

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Obsolete                                                                   |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | AVR                                                                        |
| Core Size                  | 8/16-Bit                                                                   |
| Speed                      | 32MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, IrDA, SPI, UART/USART                                    |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                      |
| Number of I/O              | 50                                                                         |
| Program Memory Size        | 128KB (64K x 16)                                                           |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 2K x 8                                                                     |
| RAM Size                   | 8K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 3.6V                                                                |
| Data Converters            | A/D 16x12b                                                                 |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 64-TQFP                                                                    |
| Supplier Device Package    | 64-TQFP (14x14)                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/atxmega128d3-anr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 13. Interrupts and Programmable Multilevel Interrupt Controller

# 13.1 Features

- Short and predictable interrupt response time
- Separate interrupt configuration and vector address for each interrupt
- Programmable multilevel interrupt controller
  - Interrupt prioritizing according to level and vector address
  - Three selectable interrupt levels for all interrupts: low, medium, and high
  - Selectable, round-robin priority scheme within low-level interrupts
  - Non-maskable interrupts for critical functions
- Interrupt vectors optionally placed in the application section or the boot loader section

# 13.2 Overview

Interrupts signal a change of state in peripherals, and this can be used to alter program execution. Peripherals can have one or more interrupts, and all are individually enabled and configured. When an interrupt is enabled and configured, it will generate an interrupt request when the interrupt condition is present. The programmable multilevel interrupt controller (PMIC) controls the handling and prioritizing of interrupt requests. When an interrupt request is acknowledged by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt handler can be executed.

All peripherals can select between three different priority levels for their interrupts: low, medium, and high. Interrupts are prioritized according to their level and their interrupt vector address. Medium-level interrupts will interrupt low-level interrupt handlers. High-level interrupts will interrupt both medium- and low-level interrupt handlers. Within each level, the interrupt priority is decided from the interrupt vector address, where the lowest interrupt vector address has the highest interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to ensure that all interrupts are serviced within a certain amount of time.

Non-maskable interrupts (NMI) are also supported, and can be used for system critical functions.

# 13.3 Interrupt Vectors

The interrupt vector is the sum of the peripheral's base interrupt address and the offset address for specific interrupts in each peripheral. The base addresses for the Atmel AVR XMEGA D3 devices are shown in Table 13-1 on page 29. Offset addresses for each interrupt available in the peripheral are described for each peripheral in the XMEGA D manual. For peripherals or modules that have only one interrupt, the interrupt vector is shown in Table 13-1 on page 29. The program address is the word address.



Figure 25-1. ADC Overview



The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (propagation delay) from 3.35µs for 12-bit to 2.3µs for 8-bit result.

ADC conversion results are provided left- or right adjusted with optional '1' or '0' padding. This eases calculation when the result is represented as a signed integer (signed 16-bit number).

PORTA has one ADC. Notation of this peripheral is ADCA.



# 32.2 Atmel ATxmega64D3

### 32.2.1 Absolute Maximum Ratings

Stresses beyond those listed in Table 32-30 may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| Table 32-30 | Absolute | Maximum | Ratings |
|-------------|----------|---------|---------|
|-------------|----------|---------|---------|

| Symbol           | Parameter                                                      | Condition | Min. | Тур. | Max.                  | Units  |
|------------------|----------------------------------------------------------------|-----------|------|------|-----------------------|--------|
| V <sub>CC</sub>  | Power supply voltage                                           |           | -0.3 |      | 4                     | V      |
| I <sub>VCC</sub> | Current into a V <sub>CC</sub> pin                             |           |      |      | 200                   | m۸     |
| I <sub>GND</sub> | Current out of a Gnd pin                                       |           |      |      | 200                   | - IIIA |
| V <sub>PIN</sub> | Pin voltage with respect to Gnd and $\mathrm{V}_{\mathrm{CC}}$ |           | -0.5 |      | V <sub>CC</sub> + 0.5 | V      |
| I <sub>PIN</sub> | I/O pin sink/source current                                    |           | -25  |      | 25                    | mA     |
| T <sub>A</sub>   | Storage temperature                                            |           | -65  |      | 150                   | °C     |
| Tj               | Junction temperature                                           |           |      |      | 150                   | C      |

#### 32.2.2 General Operating Ratings

The device must operate within the ratings listed in Table 32-31 in order for all other electrical characteristics and typical characteristics of the device to be valid.

Table 32-31. General Operating Conditions

| Symbol           | Parameter             | Condition | Min. | Тур. | Max. | Units |
|------------------|-----------------------|-----------|------|------|------|-------|
| V <sub>CC</sub>  | Power supply voltage  |           | 1.60 |      | 3.6  | V     |
| AV <sub>CC</sub> | Analog supply voltage |           | 1.60 |      | 3.6  | V     |
| T <sub>A</sub>   | Temperature range     |           | -40  |      | 85   | °C    |
| Tj               | Junction temperature  |           | -40  |      | 105  |       |

#### Table 32-32. Operating Voltage and Frequency

| Symbol             | Parameter           | Condition              | Min. | Тур. | Max. | Units |
|--------------------|---------------------|------------------------|------|------|------|-------|
| Clk <sub>CPU</sub> | CPU clock frequency | V <sub>CC</sub> = 1.6V | 0    |      | 12   |       |
|                    |                     | V <sub>CC</sub> = 1.8V | 0    |      | 12   | MHz   |
|                    |                     | V <sub>CC</sub> = 2.7V | 0    |      | 32   |       |
|                    |                     | V <sub>CC</sub> = 3.6V | 0    |      | 32   |       |

The maximum CPU clock frequency depends on V<sub>CC</sub>. As shown in Figure 32-8 on page 83 the frequency vs. V<sub>CC</sub> curve is linear between  $1.8V < V_{CC} < 2.7V$ .

#### 32.3.4 Wake-up Time from Sleep Modes

| Symbol              | Parameter                                                        | Condition                     | Min. | <b>Typ.</b> <sup>(1)</sup> | Max. | Units |
|---------------------|------------------------------------------------------------------|-------------------------------|------|----------------------------|------|-------|
| t <sub>wakeup</sub> | Wake-up time from idle,<br>standby, and extended standby<br>mode | External 2MHz clock           |      | 2.0                        |      |       |
|                     |                                                                  | 32.768kHz internal oscillator |      | 130                        |      | -     |
|                     |                                                                  | 2MHz internal oscillator      |      | 2.0                        |      |       |
|                     |                                                                  | 32MHz internal oscillator     |      | 0.2                        |      |       |
|                     | Wake-up time from power-save<br>and power-down mode              | External 2MHz clock           |      | 4.5                        |      | μs    |
|                     |                                                                  | 32.768kHz internal oscillator |      | 320                        |      |       |
|                     |                                                                  | 2MHz internal oscillator      |      | 9.0                        |      |       |
|                     |                                                                  | 32MHz internal oscillator     |      | 5.0                        |      |       |

#### Table 32-64. Device Wake-up Time from Sleep Modes with Various System Clock Sources

Note: 1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-16. All peripherals and modules start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.

#### Figure 32-16.Wake-up Time Definition





| Symbol          | Parameter                 | Condition <sup>(1)</sup>                   |                                  | Min. | Тур. | Max. | Units |
|-----------------|---------------------------|--------------------------------------------|----------------------------------|------|------|------|-------|
|                 | ULP oscillator            |                                            |                                  |      | 0.9  |      |       |
|                 | 32.768kHz int. oscillator |                                            |                                  |      |      |      |       |
|                 | 2MUz int. equillator      |                                            |                                  |      | 78   |      |       |
|                 |                           | DFLL enabled with                          | 32.768kHz int. osc. as reference |      | 110  |      |       |
|                 | 22MUz int. equillator     |                                            |                                  |      | 250  |      |       |
|                 |                           | DFLL enabled with                          | 32.768kHz int. osc. as reference |      | 440  |      |       |
|                 | PLL                       | 20× multiplication f<br>32MHz int. osc. DI | actor,<br>V4 as reference        |      | 310  |      | μA    |
|                 | Watchdog timer            |                                            |                                  |      | 1.0  |      |       |
|                 | POD                       | Continuous mode                            |                                  |      | 132  |      | -     |
|                 | вор                       | Sampled mode, includes ULP oscillator      |                                  |      | 1.4  |      |       |
| I <sub>CC</sub> | Internal 1.0V reference   |                                            |                                  |      | 185  |      |       |
|                 | Temperature sensor        |                                            |                                  |      | 182  |      | -     |
|                 |                           |                                            |                                  |      | 1.12 |      |       |
|                 |                           | 16ksps                                     | CURRLIMIT = LOW                  |      | 1.01 |      | -     |
|                 |                           | V <sub>REF</sub> = Ext. ref.               | CURRLIMIT = MEDIUM               |      | 0.9  |      |       |
|                 | ADC                       |                                            | CURRLIMIT = HIGH                 |      | 0.8  |      | mA    |
|                 |                           | 75ksps<br>V <sub>REF</sub> = Ext. ref.     | CURRLIMIT = LOW                  |      | 1.7  |      | *     |
|                 |                           | 300ksps<br>V <sub>REF</sub> = Ext. ref.    |                                  |      | 3.1  |      | *     |
|                 | USART                     | Rx and Tx enabled                          | I, 9600 BAUD                     |      | 9.5  |      | μA    |
|                 | Flash memory and EEPRO    | lash memory and EEPROM programming         |                                  |      | 10   |      | mA    |

#### Table 32-121. Current Consumption for Modules and Peripherals

Note: 1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at V<sub>CC</sub> = 3.0V, Clk<sub>SYS</sub> = 1MHz external clock without prescaling, T = 25°C unless other conditions are given.

| Symbol             | Parameter                          | Condition | Min. | Тур. | Max. | Units |
|--------------------|------------------------------------|-----------|------|------|------|-------|
| C <sub>XTAL1</sub> | Parasitic capacitance<br>XTAL1 pin |           |      | 5.9  |      |       |
| C <sub>XTAL2</sub> | Parasitic capacitance<br>XTAL2 pin |           |      | 8.3  |      | pF    |
| C <sub>LOAD</sub>  | Parasitic capacitance load         |           |      | 3.5  |      |       |

Notes: 1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.

32.5.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics

| Table 32-143. | External 32.768kHz Crystal Oscillator and TOSC Characteristics |
|---------------|----------------------------------------------------------------|
|---------------|----------------------------------------------------------------|

| Symbol                                           | Parameter                                              | Condition                                         | Min. | Тур. | Max. | Units |
|--------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|------|------|------|-------|
| ESR/R1 Recommended constrained series resistance |                                                        | Crystal load capacitance 6.5pF                    |      |      | 60   |       |
|                                                  | Recommended crystal equivalent series resistance (ESR) | Crystal load capacitance 9.0pF                    |      |      | 35   | kΩ    |
|                                                  |                                                        | Crystal load capacitance 12pF                     |      |      | 28   |       |
| C <sub>TOSC1</sub>                               | Parasitic capacitance TOSC1 pin                        |                                                   |      | 3.5  |      | рĘ    |
| C <sub>TOSC2</sub>                               | Parasitic capacitance TOSC2 pin                        |                                                   |      | 3.5  |      | μr    |
|                                                  | Recommended safety factor                              | Capacitance load matched to crystal specification | 3    |      |      |       |

Note:

See Figure 32-32 for definition.

#### Figure 32-32. TOSC Input Capacitance



The parasitic capacitance between the TOSC pins is  $C_{L1} + C_{L2}$  in series as seen from the crystal when oscillating without external capacitors.

# Atmel

# 32.6 Atmel ATxmega384D3

#### 32.6.1 Absolute Maximum Ratings

Stresses beyond those listed in Table 32-146 may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| Table 32-146. | Absolute | Maximum | Ratings |
|---------------|----------|---------|---------|
|---------------|----------|---------|---------|

| Symbol           | Parameter                                                      | Condition | Min. | Тур. | Max.                  | Units |
|------------------|----------------------------------------------------------------|-----------|------|------|-----------------------|-------|
| V <sub>CC</sub>  | Power supply voltage                                           |           | -0.3 |      | 4                     | V     |
| I <sub>VCC</sub> | Current into a $V_{CC}$ pin                                    |           |      |      | 200                   | m۸    |
| I <sub>GND</sub> | Current out of a Gnd pin                                       |           |      |      | 200                   | IIIA  |
| V <sub>PIN</sub> | Pin voltage with respect to Gnd and $\mathrm{V}_{\mathrm{CC}}$ |           | -0.5 |      | V <sub>CC</sub> + 0.5 | V     |
| I <sub>PIN</sub> | I/O pin sink/source current                                    |           | -25  |      | 25                    | mA    |
| T <sub>A</sub>   | Storage temperature                                            |           | -65  |      | 150                   | °C    |
| Tj               | Junction temperature                                           |           |      |      | 150                   | U     |

#### 32.6.2 General Operating Ratings

The device must operate within the ratings listed in Table 32-147 in order for all other electrical characteristics and typical characteristics of the device to be valid.

Table 32-147. General Operating Conditions

| Symbol           | Parameter             | Condition | Min. | Тур. | Max. | Units |
|------------------|-----------------------|-----------|------|------|------|-------|
| V <sub>cc</sub>  | Power supply voltage  |           | 1.60 |      | 3.6  | V     |
| AV <sub>CC</sub> | Analog supply voltage |           | 1.60 |      | 3.6  |       |
| T <sub>A</sub>   | Temperature range     |           | -40  |      | 85   | °C    |
| Тj               | Junction temperature  |           | -40  |      | 105  | C     |

#### Table 32-148. Operating Voltage and Frequency

| Symbol             | Parameter           | Condition              | Min. | Тур. | Max. | Units |
|--------------------|---------------------|------------------------|------|------|------|-------|
| Clk <sub>CPU</sub> | CPU clock frequency | V <sub>CC</sub> = 1.6V | 0    |      | 12   | MHz   |
|                    |                     | V <sub>CC</sub> = 1.8V | 0    |      | 12   |       |
|                    |                     | V <sub>CC</sub> = 2.7V | 0    |      | 32   |       |
|                    |                     | V <sub>CC</sub> = 3.6V | 0    |      | 32   |       |

The maximum CPU clock frequency depends on V<sub>CC</sub>. As shown in Figure 32-36 on page 159 the frequency vs. V<sub>CC</sub> curve is linear between  $1.8V < V_{CC} < 2.7V$ .

# Atmel



Figure 33-29. I/O Pin Input Threshold Voltage vs.  $V_{CC}$  $V_{IL}$  I/O pin read as "0"









Figure 33-85. Idle Mode Current vs.  $V_{CC}$  $f_{SYS}$  = 32MHz internal oscillator





Figure 33-203. 32MHz Internal Oscillator CALA Calibration Step Size T = -40 °C,  $V_{CC} = 3.0V$ 

Figure 33-204. 32MHz Internal Oscillator CALA Calibration Step Size  $T = 25^{\circ}C$ ,  $V_{CC} = 3.0V$ 



Figure 33-243.INL Error vs. Sample Rate



Figure 33-244.INL Error vs. Input Code



#### 33.4.8.4 32MHz Internal Oscillator



Figure 33-271. 32MHz Internal Oscillator Frequency vs. Temperature DFLL disabled

Figure 33-272. 32MHz Internal Oscillator Frequency vs. Temperature DFLL enabled, from the 32.768kHz internal oscillator







#### **33.4.10 PDI Characteristics**







Figure 33-291.Idle Mode Supply Current vs. Frequency  $f_{SYS} = 1 - 32MHz \text{ external clock}, T = 25^{\circ}C$ 









## 33.5.9 Two-Wire Interface Characteristics





Figure 33-381.I/O Pin Input Hysteresis vs. V<sub>cc</sub>



## 33.6.3 ADC Characteristics



Figure 33-382. INL Error vs. External  $V_{REF}$ T = 25 °C,  $V_{CC}$  = 3.6V, external reference

Figure 33-401. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  $V_{cc} = 1.8V$ 



Figure 33-402. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  $V_{CC} = 3.0V$ 



## 33.6.10 PDI Characteristics

Figure 33-419. Maximum PDI Frequency vs.  $V_{CC}$ 





# 34.5 Atmel ATxmega256D3

#### 34.5.1 Rev. I

- AC system status flags are only valid if AC-system is enabled
- Sampled BOD in Active mode will cause noise when bandgap is used as reference
- Temperature sensor not calibrated

#### 1. AC system status flags are only valid if AC-system is enabled

The status flags for the ac-output are updated even though the AC is not enabled which is invalid. Also, it is not possible to clear the AC interrupt flags without enabling either of the Analog comparators.

#### Problem fix/workaround

Software should clear the AC system flags once, after enabling the AC system before using the AC system status flags.

#### 2. Sampled BOD in Active mode will cause noise when bandgap is used as reference

Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap reference for ADC, DAC and Analog Comparator.

#### Problem fix/workaround

If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in sampled mode.

#### 3. Temperature sensor not calibrated

Temperature sensor factory calibration not implemented.

#### Problem fix/workaround

None.

#### 34.5.2 Rev. H

Not sampled.

#### 34.5.3 Rev. G

Not sampled.

## 34.5.4 Rev. F

Not sampled.

# 35.14 8134D - 11/2009

- 1. Added Table 31-3 on page 64, Endurance and data retention.
- 2. Updated Table 31-10 on page 67, Input hysteresis is in V and not in mV.
- 3. Added "Errata" on page 388.
- 4. Editing updates.

# 35.15 8134C - 10/2009

- 1. Updated "Features" on page 1 with two-wire interfaces.
- 2. Updated "Pinout/block Diagram" on page 5.
- 3. Updated "Overview" on page 6.
- 4. Updated "XMEGA D# block diagram" on page 5.
- 5. Updated Table 13-1 on page 29.
- 6. Updated "Overview" on page 38.
- 7. Updated Table 28-5 on page 53.
- 8. Updated "Peripheral Module Address Map" on page 55.

# 35.16 8134B - 08/2009

- 1. Added The maximum CPU clock frequency depends on VCC. As shown in Figure 32-8 on page 83 the frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V. on page 64.
- 2. Added "Typical Characteristics" on page 177.

# 35.17 8134A - 03/2009

1. Initial revision.

