	_	0.75	V
V _{IL}	Input Low Voltage		-	_	0.80	V
V _{IH}	Input High Voltage		2.00	_		V
V _H	Input Hysteresis Voltage		-	80	-	mV
IIL	Input Leakage (Absolute Value)		-	0.001	1	μA
C _{PIN}	Pin Capacitance	Package and pin dependent Temp = 25°C	0.5	1.7	5	pF

Table 16. 2.4V to 3.0V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull up Resistor		4	5.6	8	kΩ
V _{OH1}	High Output Voltage Port 2 or 3 Pins	IOH < 10 μA, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	_	V
V _{OH2}	High Output Voltage Port 2 or 3 Pins	IOH = 0.2 mA, maximum of 10 mA source current in all IOs	Vdd - 0.4	-	_	V
V _{OH3}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH < 10 μA, maximum of 10 mA source current in all IOs	Vdd - 0.2	-	-	V
V _{OH4}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 2 mA, maximum of 10 mA source current in all IOs	Vdd - 0.5	-	-	V
V _{OH5A}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH < 10 μA, Vdd > 2.4V, maximum of 20 mA source current in all IOs	1.50	1.80	2.1	V
V _{OH6A}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH = 1 mA, Vdd > 2.4V, maximum of 20 mA source current in all IOs	1.20	-	-	V
V _{OL}	Low Output Voltage	IOL = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	-	0.75	V
V _{IL}	Input Low Voltage		-	-	0.72	V
V _{IH}	Input High Voltage		1.4	-		V
V _H	Input Hysteresis Voltage		_	80	_	mV
IIL	Input Leakage (Absolute Value)		_	0.001	1	μA
C _{PIN}	Capacitive Load on Pins	Package and pin dependent Temp = 25 ^o C	0.5	1.7	5	pF

Table 17. 1.71V to 2.4V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull up Resistor		4	5.6	8	kΩ
V _{OH1}	High Output Voltage Port 2 or 3 Pins	IOH = 10 μA, maximum of 10 mA source current in all I/Os	Vdd - 0.2	-	_	V
V _{OH2}	High Output Voltage Port 2 or 3 Pins	IOH = 0.5 mA, maximum of 10 mA source current in all I/Os	Vdd - 0.5	-	_	V
V _{OH3}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 100 μA, maximum of 10 mA source current in all I/Os	Vdd - 0.2	-	-	V
V _{OH4}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 2 mA, maximum of 10 mA source current in all I/Os	Vdd - 0.5	-	-	V
V _{OL}	Low Output Voltage	IOL = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.4	V
V _{IL}	Input Low Voltage		-	-	0.3 x Vdd	V
VIH	Input High Voltage		0.65 x Vdd	_		V

Comparator User Module Electrical Specifications

The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: $-40^{\circ}C \le TA \le 85^{\circ}C$, $1.71V \le Vdd \le 5.5V$.

Table 21.	Comparator	User	Module	Electrical	Specifications
	oomparator	0301	modulo	LICCUICUI	opeenications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator Response Time	50 mV overdrive		70	100	ns
Offset				2.5	30	mV
Current		Average DC current, 50 mV overdrive		20	80	μA
Depp	Supply voltage >2V	Power Supply Rejection Ratio		80		dB
FORR	Supply voltage <2V	Power Supply Rejection Ratio		40		dB
Input Range			0		1.5	V

ADC Electrical Specifications

Table 22. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input						
V _{IN}	Input Voltage Range	This gives 72% of maximum code	Vss		1.3	V
C _{IN}	Input Capacitance				5	pF
RES	Resolution	Settings 8, 9, or 10	8		10	Bits
S8	8-Bit Sample Rate	Data Clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)		23.4375		ksps
S10	10-Bit Sample Rate	Data Clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)		5.859		ksps
DC Accura	асу					
DNL ^[5]	Differential Nonlinearity	For any configuration	-1		+2	LSB
INL	Integral Nonlinearity	For any configuration	-2		+2	LSB
Eoffset	Offset Error		0	15	90	mV
I _{ADC}	Operating Current			275	350	μA
F _{CLK}	Data Clock	Source is chip's internal main oscillator. See device data sheet for accuracy.	2.25		12	MHz
PSRR	Power Supply Rejection Ration					
	PSRR (Vdd>3.0V)			24	dB	
	PSRR (2.2 < Vdd < 3.0)			30	dB	
	PSRR (2.0 < Vdd < 2.2)			12	dB	
	PSRR (Vdd < 2.0)			0	dB	
Egain	Gain Error	For any resolution	1		5	%FSR
R _{IN}	Input Resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution.	1/(500fF* Data-Clock)	1/(400fF* Data-Clock)	1/(300fF* Data-Clock)	Ω

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 23. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{PPOR0} V _{PPOR1} V _{PPOR2} V _{PPOR3}	Vdd Value for PPOR Trip PORLEV[1:0] = 00b, HPOR = 0 PORLEV[1:0] = 00b, HPOR = 1 PORLEV[1:0] = 01b, HPOR = 1 PORLEV[1:0] = 10b, HPOR = 1	Vdd must be greater than or equal to 1.71V during startup, reset from the XRES pin, or reset from watchdog.	1.61 _	1.66 2.36 2.60 2.82	1.71 2.41 2.66 2.95	> > > >
V _{LVD0} V _{LVD1} V _{LVD2} V _{LVD3} V _{LVD4} V _{LVD5} V _{LVD6} V _{LVD7}	Vdd Value for LVD Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b		2.40 ^[6] 2.64 ^[7] 2.85 ^[8] 2.95 3.06 1.84 1.75 ^[9] 4.62	2.45 2.71 2.92 3.02 3.13 1.90 1.80 4.73	2.51 2.78 2.99 3.09 3.20 2.32 1.84 4.83	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Vdd _{IWRITE}	Supply Voltage for Flash Write Operations		1.71	-	5.25	V
I _{DDP}	Supply Current During Programming or Verify		_	5	25	mA
V _{ILP}	Input Low Voltage During Programming or Verify	See the appropriate DC General Purpose IO Specifications on page 19	_	_	V _{IL}	V
V _{IHP}	Input High Voltage During Programming or Verify	See appropriate DC General Purpose IO Specifications on page 19 table on pages 15 or 16	V _{IH}	_	_	V
I _{ILP}	Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify	Driving internal pull down resistor	-	_	0.2	mA
I _{IHP}	Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify	Driving internal pull down resistor	-	-	1.5	mA
V _{OLP}	Output Low Voltage During Programming or Verify		_	-	Vss + 0.75	V
V _{OHP}	Output High Voltage During Programming or Verify	See appropriate DC General Purpose IO Specifications on page 19 table on page 16. For Vdd > 3V use V _{OH4} in Table 13 on page 18.	V _{OH}	-	Vdd	V
Flash _{ENPB}	Flash Write Endurance	Erase/write cycles per block	50,000	-	-	-
Flash _{DR}	Flash Data Retention	Following maximum Flash write cycles; ambient temperature of 55°C	10	20	_	Years

Notes

- 6. Always greater than 50 mV above V_{PPOR1} voltage for falling supply. 7. Always greater than 50 mV above V_{PPOR2} voltage for falling supply. 8. Always greater than 50 mV above V_{PPOR3} voltage for falling supply. 9. Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

AC General Purpose IO Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. **Table 26.** AC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{GPIO}	GPIO Operating Frequency	Normal Strong Mode Port 0, 1	0	-	6 MHz for 1.71V <vdd<2.4v< td=""><td>MHz</td></vdd<2.4v<>	MHz
			0	-	12 MHz for 2.4V <vdd<5.5v< td=""><td></td></vdd<5.5v<>	
TRise23	Rise Time, Strong Mode, Cload = 50 pF Ports 2 or 3	Vdd = 3.0 to 3.6V, 10% – 90%	15	-	80	ns
TRise23L	Rise Time, Strong Mode Low Supply, Cload = 50 pF, Ports 2 or 3	Vdd = 1.71 to 3.0V, 10% – 90%	15	-	80	ns
TRise01	Rise Time, Strong Mode, Cload = 50 pF Ports 0 or 1	Vdd = 3.0 to 3.6V, 10% – 90% LDO enabled or disabled	10	-	50	ns
TRise01L	Rise Time, Strong Mode Low Supply, Cload = 50 pF, Ports 0 or 1	Vdd = 1.71 to 3.0V, 10% – 90% LDO enabled or disabled	10	-	80	ns
TFall	Fall Time, Strong Mode, Cload = 50 pF All Ports	Vdd = 3.0 to 3.6V, 10% – 90%	10	-	50	ns
TFallL	Fall Time, Strong Mode Low Supply, Cload = 50 pF, All Ports	Vdd = 1.71 to 3.0V, 10% – 90%	10	-	70	ns

Figure 12. GPIO Timing Diagram

AC Programming Specifications

The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{RSCLK}	Rise Time of SCLK		1	-	20	ns
T _{FSCLK}	Fall Time of SCLK		1	-	20	ns
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK		40	-	-	ns
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK		40	-	-	ns
F _{SCLK}	Frequency of SCLK		0	-	8	MHz
T _{ERASEB}	Flash Erase Time (Block)		-	-	18	ms
T _{WRITE}	Flash Block Write Time		-	-	25	ms
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	3.6 < Vdd	-	-	60	ns
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	$3.0 \leq Vdd \leq 3.6$	-	-	85	ns
T _{DSCLK2}	Data Out Delay from Falling Edge of SCLK	$1.71 \leq Vdd \leq 3.0$	-	-	130	ns
T _{XRST3}	External Reset Pulse Width after Power Up	Required to enter programming mode when coming out of sleep	263	-	-	μs

Table 32. AC Programming Specifications

AC I2C Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 33. AC Characteristics of the I2C SDA and SCL Pins

Symbol	Description	Standard Mode		Fast Mode		Units
					Max	
F _{SCLI2C}	SCL Clock Frequency	0	100	0	400	kHz
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μS
T _{LOWI2C}	LOW Period of the SCL Clock	4.7	-	1.3	-	μS
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	-	0.6	-	μS
T _{SUSTAI2C}	Setup Time for a Repeated START Condition	4.7	-	0.6	-	μS
T _{HDDATI2C}	Data Hold Time	0	-	0		μS
T _{SUDATI2C}	Data Setup Time	250	1	100 ^[11]	1	ns
T _{SUSTOI2C}	Setup Time for STOP Condition	4.0	-	0.6	-	μS
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition	4.7	_	1.3	-	μS
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	-	-	0	50	ns

Note

11. A Fast-Mode I2C-bus device can be used in a Standard Mode I2C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU:DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

Figure 19. 48-Pin (7x7 mm) QFN

Important Notes

- For information on the preferred dimensions for mounting QFN packages, see the following Application Note at http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.
- Pinned vias for thermal conduction are not required for the low power PSoC device.

Device Programmers

All device programmers are purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- Three Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

Accessories (Emulation and Programming)

Table 38. Emulation and Programming Accessories

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Part Number	Pin Package	Flex-Pod Kit ^[15]	Foot Kit ^[16]	Adapter ^[17]
CY8C20236-24LKXI	16 QFN	CY3250-20266QFN	CY3250-16QFN-RK	See note 15
CY8C20246-24LKXI	16 QFN	CY3250-20266QFN	CY3250-16QFN-FK	See note 17
CY8C20336-24LQXI	24 QFN	CY3250-20366QFN	CY3250-24QFN-FK	See note 15
CY8C20346-24LQXI	24 QFN	CY3250-20366QFN	CY3250-24QFN-FK	See note 17
CY8C20396-24LQXI	24 QFN		Not Available	·
CY8C20436-24LQXI	32 QFN	CY3250-20466QFN	CY3250-32QFN-RK	See note 15
CY8C20446-24LQXI	32 QFN	CY3250-20466QFN	CY3250-32QFN-FK	See note 17
CY8C20466-24LQXI	32 QFN	CY3250-20466QFN	CY3250-32QFN-FK	See note 17
CY8C20496-24LQXI	32 QFN		Not Available	·
CY8C20536-24PVXI	48 SSOP	CY3250-20X66	CY3250-48SSOP-FK	See note 17
CY8C20546-24PVXI	48 SSOP	CY3250-20X66	CY3250-48SSOP-FK	See note 17
CY8C20566-24PVXI	48 SSOP	CY3250-20X66	CY3250-48SSOP-FK	See note 17
CY8C20636-24LTXI	48 QFN	CY3250-20666QFN	CY3250-48QFN-FK	See note 17
CY8C20646-24LTXI	48 QFN	CY3250-20666QFN	CY3250-48QFN-FK	See note 17
CY8C20666-24LTXI	48 QFN	CY3250-20666QFN	CY3250-48QFN-FK	See note 17

Third-Party Tools

Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.

Build a PSoC Emulator into Your Board

For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, refer Application Note "Debugging - Build a PSoC Emulator into Your Board - AN2323" at http://www.cypress.com/?rID2748.

Notes

16. Foot kit includes surface mount feet that can be soldered to the target PCB.

^{15.} Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

^{17.} Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

Document History Page

Document Document	t Title: CY8 t Number: (C20x36/46/66/96 Ca 001-12696	apSense [®] Application	S
Revision	ECN	Origin of Change	Submission Date	Description of Change
**	766857	HMT	See ECN	New silicon and document (Revision **).
*A	1242866	НМТ	See ECN	Add features. Update all applicable sections. Update specs. Fix 24-pin QFN pinout moving pins inside. Update package revisions. Update and add to Emulation and Programming Accessories table.
*В	2174006	AESA	See ECN	Added 48-Pin SSOP Part Pinout Modified symbol R_{VDD} to R_{GND} in Table DC Analog Mux Bus Specification Added footnote in Table DC Analog Mux Bus Specification Added 16K FLASH Parts. Updated Notes, Package Diagrams and Ordering Information table. Updated Thermal Impedance and Solder Reflow tables
*C	2587518	TOF/JASM/MNU/ HMT	10/13/08	Converted from Preliminary to Final Fixed broken links. Updated data sheet template. Added operating voltage ranges with USB ADC resolution changed from 10-bit to 8-bit Included ADC specifications table Included Comparator specification table Included Voh7, Voh8, Voh9, Voh10 specs Flash data retention – condition added to Note Input leakage spec changed to 1 µA max GPIO rise time for ports 0,1 and ports 2,3 made common AC Programming specifications updated Included AC Programming cycle timing diagram AC SPI specification updated The VIH for 3.0 <vdd<2.4 1.6="" 2.0<br="" changed="" from="" to="">Added USB specification Added SPI CLK to P1[0] Updated package diagrams Updated thermal impedances for QFN packages Updated F_{GPIO} parameter in Table 23 Updated voltage ranges for F_{SPIM} and F_{SPIS} in Table 30 Update Development Tools, add Designing with PSoC Designer. Edit, fix links, notes and table format. Update R_{IN} formula, fix TRise parameter names in GPIO figure, fix Switch Rate note. Update maximum data in Table 20. DC POR and LVD Specifications.</vdd<2.4>
*D	2649637	SNV/AESA	03/17/2009	Changed title to "CY8C20x36/46/66, CY8C20396 CapSense™ Applications". Updated data sheet Features, pin information, and ordering information sections. Updated package diagram 001-42168 to *C.
*E	2700196	SNV/PYRS	04/30/2009	Added part numbers CY8C20496, CY8C20536, CY8C20546, CY8C20636, CY8C20646 Updated Features on page 1 Added 48-Pin QFN without USB pin Diagram and Pin Definition table Added 32-Pin QFN (with USB) package Added SPI Master and Slave AC Specificatons Updated Emulations and Programming Accessories Table on page 33 Updated Ordering Information on page 37 Removed reference to Hi-Tech C Compiler in Development Tool Selection on page 35

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products		PSOC Solutions	
PSoC	psoc.cypress.com	General	psoc.cypress.com/solutions
Clocks & Buffers	clocks.cypress.com	Low Power/Low Voltage	psoc.cypress.com/low-power
Wireless	wireless.cypress.com	Precision Analog	psoc.cypress.com/precision-analog
Memories	memory.cypress.com	LCD Drive	psoc.cypress.com/lcd-drive
Image Sensors	image.cypress.com	CAN 2.0b	psoc.cypress.com/can
		USB	psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2007-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-12696 Rev. *E

Revised April 24, 2009

Page 39 of 39

PSoC Designer[™] is a trademark and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document may be the trademarks of their respective holders.