

Welcome to **E-XFL.COM**

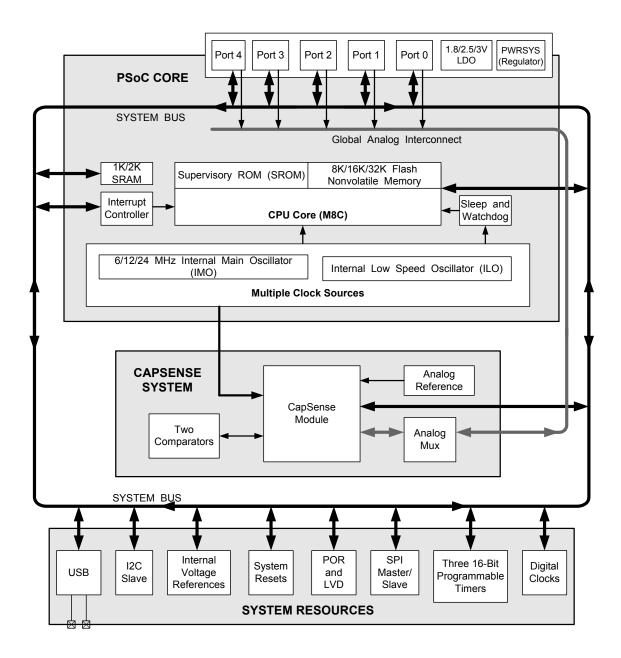
<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance officiency, and functionality to meet the

performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers - Application Specific</u>?

Application charific microcontrollars are anaineared to


Details	
Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (32kB)
Controller Series	CY8C20xx6
RAM Size	2K x 8
Interface	I ² C, SPI
Number of I/O	28
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20466-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

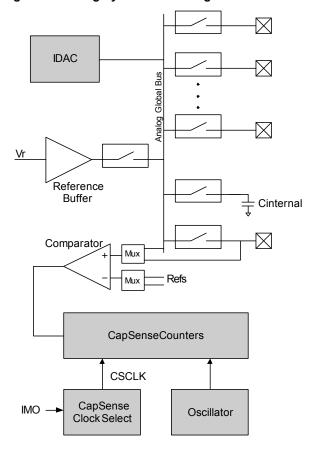
PSoC® Functional Overview

The PSoC family consists of on-chip Controller devices. These devices are designed to replace multiple traditional MCU-based components with one, low cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The architecture for this device family, as shown in the Logic Block Diagram on page 2, is comprised of three main areas: the Core, the CapSense Analog System, and the System Resources (including a full speed USB port). A common, versatile bus allows connection between I/O and the analog system. Each CY8C20x36/46/66/96 PSoC Device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 36 general purpose IO (GPIO) are also included. The GPIO provides access to the MCU and analog mux.

PSoC Core

The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO (internal main oscillator) and ILO (internal low speed oscillator). The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard architecture microprocessor.


System Resources provide additional capability, such as configurable USB and I2C slave/SPI master-slave communication interface, three 16-bit programmable timers, and various system resets supported by the M8C.

The Analog System is composed of the CapSense PSoC block and an internal 1.2V analog reference, which together support capacitive sensing of up to 36 inputs.

CapSense Analog System

The Analog System contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports.

Figure 1. Analog System Block Diagram

Analog Multiplexer System

The Analog Mux Bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.

Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces, such as sliders and touchpads.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

When designing capacitive sensing applications, refer to the latest signal-to-noise signal level requirements Application Notes, which can be found under http://www.cypress.com > Documentation > Application Notes. In general, and unless otherwise noted in the relevant Application Notes, the minimum signal-to-noise ratio (SNR) for CapSense applications is 5:1.

Additional System Resources

System Resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The merits of each system resource are listed here:

- The I2C slave/SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- The I2C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power-On-Reset) circuit eliminates the need for a system supervisor.
- An internal reference provides an absolute reference for capacitive sensing.
- A register-controlled bypass mode allows the user to disable the LDO.
- Standard Cypress PSoC IDE tools are available for debugging the CY8C20x36/46/66/96 family of parts. However, the additional trace length and a minimal ground plane in the Flex-Pod can create noise problems that make it difficult to debug the design. A custom bonded On-Chip Debug (OCD) device is available in an 48-pin QFN package. The OCD device is recommended for debugging designs that have high current and/or high analog accuracy requirements. The QFN package is compact and is connected to the ICE through a high density connector.

Getting Started

The quickest way to understand PSoC silicon is to read this data sheet and then use the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the PSoC® Programmable System-on-Chip Technical Reference Manual for CY8C20x36/46/66/96 PSoC Devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device data sheets on the web at www.cypress.com/psoc.

Application Notes

Application notes are an excellent introduction to the wide variety of possible PSoC designs. They are located here: www.cypress.com/psoc. Select Application Notes under the Documentation tab.

Development Kits

PSoC Development Kits are available online from Cypress at www.cypress.com/shop and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops) is available online at www.cypress.com/training. The training covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to www.cypress.com/cypros.

Solutions Library

Visit our growing library of solution focused designs at www.cypress.com/solutions. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

For assistance with technical issues, search KnowledgeBase articles and forums at www.cypress.com/support. If you cannot find an answer to your question, call technical support at 1-800-541-4736.

Development Tools

PSoC Designer is a Microsoft® Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows XP and Windows Vista.

This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and built-in support for third-party assemblers and C compilers.

PSoC Designer also supports C language compilers developed specifically for the devices in the PSoC family.

PSoC Designer Software Subsystems

System-Level View

The system-level view is a drag-and-drop visual embedded system design environment based on PSoC Express. In this view you solve design problems the same way you might think about the system. Select input and output devices based upon system requirements. Add a communication interface and define the interface to the system (registers). Define when and how an output device changes state based upon any/all other system devices. Based upon the design, PSoC Designer automatically selects one or more PSoC devices that match your system requirements.

PSoC Designer generates all embedded code, then compiles and links it into a programming file for a specific PSoC device.

Chip-Level View

The chip-level view is a more traditional integrated development environment (IDE) based on PSoC Designer 4.x. You choose a base device to work with and then select different onboard analog and digital components called user modules that use the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters. You configure the user modules for your chosen application and connect them to each other and to the proper pins. Then you generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration allows for changing configurations at run time.

Hybrid Designs

You can begin in the system-level view, allow it to choose and configure your user modules, routing, and generate code, then switch to the chip-level view to gain complete control over onchip resources. All views of the project share common code editor, builder, and common debug, emulation, and programming tools.

Code Generation Tools

PSoC Designer supports multiple third-party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours.

Assemblers. The assemblers allow assembly code to be merged seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices.

The optimizing C compilers provide all the features of C tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and program and read and write data memory, read and write I/O registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help for the user. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer in getting started.

In-Circuit Emulator

A low cost, high functionality In-Circuit Emulator (ICE) is available for development support. This hardware has the capability to program single devices.

The emulator consists of a base unit that connects to the PC by way of a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24 MHz) operation.

Pinouts

The CY8C20x36/46/66/96 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O and connection to the common analog bus. However, Vss, Vdd, and XRES are not capable of Digital I/O.

16-Pin QFN (No E-Pad)

Table 2. Pin Definitions - CY8C20236, CY8C20246 PSoC Device [2]

Pin	Ту	pe	Name	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	IOHR	I	P1[7]	I2C SCL, SPI SS
4	IOHR	I	P1[5]	I2C SDA, SPI MISO
5	IOHR	I	P1[3]	SPI CLK
6	IOHR	I	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI
7	Po	wer	Vss	Ground connection
8	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK
9	IOHR	I	P1[2]	
10	IOHR	I	P1[4]	Optional external clock (EXTCLK)
11	In	put	XRES	Active high external reset with internal pull down
12	IOH	I	P0[4]	
13	Po	wer	Vdd	Supply voltage
14	IOH	I	P0[7]	
15	IOH	I	P0[3]	Integrating input
16	IOH	I	P0[1]	Integrating input

AI, XOut, P2[5]
AI, XIn, P2[3]
AI, 2C SCL, SPI SS, P1[7]
AI, 2C SDA, SPI MISO, P1[5]

AI, 12C SDA, SPI MISO, P1[5]

AI, 15C SDA, SPI MISO, P1[5]

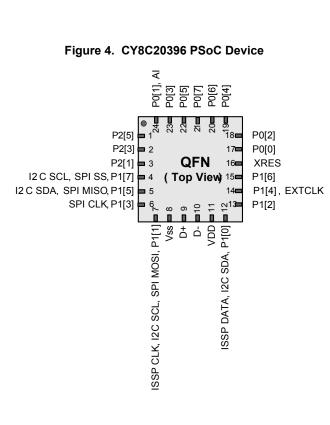
Figure 2. CY8C20236, CY8C20246 PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

^{1.} These are the ISSP pins, which are not High Z at POR (Power On Reset).

^{2.} During power up or reset event, device P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter any issues.



24-Pin QFN with USB

Table 4. Pin Definitions - CY8C20396 PSoC Device [2, 3]

Pin No.	Тур	ре	Nome	Description
PIII NO.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	
2	I/O	I	P2[3]	
3	I/O	I	P2[1]	
4	IOHR	I	P1[7]	I2C SCL, SPI SS
5	IOHR	I	P1[5]	I2C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK, I2C SCL, SPI MOSI
8	Pow	/er	VSS	Ground
9	I/O	I	D+	USB D+
10	I/O	I	D-	USB D-
11	Pow	ver	VDD	Supply
12	IOHR	I	P1[0]	ISSP DATA, I2C SDA
13	IOHR	I	P1[2]	
14	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
15	IOHR	I	P1[6]	
16	RESET	INPUT	XRES	Active high external reset with internal pull down
17	IOH	I	P0[0]	
18	IOH	I	P0[2]	
19	IOH	I	P0[4]	
20	IOH	I	P0[6]	
21	IOH	I	P0[7]	
22	IOH	I	P0[5]	
23	IOH	I	P0[3]	Integrating input
24	IOH	I	P0[1]	Integrating input
СР	Pow	ver	VSS	Thermal pad must be connected to Ground

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

32-Pin QFN (with USB)

Table 6. Pin Definitions - CY8C20496 PSoC Device [2, 3]

Pin	Ту	/pe	Mama	Description
No.	Digital	Analog	Name	Description
1	IOH	ı	P0[1]	
2	I/O	I	P2[5]	XTAL Out
3	I/O	I	P2[3]	XTAL In
4	I/O	I	P2[1]	
5	IOHR	I	P1[7]	I2C SCL, SPI SS
6	IOHR	I	P1[5]	I2C SDA, SPI MISO
7	IOHR	I	P1[3]	SPI CLK
8	IOHR	I	P1[1]	TC CLK, I2C SCL, SPI MOSI
9	Po	wer	V_{SS}	Ground Pin
10		!	D+	USB PHY
11		I	D-	USB PHY
12	Po	wer	Vdd	Power pin
13	IOHR	I	P1[0]	TC DATA*, I2C SDA, SPI CLKI
14	IOHR	I	P1[2]	
15	IOHR	I	P1[4]	EXTCLK
16	IOHR	I	P1[6]	
17	In	put	XRES	Active high external reset with internal pull down
18	I/O	I	P3[0]	
19	I/O	I	P3[2]	
20	I/O	I	P2[0]	
21	I/O	I	P2[2]	
22	I/O	I	P2[4]	
23	I/O	I	P2[6]	
24	IOH	I	P0[0]	
25	IOH	I	P0[2]	
26	IOH	I	P0[4]	
27	IOH	I	P0[6]	
28	Po	wer	Vdd	Power Pin
29	IOH	I	P0[7]	
30	IOH	I	P0[5]	
31	IOH	I	P0[3]	
32	Po	wer	Vss	Ground Pin

Figure 5. CY8C20496 PSoC Device Vss Po[3], Al Po[5], Al Po[7], Al Vdd Po[6], Al Po[4], Al AI, P0[1] P0[0], AI P2[6], AI P2[4], AI P2[2], AI P2[0], AI XTAL OUT, P2[5] 23= XTAL IN , P2[3] 22= AI, P2[1] **QFN** 21= I2C SCL, SPI SS, P1[7] 20₌ (Top View) I2C SDA, SPI MISO, P1[5] 19= P3[2], AI SPI CLK , P1[3] 7
TC CLK , I2C SCL , SPI MOSI, P1[1] 8 8 9 9 P3[0], AI 18= XRES VSS USB PHY, D+ USB PHY, D+ USB PHY D- USB P

 $\textbf{LEGEND} \quad \text{A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.}$

Document Number: 001-12696 Rev. *E Page 12 of 39

48-Pin SSOP

Table 7. Pin Definitions - CY8C20536, CY8C20546, and CY8C20566 PSoC Device $\ensuremath{^{[2]}}$

Pin No.	Digital	Analog	Name	Description	Figu	ıre 6.	CY8	C20536	, CY8C205	546, a	nd CY8C20566 PSoC Device
Pin	Dig	Ana	Name	Bescription				AI, P0[7] 1		48 V DD
1	IOH		P0[7]						5] = 2 3] = 3		47 P0[6], AI 46 P0[4], AI
2	IOH	I	P0[5]					Al Po[1] = 4 7] = 5		45 P0[2], AI
3	IOH	I	P0[3]				XT	ALOUT, P2I	51= 6		44 P0[0], AI 43 P2[6], AI
4	IOH	I	P0[1]				Х	TALIN, P2[3 AI, P2[1	7		42 P2[4], AI
5	I/O	I	P2[7]						C = 9		41 P2[2], AI 40 P2[0], AI
6	I/O	I	P2[5]	XTAL Out					C ■ 10 3]■ 11		39 P3[6], AI
7	I/O	I	P2[3]	XTAL In					41 40	SOP	38 P3[4], AI 37 P3[2], AI
8	I/O	I	P2[1]						C = 13 7]= 14	JOF	36 P3[0], AI 35 XRES
9			NC	No connection					7] = 14 5] = 15		35 NC
10			NC	No connection				AI, P3[3]= 16		33 - NC
11	I/O	I	P4[3]						1]■ 17 C ■ 18		32 NC 31 NC
12	I/O	I	P4[1]			100	2001	N	C 🗖 19		30 NC
13			NC	No connection		I2C S	DA, SP	SPI SS, P1['I MISO, P1[7] = 20 5] = 21		29 NC 28 P1[6], AI
14	I/O	I	P3[7]				5	PI CLK, P1	31= 22		27 P1[4], EXT CLK
15	I/O	I	P3[5]		TC CL	K, 12C S	SCL, SP	NOSI, P1[VS	1]■ 23 S■ 24		26 P1[2], AI 25 P1[0], TC DATA, I2C SDA, SPI CLK
16	I/O	I	P3[3]								20
17	I/O	I	P3[1]								
18			NC	No connection							
19			NC	No connection							
20	IOHR	I	P1[7]	I2C SCL, SPI SS							
21	IOHR	I	P1[5]	I2C SDA, SPI MISO							
22	IOHR	I	P1[3]	SPI CLK							
23	IOHR	I	P1[1]	TC CLK ^[1] , I2C SCL, SPI MOSI							
24			VSS	Ground Pin							
25	IOHR	I	P1[0]	TC DATA ^[1] , I2C SDA, SPI CLK							
26	IOHR	I	P1[2]								
27	IOHR	I	P1[4]	EXT CLK							
28	IOHR	I	P1[6]								
29			NC	No connection							
30			NC	No connection							
31			NC	No connection							
32			NC	No connection	Pin No.	Digital	Analog	Name			Description
33			NC	No connection	41	I/O	I	P2[2]			
34			NC	No connection	42	I/O	I	P2[4]			
35			XRES	Active high external reset with internal pull down	43	I/O	I	P2[6]			
36	I/O	I	P3[0]		44	IOH	I	P0[0]			
37	I/O	1	P3[2]		45	IOH	I	P0[2]			
38	I/O	1	P3[4]		46	IOH	I	P0[4]			
39	I/O	I	P3[6]		47	IOH	I	P0[6]			
40	I/O	I	P2[0]		48	Powe	er	Vdd	Power Pin		

 $\textbf{LEGEND} \ \ A = Analog, \ I = Input, \ O = Output, \ NC = No \ Connection, \ H = 5 \ mA \ High \ Output \ Drive, \ R = Regulated \ Output \ Option.$

Document Number: 001-12696 Rev. *E Page 13 of 39

48-Pin QFN with USB

Table 9. Pin Definitions - CY8C20646, CY8C20666 PSoC Device $^{[2,\;3]}$

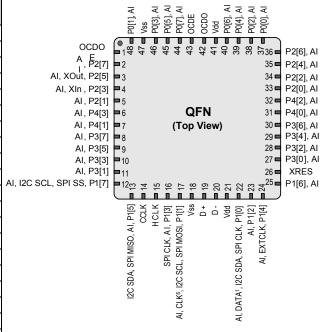
Pin No.	Digital	Analog	Name	Description
1			NC	No connection
2	I/O	I	P2[7]	
3	I/O	ı	P2[5]	Crystal output (XOut)
4	I/O	I	P2[3]	Crystal input (XIn)
5	I/O	I	P2[1]	
6	I/O	I	P4[3]	
7	I/O	ı	P4[1]	
8	I/O	ı	P3[7]	
9	I/O	ı	P3[5]	
10	I/O	ı	P3[3]	
11	I/O	I	P3[1]	
12	IOHR	ı	P1[7]	I2C SCL, SPI SS
13	IOHR	ı	P1[5]	I2C SDA, SPI MISO
14			NC	No connection
15			NC	No connection
16	IOHR	ı	P1[3]	SPI CLK
17	IOHR	ı	P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI
18	Pow	er	Vss	Ground connection
19	I/O		D+	USB D+
20	I/O		D-	USB D-
21	Pow	er	Vdd	Supply voltage
22	IOHR	I	P1[0]	ISSP DATA ^[1] , I2C SDA, SPI CLK
23	IOHR	ı	P1[2]	
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
25	IOHR	ı	P1[6]	
26	Inp	ut	XRES	Active high external reset with internal pull down
27	I/O	I	P3[0]	
28	I/O	ı	P3[2]	
29	I/O	I	P3[4]	

Figure 8. CY8C20646, CY8C20666 PSoC Device Vss P0[3], P0[7], NC NC NC Vdd P0[6], P0[4], ## 7 4 4 6 % % % % 36 P2[6], AI 35 P2[4],AI AI, P2[7] AI, XOut, P2[5] 34 P2[2],AI 33 = P2[0],AI 32 = P4[2],AI AI, XIn, P2[3] AI, P2[1] **QFN** AI, P4[3] 31 P4[0],AI AI, P4[1] 30 = P3[6],AI 29 = P3[4], AI 28 = P3[2],AI (Top View) AI, P3[7] AI, P3[5] AI, P3[3] 10 27 P3[0], AI AI, P3[1] XRES 26 AI, I2C SCL, SPI SS, P1[7] 12€ P1[6], AI NC SPI CLK, A1, P1(3) SCL, SPI MOSI, P1(1) SCL, SPI WOSI, VSS D + B D - B C Vdd AI, DATA', I2C SDA, SPI CLK, P1[0] AI, P1[2] AI, EXTCLK, P1[4] 12C SDA, SPI MISO, A I, P1[5] AI, CLK6, I2C SCL, SPI MOSI,

Analog Digital Pin Name Description No. 30 I/O P3[6] 40 ЮН P0[6] I/O P4[0] 41 31 Power Vdd Supply voltage 32 I/O 42 NC P4[2] No connection 33 I/O P2[0] 43 NC No connection 34 I/O P2[2] 44 ЮН P0[7] 1 35 I/O P2[4] 45 IOH P0[5] I/O 46 P0[3] 36 Ι P2[6] IOH Ι Integrating input 37 ЮН P0[0] 47 Power Vss Ground connection 38 ЮН P0[2] 48 IOH I P0[1] 39 IOH P0[4] CP Power Vss Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Document Number: 001-12696 Rev. *E Page 15 of 39


48-Pin QFN OCD

The 48-pin QFN part is for the CY8C20066 On-Chip Debug (OCD) PSoC device. Note that this part is only used for in-circuit debugging. $^{[4]}$

Table 10. Pin Definitions - CY8C20066 PSoC Device [2, 3]

Pin No.	Digital	Analog	Name	Description
1			OCDOE	OCD mode direction pin
2	I/O	ı	P2[7]	
3	I/O	ı	P2[5]	Crystal output (XOut)
4	I/O	ı	P2[3]	Crystal input (XIn)
5	I/O	ı	P2[1]	
6	I/O	ı	P4[3]	
7	I/O	ı	P4[1]	
8	I/O	ı	P3[7]	
9	I/O		P3[5]	
10	I/O		P3[3]	
11	I/O		P3[1]	
12	IOHR		P1[7]	I2C SCL, SPI SS
13	IOHR		P1[5]	I2C SDA, SPI MISO
14			CCLK	OCD CPU clock output
15			HCLK	OCD high speed clock output
16	IOHR	ı	P1[3]	SPI CLK.
17	IOHR		P1[1]	ISSP CLK ^[1] , I2C SCL, SPI MOSI
18	Pow	er	Vss	Ground connection
19	I/O		D+	USB D+
20	I/O		D-	USB D-
21	Pow	er	Vdd	Supply voltage
22	IOHR	I	P1[0]	ISSP DATA ⁽¹⁾ , I2C SDA, SPI CLK
23	IOHR	ı	P1[2]	

Figure 9. CY8C20066 PSoC Device

22	IOHR	ı	P1[0]	ISSP DATA ⁽¹⁾ , I2C SDA, SPI CLK					
23	IOHR	I	P1[2]		Pin No.	Digital	Analog	Name	Description
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)	37	IOH	I	P0[0]	
25	IOHR	I	P1[6]		38	IOH	- 1	P0[2]	
26	Inpu	ut	XRES	Active high external reset with internal pull down	39	IOH	IOH I PO		
27	I/O	ı	P3[0]		40	IOH	I	P0[6]	
28	I/O	I	P3[2]		41	Pow	er	Vdd	Supply voltage
29	I/O	I	P3[4]		42			OCDO	OCD even data I/O
30	I/O	I	P3[6]		43			OCDE	OCD odd data output
31	I/O	I	P4[0]		44	IOH	I	P0[7]	
32	I/O	I	P4[2]		45	IOH	I	P0[5]	
33	I/O	I	P2[0]		46	IOH	I	P0[3]	Integrating input
34	I/O	I	P2[2]		47	Power Vss		Vss	Ground connection
35	I/O	I	P2[4]		48	IOH	I	P0[1]	
36	I/O	I	P2[6]		CP	Pow	er	Vss	Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Note

Document Number: 001-12696 Rev. *E

^{4.} This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x36/46/66/96 PSoC devices. For the latest electrical specifications, confirm that you have the most recent data sheet by visiting the web at http://www.cypress.com/psoc.

Figure 10. Voltage versus CPU Frequency

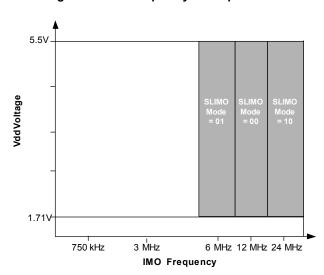



Figure 11. IMO Frequency Trim Options

The following table lists the units of measure that are used in this section.

Table 11. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	mA	milli-ampere
dB	decibels	ms	milli-second
fF	femto farad	mV	milli-volts
Hz	hertz	nA	nanoampere
KB	1024 bytes	ns	nanosecond
Kbit	1024 bits	nV	nanovolts
kHz	kilohertz	Ω	ohm
ksps	kilo samples per second	рА	picoampere
kΩ	kilohm	pF	picofarad
MHz	megahertz	рр	peak-to-peak
MΩ	megaohm	ppm	parts per million
μΑ	microampere	ps	picosecond
μF	microfarad	sps	samples per second
μН	microhenry	S	sigma: one standard deviation
μS	microsecond	V	volts
μW	microwatts		

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 14. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Vdd	Supply Voltage	Refer the table DC POR and LVD Specifications on page 24	1.71	_	5.5	V
I _{DD24}	Supply Current, IMO = 24 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	2.88	4.0	mA
I _{DD12}	Supply Current, IMO = 12 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	1.71	2.6	mA
I _{DD6}	Supply Current, IMO = 6 MHz	Conditions are Vdd = 3.0V, T _A = 25°C, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	-	1.16	1.8	mA
I _{SB0}	Deep Sleep Current	Vdd = $3.0V$, $T_A = 25$ °C, I/O regulator turned off	_	0.1	_	μА
I _{SB1}	Standby Current with POR, LVD and Sleep Timer	Vdd = 3.0V, T_A = 25°C, I/O regulator turned off	1	1.07	1.5	μА

DC General Purpose IO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0V to 5.5V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$, 2.4V to 3.0V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$, or 1.71V to 2.4V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 15. 3.0V to 5.5V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull up Resistor		4	5.6	8	kΩ
V _{OH1}	High Output Voltage Port 2 or 3 Pins	IOH \leq 10 μ A, maximum of 10 mA source current in all IOs	Vdd - 0.2	-	_	V
V _{OH2}	High Output Voltage Port 2 or 3 Pins	IOH = 1 mA, maximum of 20 mA source current in all IOs	Vdd - 0.9	_	_	V
V _{OH3}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH < 10 μ A, maximum of 10 mA source current in all IOs	Vdd - 0.2	_	_	V
V _{OH4}	High Output Voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 5 mA, maximum of 20 mA source current in all IOs	Vdd - 0.9	_	_	V
V _{OH5}	High Output Voltage Port 1 Pins with LDO Regulator Enabled for 3V Out	IOH < 10 μ A, Vdd > 3.1V, maximum of 4 IOs all sourcing 5 mA	2.85	3.00	3.3	V
V _{OH6}	High Output Voltage Port 1 Pins with LDO Regulator Enabled for 3V Out	IOH = 5 mA, Vdd > 3.1V, maximum of 20 mA source current in all IOs	2.20	_	_	V
V _{OH7}	High Output Voltage Port 1 Pins with LDO Enabled for 2.5V Out	IOH < 10 μA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	2.35	2.50	2.75	V
V _{OH8}	High Output Voltage Port 1 Pins with LDO Enabled for 2.5V Out	IOH = 2 mA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.90	_	_	V
V _{OH9}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH < 10 μA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.60	1.80	2.1	V

Document Number: 001-12696 Rev. *E Page 19 of 39

Table 15. 3.0V to 5.5V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{OH10}	High Output Voltage Port 1 Pins with LDO Enabled for 1.8V Out	IOH = 1 mA, Vdd > 2.7V, maximum of 20 mA source current in all IOs	1.20	_	-	V
V _{OL}	Low Output Voltage	IOL = 25 mA, Vdd > 3.3V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V _{IL}	Input Low Voltage		_	_	0.80	V
V _{IH}	Input High Voltage		2.00	_		V
V _H	Input Hysteresis Voltage		_	80	_	mV
I _{IL}	Input Leakage (Absolute Value)		_	0.001	1	μА
C _{PIN}	Pin Capacitance	Package and pin dependent Temp = 25°C	0.5	1.7	5	pF

Comparator User Module Electrical Specifications

The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: $-40^{\circ}\text{C} \le 7.71 = 1$

Table 21. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator Response Time	50 mV overdrive		70	100	ns
Offset				2.5	30	mV
Current		Average DC current, 50 mV overdrive		20	80	μA
PSRR	Supply voltage >2V	Power Supply Rejection Ratio		80		dB
FORK	Supply voltage <2V	Power Supply Rejection Ratio		40		dB
Input Range			0		1.5	V

ADC Electrical Specifications

Table 22. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input		•			•	•
V _{IN}	Input Voltage Range	This gives 72% of maximum code	Vss		1.3	V
C _{IN}	Input Capacitance				5	pF
RES	Resolution	Settings 8, 9, or 10	8		10	Bits
S8	8-Bit Sample Rate	Data Clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)		23.4375		ksps
S10	10-Bit Sample Rate Data Clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock) 5.8		Sample Rate = 0.001/			ksps
DC Accur	acy	·				
DNL ^[5]	Differential Nonlinearity	For any configuration	-1		+2	LSB
INL	Integral Nonlinearity	For any configuration	-2		+2	LSB
Eoffset	Offset Error		0	15	90	mV
I _{ADC}	Operating Current			275	350	μА
F _{CLK}	Data Clock	Source is chip's internal main oscillator. See device data sheet for accuracy.	2.25		12	MHz
PSRR	Power Supply Rejection Ration		1	•	•	II.
	PSRR (Vdd>3.0V)			24	dB	
	PSRR (2.2 < Vdd < 3.0)			30	dB	
	PSRR (2.0 < Vdd < 2.2)			12	dB	
	PSRR (Vdd < 2.0)			0	dB	
Egain	Gain Error	For any resolution	1		5	%FSR
R _{IN}	Input Resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution.	1/(500fF* Data-Clock)	1/(400fF* Data-Clock)	1/(300fF* Data-Clock)	Ω

Note

Document Number: 001-12696 Rev. *E

^{5.} Monotonicity is not guaranteed.

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 23. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{PPOR0} V _{PPOR1} V _{PPOR2} V _{PPOR3}	Vdd Value for PPOR Trip PORLEV[1:0] = 00b, HPOR = 0 PORLEV[1:0] = 00b, HPOR = 1 PORLEV[1:0] = 01b, HPOR = 1 PORLEV[1:0] = 10b, HPOR = 1	Vdd must be greater than or equal to 1.71V during startup, reset from the XRES pin, or reset from watchdog.	1.61 –	1.66 2.36 2.60 2.82	1.71 2.41 2.66 2.95	V V V
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	Vdd Value for LVD Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b		2.40 ^[6] 2.64 ^[7] 2.85 ^[8] 2.95 3.06 1.84 1.75 ^[9] 4.62	2.45 2.71 2.92 3.02 3.13 1.90 1.80 4.73	2.51 2.78 2.99 3.09 3.20 2.32 1.84 4.83	V V V V V

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Vdd _{IWRITE}	Supply Voltage for Flash Write Operations		1.71	-	5.25	V
I _{DDP}	Supply Current During Programming or Verify		-	5	25	mA
V _{ILP}	Input Low Voltage During Programming or Verify	See the appropriate DC General Purpose IO Specifications on page 19	-	_	V _{IL}	V
V _{IHP}	Input High Voltage During Programming or Verify See appropriate DC General Purpose IO Specifications on page 19 table on pages 15 or 16		V_{IH}	_	_	٧
I _{ILP}	Input Current when Applying Vilp Driving internal pull down resis to P1[0] or P1[1] During Programming or Verify		-	_	0.2	mA
I _{IHP}	Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify		_	_	1.5	mA
V _{OLP}	Output Low Voltage During Programming or Verify		-	-	Vss + 0.75	V
V _{OHP}	Output High Voltage During Programming or Verify See appropriate DC General Purpose IO Specifications on page 19 table on page 16. For Vdd > 3V use V _{OH4} in Table 13 on page 18.		V _{OH}	-	Vdd	V
Flash _{ENPB}	Flash Write Endurance	Erase/write cycles per block	50,000	_	-	-
Flash _{DR}	Flash Data Retention Following maximum Flash write cycles; ambient temperature of 55°C		10	20	-	Years

Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

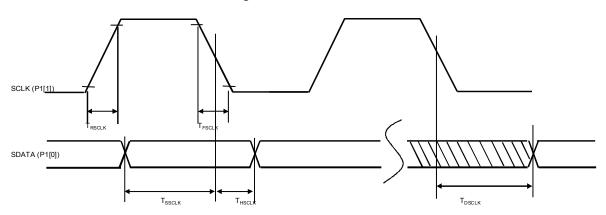
Always greater than 50 mV above V_{PPOR1} voltage for falling supply.
 Always greater than 50 mV above V_{PPOR2} voltage for falling supply.
 Always greater than 50 mV above V_{PPOR3} voltage for falling supply.

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 25. AC Chip-Level Specifications

Symbol	Description Conditions		Min	Тур	Max	Units
F _{CPU}	CPU Frequency		5.7	_	25.2	MHz
F _{32K1}	Internal Low Speed Oscillator Frequency		19	32	50	kHz
F _{IMO24}	Internal Main Oscillator Frequency at 24 MHz Setting		22.8	24	25.2	MHz
F _{IMO12}	Internal Main Oscillator Frequency at 12 MHz Setting		11.4	12	12.6	MHz
F _{IMO6}	Internal Main Oscillator Frequency at 6 MHz Setting		5.7	6.0	6.3	MHz
DC _{IMO}	Duty Cycle of IMO		40	50	60	%
T _{RAMP}	Supply Ramp Time		20	_	_	μS
T _{XRST}	External Reset Pulse Width at Power Up	After supply voltage is valid	1			ms
T _{XRST2}	External Reset Pulse Width after Power Up ^[10]	Applies after part has booted	10			μS


Note

^{10.} The minimum required XRES pulse length is longer when programming the device (see Table 32 on page 28).

AC Programming Specifications

Figure 13. AC Waveform

The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 32. AC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{RSCLK}	Rise Time of SCLK		1	_	20	ns
T _{FSCLK}	Fall Time of SCLK		1	_	20	ns
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK		40	_	-	ns
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK		40	_	_	ns
F _{SCLK}	Frequency of SCLK		0	_	8	MHz
T _{ERASEB}	Flash Erase Time (Block)		_	_	18	ms
T _{WRITE}	Flash Block Write Time		_	_	25	ms
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	3.6 < Vdd	_	_	60	ns
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	$3.0 \leq Vdd \leq 3.6$	_	_	85	ns
T _{DSCLK2}	Data Out Delay from Falling Edge of SCLK	$1.71 \leq Vdd \leq 3.0$	_	_	130	ns
T _{XRST3}	External Reset Pulse Width after Power Up	Required to enter programming mode when coming out of sleep	263	_	_	μS

Ordering Information

The following table lists the CY8C20x36/46/66/96 PSoC devices' key package features and ordering codes.

Table 39. PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	CapSense Blocks	Digital I/O Pins	Analog Inputs ^[18]	XRES Pin	USB
16-Pin (3x3x0.6mm) QFN	CY8C20236-24LKXI	8K	1K	1	13	13	Yes	No
16-Pin (3x3x0.6mm) QFN (Tape and Reel)	CY8C20236-24LKXIT	8K	1K	1	13	13	Yes	No
16 Pin (3x3 x 0.6 mm) QFN	CY8C20246-24LKXI	16K	2K	1	13	13	Yes	No
16 Pin (3x3 x 0.6 mm) QFN (Tape and Reel)	CY8C20246-24LKXIT	16K	2K	1	13	13	Yes	No
24-Pin (4x4x0.6mm) QFN	CY8C20336-24LQXI	8K	1K	1	20	20	Yes	No
24-Pin (4x4x0.6mm) QFN (Tape and Reel)	CY8C20336-24LQXIT	8K	1K	1	20	20	Yes	No
24 Pin (4x4 x 0.6 mm) QFN	CY8C20346-24LQXI	16K	2K	1	20	20	Yes	No
24 Pin (4x4 x 0.6 mm) QFN (Tape and Reel)	CY8C20346-24LQXIT	16K	2K	1	20	20	Yes	No
24-Pin (4x4x0.6mm) QFN	CY8C20396-24LQXI	16K	2K	1	19	19	Yes	Yes
24-Pin (4x4x0.6mm) QFN (Tape and Reel)	CY8C20396-24LQXIT	16K	2K	1	19	19	Yes	Yes
32-Pin (5x5x0.6mm) QFN	CY8C20436-24LQXI	8K	1K	1	28	28	Yes	No
32-Pin (5x5x0.6mm) QFN (Tape and Reel)	CY8C20436-24LQXIT	8K	1K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN	CY8C20446-24LQXI	16K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN (Tape and Reel)	CY8C20446-24LQXIT	16K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN	CY8C20466-24LQXI	32K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN (Tape and Reel)	CY8C20466-24LQXIT	32K	2K	1	28	28	Yes	No
32 Pin (5x5 x 0.6 mm) QFN	CY8C20496-24LQXI	16K	2K	1	25	25	Yes	No
32 Pin (5x5 x 0.6 mm) QFN (Tape and Reel)	CY8C20496-24LQXIT	16K	2K	1	25	25	Yes	No
48-Pin SSOP	CY8C20536-24PVXI	8K	1K	1	36	36	Yes	No
48-Pin SSOP (Tape and Reel)	CY8C20536-24PVXIT	8K	1K	1	36	36	Yes	No
48-Pin SSOP	CY8C20546-24PVXI	16K	2K	1	36	36	Yes	No
48-Pin SSOP (Tape and Reel)	CY8C20546-24PVXIT	16K	2K	1	36	36	Yes	No
48-Pin SSOP	CY8C20566-24PVXI	32K	2K	1	36	36	Yes	No
48-Pin SSOP (Tape and Reel)	CY8C20566-24PVXIT	32K	2K	1	36	36	Yes	No
48 Pin (7x7 mm) QFN	CY8C20636-24LTXI	8K	1K	1	36	36	Yes	No
48 Pin (7x7 mm) QFN (Tape and Reel)	CY8C20636-24LTXIT	8K	1K	1	36	36	Yes	No
48 Pin (7x7 mm) QFN	CY8C20646-24LTXI	16K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN (Tape and Reel)	CY8C20646-24LTXIT	16K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN	CY8C20666-24LTXI	32K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN (Tape and Reel)	CY8C20666-24LTXIT	32K	2K	1	36	36	Yes	Yes
48 Pin (7x7 mm) QFN (OCD) ^[4]	CY8C20066-24LTXI	32K	2K	1	36	36	Yes	Yes

Notes

Document Number: 001-12696 Rev. *E Page 37 of 39

^{18.} Dual-function Digital I/O Pins also connect to the common analog mux.

Document History Page

Revision	t Number: (ECN	Origin of Change	Submission Date	Description of Change
**	766857	HMT	See ECN	New silicon and document (Revision **).
*A	1242866	HMT	See ECN	Add features. Update all applicable sections. Update specs. Fix 24-pin QFN pinout moving pins inside. Update package revisions. Update and add to Emulation and Programming Accessories table.
*B	2174006	AESA	See ECN	Added 48-Pin SSOP Part Pinout Modified symbol R _{VDD} to R _{GND} in Table DC Analog Mux Bus Specification Added footnote in Table DC Analog Mux Bus Specification Added 16K FLASH Parts. Updated Notes, Package Diagrams and Ordering Information table. Updated Thermal Impedance and Solder Reflow tables
*C	2587518	TOF/JASM/MNU/ HMT	10/13/08	Converted from Preliminary to Final Fixed broken links. Updated data sheet template. Added operating voltage ranges with USB ADC resolution changed from 10-bit to 8-bit Included ADC specifications table Included Comparator specification table Included Voh7, Voh8, Voh9, Voh10 specs Flash data retention – condition added to Note Input leakage spec changed to 1 µA max GPIO rise time for ports 0,1 and ports 2,3 made common AC Programming specifications updated Included AC Programming cycle timing diagram AC SPI specification updated The VIH for 3.0 <vdd<2.4 1.6="" 2.0="" added="" changed="" clk="" diagrams="" f<sub="" for="" from="" impedances="" p1[0]="" package="" packages="" qfn="" specification="" spi="" thermal="" to="" updated="" usb="">GPIO parameter in Table 23 Updated voltage ranges for F_{SPIM} and F_{SPIS} in Table 30 Update Development Tools, add Designing with PSoC Designer. Edit, fix links, notes and table format. Update R_{IN} formula, fix TRise parameter names in GPIO figure, fix Switch Rate note. Update maximum data in Table 20. DC POR and LVD Specifications.</vdd<2.4>
*D	2649637	SNV/AESA	03/17/2009	Changed title to "CY8C20x36/46/66, CY8C20396 CapSense™ Applications". Updated data sheet Features, pin information, and ordering information sections. Updated package diagram 001-42168 to *C.
*E	2700196	SNV/PYRS	04/30/2009	Added part numbers CY8C20496, CY8C20536, CY8C20546, CY8C20636, CY8C20646 Updated Features on page 1 Added 48-Pin QFN without USB pin Diagram and Pin Definition table Added 32-Pin QFN (with USB) package Added SPI Master and Slave AC Specifications Updated Emulations and Programming Accessories Table on page 33 Updated Ordering Information on page 37 Removed reference to Hi-Tech C Compiler in Development Tool Selection on page 35

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

PSoC psoc.cypress.com
Clocks & Buffers clocks.cypress.com
Wireless wireless.cypress.com
Memories memory.cypress.com
Image Sensors image.cypress.com

PSoC Solutions

General psoc.cypress.com/solutions
Low Power/Low Voltage psoc.cypress.com/low-power
Precision Analog psoc.cypress.com/precision-analog
LCD Drive psoc.cypress.com/lcd-drive
CAN 2.0b psoc.cypress.com/can
USB psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2007-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-12696 Rev. *E

Revised April 24, 2009

Page 39 of 39

PSoC Designer™ is a trademark and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document may be the trademarks of their respective holders.