

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega128d3-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

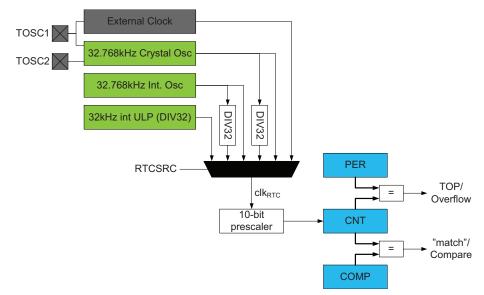
Table 13-1. Reset and Interrupt Vectors

Program address (base address)	Source	Interrupt description
0x000	RESET	
0x002	OSCF_INT_vect	Crystal oscillator failure interrupt vector (NMI)
0x004	PORTC_INT_base	Port C interrupt base
0x008	PORTR_INT_base	Port R interrupt base
0x014	RTC_INT_base	Real Time Counter Interrupt base
0x018	TWIC_INT_base	Two-Wire Interface on Port C Interrupt base
0x01C	TCC0_INT_base	Timer/Counter 0 on port C Interrupt base
0x028	TCC1_INT_base	Timer/Counter 1 on port C Interrupt base
0x030	SPIC_INT_vect	SPI on port C Interrupt vector
0x032	USARTC0_INT_base	USART 0 on port C Interrupt base
0x040	NVM_INT_base	Non-Volatile Memory Interrupt base
0x044	PORTB_INT_base	Port B Interrupt base
0x056	PORTE_INT_base	Port E INT base
0x05A	TWIE_INT_base	Two-Wire Interface on Port E Interrupt base
0x05E	TCE0_INT_base	Timer/Counter 0 on port E Interrupt base
0x074	USARTE0_INT_base	USART 0 on port E Interrupt base
0x080	PORTD_INT_base	Port D Interrupt base
0x084	PORTA_INT_base	Port A Interrupt base
0x088	ACA_INT_base	Analog Comparator on Port A Interrupt base
0x08E	ADCA_INT_base	Analog to Digital Converter on Port A Interrupt base
0x09A	TCD0_INT_base	Timer/Counter 0 on port D Interrupt base
0x0AE	SPID_INT_vector	SPI D Interrupt vector
0x0B0	USARTD0_INT_base	USART 0 on port D Interrupt base
0x0B6	USARTD1_INT_base	USART 1 on port D Interrupt base
0x0D0	PORTF_INT_base	Port F Interrupt base
0x0D8	TCF0_INT_base	Timer/Counter 0 on port F Interrupt base

19. RTC – 16-bit Real-Time Counter

19.1 Features

- 16-bit resolution
 - Selectable clock source
 - 32.768kHz external crystal
 - External clock
 - 32.768kHz internal oscillator
 - 32kHz internal ULP oscillator
- Programmable 10-bit clock prescaling
- One compare register
- One period register
- Clear counter on period overflow
- Optional interrupt/event on overflow and compare match


19.2 Overview

The 16-bit real-time counter (RTC) is a counter that typically runs continuously, including in low-power sleep modes, to keep track of time. It can wake up the device from sleep modes and/or interrupt the device at regular intervals.

The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz, and this is the configuration most optimized for low power consumption. The faster 32.768kHz output can be selected if the RTC needs a resolution higher than 1ms. The RTC can also be clocked from an external clock signal, the 32.768kHz internal oscillator or the 32kHz internal ULP oscillator.

The RTC includes a 10-bit programmable prescaler that can scale down the reference clock before it reaches the counter. A wide range of resolutions and time-out periods can be configured. With a 32.768kHz clock source, the maximum resolution is 30.5µs, and time-out periods can range up to 2000 seconds. With a resolution of 1s, the maximum timeout period is more than18 hours (65536 seconds). The RTC can give a compare interrupt and/or event when the counter equals the compare register value, and an overflow interrupt and/or event when it equals the period register value.

Figure 19-1. Real-time Counter Overview

Atmel

Table 28-1. Port A - Alternate Functions

PORT A	PIN #	INTERRUPT	ADCA POS/ GAINPOS	ADCA NEG	ADCA GAINNEG	ACA POS	ACA NEG	ACA OUT	REFA
GND	60								
AVCC	61								
PA0	62	SYNC	ADC0	ADC0		AC0	AC0		AREFA
PA1	63	SYNC	ADC1	ADC1		AC1	AC1		
PA2	64	SYNC/ASYNC	ADC2	ADC2		AC2			
PA3	1	SYNC	ADC3	ADC3		AC3	AC3		
PA4	2	SYNC	ADC4		ADC4	AC4			
PA5	3	SYNC	ADC5		ADC5	AC5	AC5		
PA6	4	SYNC	ADC6		ADC6	AC6		AC1OUT	
PA7	5	SYNC	ADC7		ADC7		AC7	AC0OUT	

Table 28-2. Port B - Alternate Functions

PORT B	PIN #	INTERRUPT	ADCA POS	REFB
PB0	6	SYNC	ADC8	AREFB
PB1	7	SYNC	ADC91	
PB2	8	SYNC/ASYNC	ADC10	
PB3	9	SYNC	ADC11	
PB4	10	SYNC	ADC12	
PB5	11	SYNC	ADC13	
PB6	12	SYNC	ADC14	
PB7	13	SYNC	ADC15	
GND	14			
vcc	15			

Table 28-3. Port C - Alternate Functions

PORT C	PIN #	INTERRUPT	TCC0 ⁽¹⁾⁽²⁾	AWEXC	TCC1	USARTC0 ⁽³⁾	SPIC ⁽⁴⁾	тwic	CLOCKOUT ⁽⁵⁾	EVENTOUT ⁽⁶⁾
PC0	16	SYNC	OC0A	OC0ALS				SDA		
PC1	17	SYNC	OC0B	OC0AHS		XCK0		SCL		
PC2	18	SYNC/ASYNC	OC0C	OC0BLS		RXD0				
PC3	19	SYNC	OC0D	OC0BHS		TXD0				
PC4	20	SYNC		OC0CLS	OC1A		SS			
PC5	21	SYNC		OC0CHS	OC1B		MOSI			

Mnemonics	Operands	Description	Opera	ation		Flags	#Clocks
EICALL		Extended Indirect Call to (Z)	PC(15:0) PC(21:16)	← ←	Z, EIND	None	3 (1)
CALL	k	call Subroutine	PC	←	k	None	3 / 4 ⁽¹⁾
RET		Subroutine Return	PC	~	STACK	None	4 / 5 ⁽¹⁾
RETI		Interrupt Return	PC	←	STACK	1	4 / 5 ⁽¹⁾
CPSE	Rd, Rr	Compare, Skip if Equal	if (Rd = Rr) PC	~	PC + 2 or 3	None	1/2/3
СР	Rd, Rr	Compare	Rd - Rr			Z,C,N,V,S,H	1
CPC	Rd, Rr	Compare with Carry	Rd - Rr - C			Z,C,N,V,S,H	1
CPI	Rd, K	Compare with Immediate	Rd - K			Z,C,N,V,S,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b) = 0) PC	~	PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register Set	if (Rr(b) = 1) PC	~	PC + 2 or 3	None	1/2/3
SBIC	A, b	Skip if Bit in I/O Register Cleared	if (I/O(A,b) = 0) PC	~	PC + 2 or 3	None	2/3/4
SBIS	A, b	Skip if Bit in I/O Register Set	If (I/O(A,b) =1) PC	~	PC + 2 or 3	None	2/3/4
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC	←	PC + k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC	←	PC + k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC	~	PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC	~	PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC	~	PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC	←	PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC	~	PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC	←	PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC	←	PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC	~	PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC	~	PC + k + 1	None	1/2
BRLT	k	Branch if Less Than, Signed	if (N \oplus V= 1) then PC	←	PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC	←	PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC	←	PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC	←	PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC	←	PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC	←	PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC	←	PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC	~	PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC	←	PC + k + 1	None	1/2
		Data ti	ransfer instructions				
MOV	Rd, Rr	Copy Register	Rd	←	Rr	None	1
MOVW	Rd, Rr	Copy Register Pair	Rd+1:Rd	←	Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd	~	К	None	1
LDS	Rd, k	Load Direct from data space	Rd	←	(k)	None	2 (1)(2)
LD	Rd, X	Load Indirect	Rd	←	(X)	None	1 (1)(2)

32.1.5 I/O Pin Characteristics

The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low-level input and output voltage limits reflect or exceed this specification.

Table 32-7. I/O Pir	• Characteristics
---------------------	-------------------

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
I _{OH} ⁽¹⁾ / I _{OL} ⁽²⁾	I/O pin source/sink current			-15		15	mA
V _{IH}	High level input voltage	V _{CC} = 2.4 - 3.6V		0.7 * V _{CC}		V _{CC} + 0.5	
VІН	nightever input voltage	V _{CC} = 1.6 - 2.4V		0.8 * V _{CC}		V _{CC} + 0.5	
V	Low level input voltage	V _{CC} = 2.4 - 3.6V		-0.5		0.3 * V _{CC}	
VIL	V _{IL} Low level input voltage			-0.5		0.2 * V _{CC}	
	High level output voltage	V _{CC} = 3.3V	I _{OH} = -4mA	2.6	2.9		V
V _{OH}		V _{CC} = 3.0V	I _{OH} = -3mA	2.1	2.6		v
		V _{CC} = 1.8V	I _{OH} = -1mA	1.4	1.6		
		V _{CC} = 3.3V	I _{OL} = 8mA		0.4	0.76	
V _{OL}	Low level output voltage	V _{CC} = 3.0V	I _{OL} = 5mA		0.3	0.64	
		V _{CC} = 1.8V	I _{OL} = 3mA		0.2	0.46	
I _{IN}	Input leakage current I/O pin	T = 25°C			<0.01	1	μA
R _P	Pull/buss keeper resistor				25		kΩ

Notes: 1.

The sum of all I_{OH} for PORTA and PORTB must not exceed 100mA. The sum of all I_{OH} for PORTC, PORTD, and PORTE must for each port not exceed 200mA. The sum of all I_{OH} for pins PF[0-5] on PORTF must not exceed 200mA. The sum of all I_{OL} for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.

The sum of all I_{OL} for PORTA and PORTB must not exceed 100mA. The sum of all I_{OL} for PORTC, PORTD, and PORTE must for each port not exceed 200mA. The sum of all I_{OL} for pins PF[0-5] on PORTF must not exceed 200mA. The sum of all I_{OL} for pins PF[0-7] on PORTF, PORTR, and PDI must not exceed 100mA. 2.

Table 32-25. External Clock with Prescaler ⁽¹⁾ for System Clock

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
1 /4	Clock Frequency ⁽²⁾	V _{CC} = 1.6 - 1.8V	0		90	MHz
1/t _{CK}		V _{CC} = 2.7 - 3.6V	0		142	
+	Clock Period	V _{CC} = 1.6 - 1.8V	11			
t _{CK}		V _{CC} = 2.7 - 3.6V	7			_
		V _{CC} = 1.6 - 1.8V	4.5			
t _{CH}	Clock High Time	V _{CC} = 2.7 - 3.6V	2.4			_
4	Clock Low Time	V _{CC} = 1.6 - 1.8V	4.5			
t _{CL}		V _{CC} = 2.7 - 3.6V	2.4			ns
	Diag Time (for movimum fraguency)	V _{CC} = 1.6 - 1.8V			1.5	_
t _{CR}	Rise Time (for maximum frequency)	V _{CC} = 2.7 - 3.6V			1.0	_
		V _{CC} = 1.6 - 1.8V			1.5	_
t _{CF}	Fall Time (for maximum frequency)	V _{CC} = 2.7 - 3.6V			1.0	
Δt_{CK}	Change in period from one clock cycle to the next				10	%

Notes: 1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.

2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.

32.1.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics

Table 32-26.	External 16MHz Crystal Oscillator and XOSC Characteristics
--------------	--

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
		XOSCPWR=0	FRQRANGE=0		0		
	Cycle to cycle jitter	XUSCPVIR=0	FRQRANGE=1, 2, or 3		0		
		XOSCPWR=1			0		ns
		XOSCPWR=0	FRQRANGE=0		0		115
	Long term jitter	XUSCEWR-0	FRQRANGE=1, 2, or 3		0		
		XOSCPWR=1			0		
		XOSCPWR=0	FRQRANGE=0		0.03		
	Frequency		FRQRANGE=1		0.03		
	Frequency error		FRQRANGE=2 or 3		0.03		
		XOSCPWR=1			0.003		%
			FRQRANGE=0		50		/0
	Dutu susla	XOSCPWR=0	FRQRANGE=1		50		
	Duty cycle		FRQRANGE=2 or 3		50		
		XOSCPWR=1			50		

Atmel

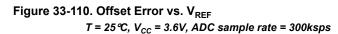
32.3.4 Wake-up Time from Sleep Modes

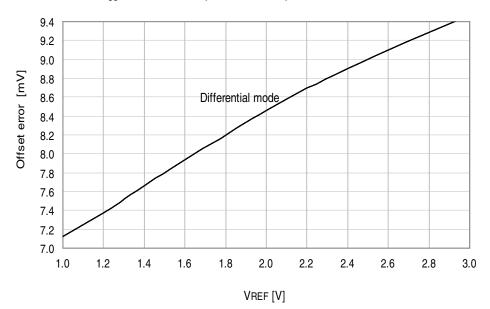
Symbol	Parameter	Condition	Min.	Typ . ⁽¹⁾	Max.	Units
		External 2MHz clock		2.0		
	Wake-up time from idle,	32.768kHz internal oscillator		130		
	standby, and extended standby mode	2MHz internal oscillator		2.0		
		32MHz internal oscillator		0.2		
^L wakeup		External 2MHz clock		4.5		μs
	Wake-up time from power-save	32.768kHz internal oscillator		320		
	and power-down mode	2MHz internal oscillator		9.0		
		32MHz internal oscillator		5.0		

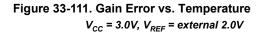
Table 32-64. Device Wake-up Time from Sleep Modes with Various System Clock Sources

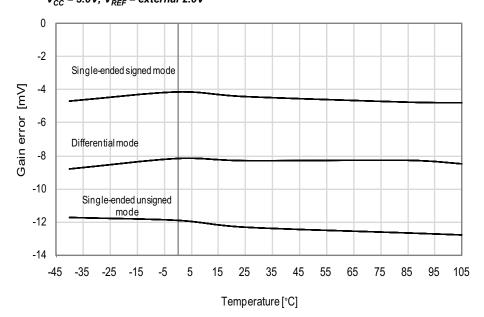
Note: 1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-16. All peripherals and modules start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.

Figure 32-16.Wake-up Time Definition




32.6.3 Current Consumption


Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
	Active power consumption ⁽¹⁾		V _{CC} = 1.8V		150		μΑ
		32kHz, Ext. Clk	V _{CC} = 3.0V		320		
			V _{CC} = 1.8V		410		
		1MHz, Ext. Clk	V _{CC} = 3.0V		830		
		2MHz, Ext. Clk	V _{CC} = 1.8V		660	800	
					1.3	1.8	mA
		32MHz, Ext. Clk	$V_{\rm CC} = 3.0 V$		10	15	
	Idle power consumption ⁽¹⁾		V _{CC} = 1.8V		4		μΑ
		32kHz, Ext. Clk	V _{CC} = 3.0V		5		
			V _{CC} = 1.8V		50		
		1MHz, Ext. Clk	V _{CC} = 3.0V		100		
		2MHz, Ext. Clk	V _{CC} = 1.8V		100	350	
			V _{CC} = 3.0V		200	600	
I _{CC}		32MHz, Ext. Clk	v _{CC} – 5.0v		3.3	7	mA
	Power-down power consumption	T = 25°C			0.2	1.0	
		T = 85°C	V _{CC} = 3.0V		3.5	6.0	
		T = 105°C			15	20	
		WDT and sampled BOD enabled, T = 25° C			1.5	2.0	
		WDT and sampled BOD enabled, T = $85^{\circ}C$	V _{CC} = 3.0V		6.0	10	
		WDT and sampled BOD enabled, T= $105^{\circ}C$			16	27	
	Power-save power consumption ⁽²⁾	RTC from ULP clock, WDT and sampled	V _{CC} = 1.8V		1.4		μA
		BOD enabled, $T = 25^{\circ}C$	V _{CC} = 3.0V		1.5		
		RTC from 1.024kHz low power 32.768kHz	V _{CC} = 1.8V		0.7	2	
		TOSC, T = 25° C	V _{CC} = 3.0V		0.8	2	
		RTC from low power 32.768kHz TOSC,	V _{CC} = 1.8V		0.9	3	
		T = 25°C	V _{CC} = 3.0V		1.1	3	
	Reset power consumption	Current through $\overline{\text{RESET}}$ pin substracted $V_{CC} = 3.0V$			300		


Notes: 1. All Power Reduction Registers set.

2. Maximum limits are based on characterization, and not tested in production.

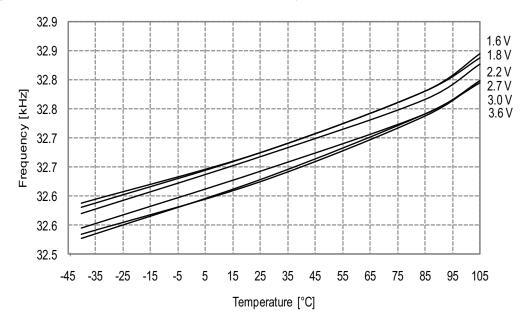
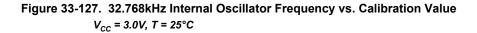
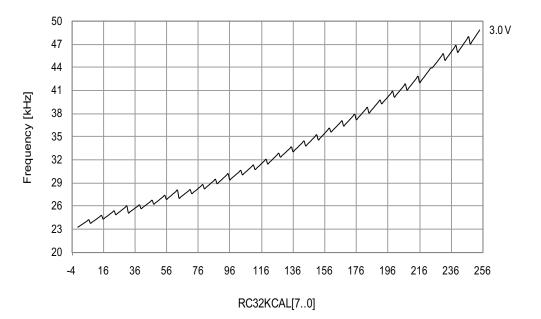




Figure 33-126. 32.768kHz Internal Oscillator Frequency vs. Temperature

33.3.2.3 Thresholds and Hysteresis

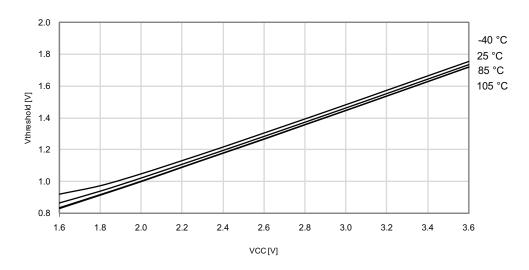
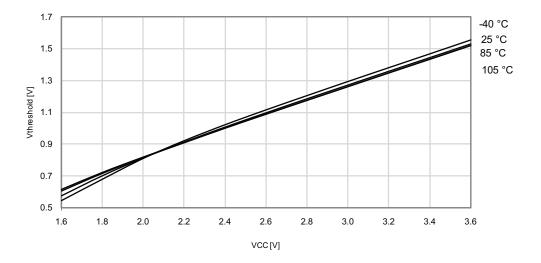



Figure 33-169. I/O Pin Input Threshold Voltage vs. V_{CC} V_{IH} I/O pin read as "1"

Figure 33-170. I/O Pin Input Threshold Voltage vs. V_{CC} V_{IL} I/O pin read as "0"

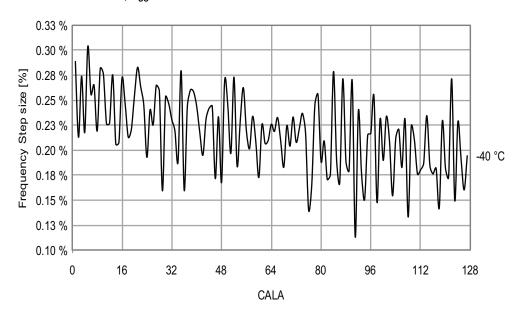
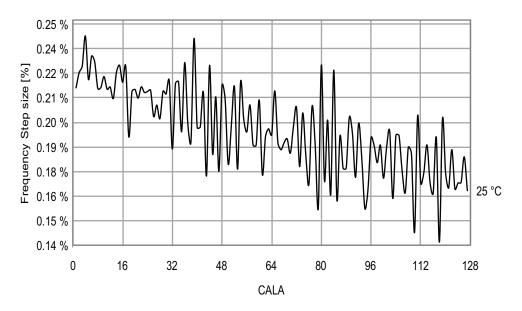



Figure 33-203. 32MHz Internal Oscillator CALA Calibration Step Size T = -40 °C, $V_{CC} = 3.0V$

Figure 33-204. 32MHz Internal Oscillator CALA Calibration Step Size $T = 25^{\circ}C$, $V_{CC} = 3.0V$

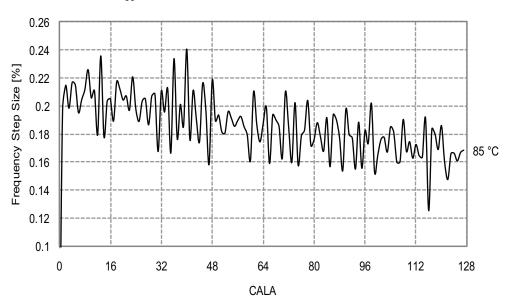


Figure 33-275. 32MHz Internal Oscillator CALA Calibration Step Size $T = 85^{\circ}C$, $V_{CC} = 3.0V$

Figure 33-276. 32MHz Internal Oscillator CALA Calibration Step Size $T = 105^{\circ}C$, $V_{CC} = 3.0V$

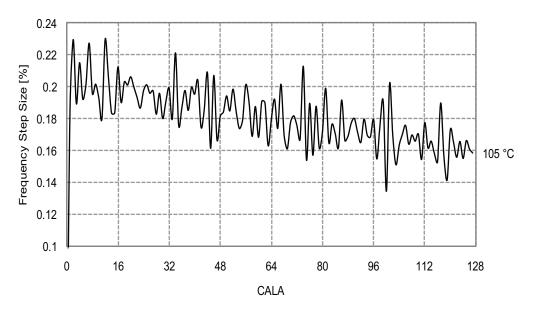
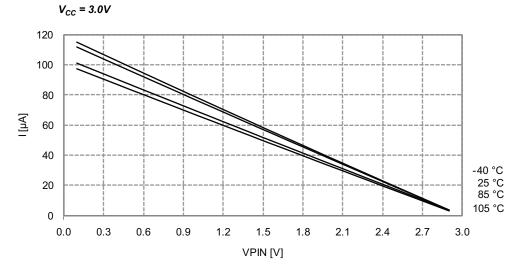
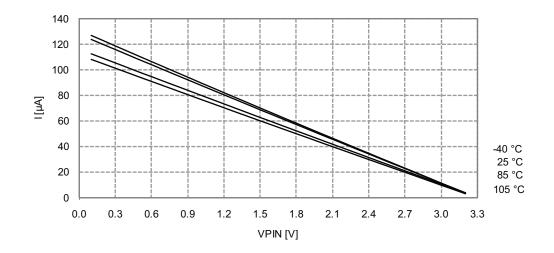
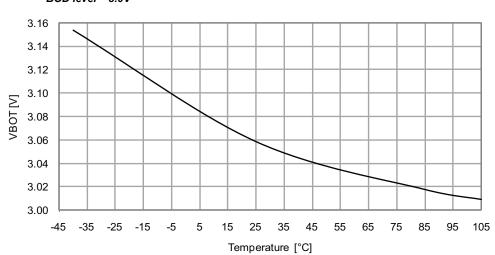





Figure 33-301.I/O Pin Pull-up Resistor Current vs. Input Voltage

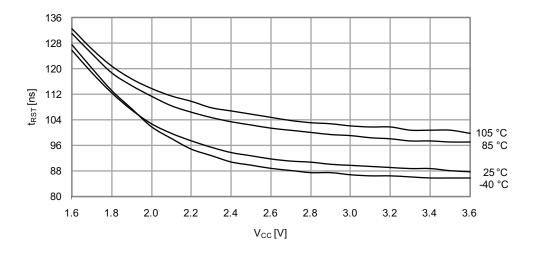
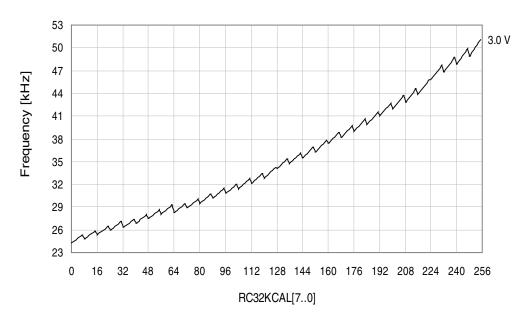
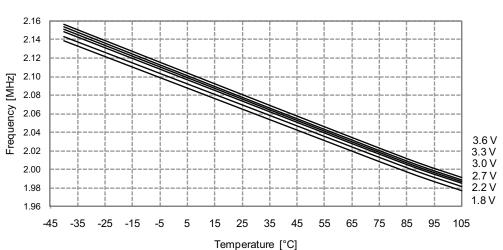
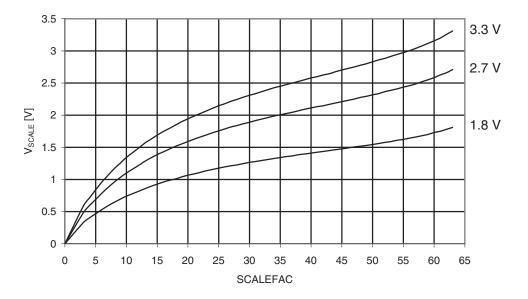


Figure 33-329. BOD Thresholds vs. Temperature BOD level = 3.0V

33.5.7 External Reset Characteristics


Figure 33-337. 32.768kHz Internal Oscillator Frequency vs. Calibration Value $V_{cc} = 3.0V$, $T = 25^{\circ}C$

33.5.8.3 2MHz Internal Oscillator

Figure 33-338. 2MHz Internal Oscillator Frequency vs. Temperature DFLL disabled

Figure 34-2. Analog Comparator Voltage Scaler vs. Scalefac $T = 25^{\circ}C$

Problem fix/workaround

Use external voltage input for the analog comparator if accurate voltage levels are needed.

3. ADC gain stage cannot be used for single conversion

The ADC gain stage will not output correct result for single conversion that is triggered and started from software or event system.

Problem fix/workaround

When the gain stage is used, the ADC must be set in free running mode for correct results.

4. ADC has increased INL error for some operating conditions

Some ADC configurations or operating condition will result in increased INL error.

In signed mode INL is increased to:

6LSB for sample rates above 130ksps, and up to 8LSB for 200ksps sample rate.

6LSB for reference voltage below 1.1V when V_{CC} is above 3.0V.

20LSB for ambient temperature below 0°C and reference voltage below 1.3V.

In unsigned mode, the INL error cannot be guaranteed, and this mode should not be used.

Problem fix/workaround

None, avoid using the ADC in the above configurations in order to prevent increased INL error. Use the ADC in signed mode also for single ended measurements.

5. ADC gain stage output range is limited to 2.4V

The amplified output of the ADC gain stage will never go above 2.4V, hence the differential input will only give correct output when below 2.4V/gain. For the available gain settings, this gives a differential input range of:

34.3.9 Rev. B

- Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously
- VCC voltage scaler for AC is non-linear
- ADC gain stage cannot be used for single conversion
- ADC has increased INL error for some operating conditions
- ADC gain stage output range is limited to 2.4V
- ADC Event on compare match non-functional
- ADC propagation delay is not correct when 8x 64x gain is used
- Bandgap measurement with the ADC is non-functional when VCC is below 2.7V
- Accuracy lost on first three samples after switching input to ADC gain stage
- Configuration of PGM and CWCM not as described in the XMEGA D Manual
- PWM is not restarted properly after a fault in cycle-by-cycle mode
- BOD will be enabled at any reset
- EEPROM page buffer always written when NVM DATA0 is written
- Pending full asynchronous pin change interrupts will not wake the device
- Pin configuration does not affect Analog Comparator Output
- NMI Flag for Crystal Oscillator Failure automatically cleared
- Writing EEPROM or Flash while reading any of them will not work
- RTC Counter value not correctly read after sleep
- Pending asynchronous RTC-interrupts will not wake up device
- TWI Transmit collision flag not cleared on repeated start
- Clearing TWI Stop Interrupt Flag may lock the bus
- TWI START condition at bus timeout will cause transaction to be dropped
- TWI Data Interrupt Flag (DIF) erroneously read as set
- WDR instruction inside closed window will not issue reset
- Non available functions and options
- Sampled BOD in Active mode will cause noise when bandgap is used as reference
- Temperature sensor not calibrated
- Disabling the USART transmitter does not automatically set the TxD pin direction to input

1. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously

If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as input for another AC, the first comparator will be affected for up to 1µs and could potentially give a wrong comparison result.

Problem fix/workaround

If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before enabling any of them.

2. VCC voltage scaler for AC is non-linear

The 6-bit V_{CC} voltage scaler in the Analog Comparators is non-linear.

Problem fix/workaround

PGM	CWCM	Description
0	0	PGM and CWCM disabled
0	1	PGM enabled
1	0	PGM and CWCM enabled
1	1	PGM enabled

Table 34-4. Configure PWM and CWCM According to this Table:

11. PWM is not restarted properly after a fault in cycle-by-cycle mode

When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not return to normal operation at first update after fault condition is no longer present.

Problem fix/workaround

Do a write to any AWeX I/O register to re-enable the output.

12. BOD will be enabled after any reset

If any reset source goes active, the BOD will be enabled and keep the device in reset if the V_{CC} voltage is below the programmed BOD level. During Power-On Reset, reset will not be released until V_{CC} is above the programmed BOD level even if the BOD is disabled.

Problem fix/workaround

Do not set the BOD level higher than V_{CC} even if the BOD is not used.

13. EEPROM page buffer always written when NVM DATA0 is written

If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM page buffer.

Problem fix/workaround

Before writing to NVM DATA0, for example when doing software CRC or flash page buffer write, check if EEPROM page buffer active loading flag (EELOAD) is set. Do not write NVM DATA0 when EELOAD is set.

14. Pending full asynchronous pin change interrupts will not wake the device

Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the sleep instruction is executed, will be ignored until the device is woken from another source or the source triggers again. This applies when entering all sleep modes where the System Clock is stopped.

Problem fix/workaround

None.

15. Pin configuration does not affect Analog Comparator output

The Output/Pull and inverted pin configuration does not affect the Analog Comparator output.

Problem fix/workaround

None for Output/Pull configuration.

For inverted I/O, configure the Analog Comparator to give an inverted result (that is, connect positive input to the negative AC input and vice versa), or use and external inverter to change polarity of Analog Comparator output.

—	1×	gain:	2.4	V
—	2×	gain:	1.2	V
—	4×	gain:	0.6	V
—	8×	gain:	300	mV
—	16×	gain:	150	mV
—	32×	gain:	75	mV
—	64×	gain:	38	mV

Problem fix/workaround

Keep the amplified voltage output from the ADC gain stage below 2.4V in order to get a correct result, or keep ADC voltage reference below 2.4V.

6. ADC Event on compare match non-functional

ADC signalling event will be given at every conversion complete even if Interrupt mode (INTMODE) is set to BELOW or ABOVE.

Problem fix/workaround

Enable and use interrupt on compare match when using the compare function.

7. ADC propagation delay is not correct when 8× – 64× gain is used

The propagation delay will increase by only one ADC clock cycle for all gain settings.

Problem fix/workaround

None.

8. Bandgap measurement with the ADC is non-functional when V_{cc} is below 2.7V

The ADC can not be used to do bandgap measurements when V_{CC} is below 2.7V.

Problem fix/workaround

None.

9. Accuracy lost on first three samples after switching input to ADC gain stage

Due to memory effect in the ADC gain stage, the first three samples after changing input channel must be disregarded to achieve 12-bit accuracy.

Problem fix/workaround

Run three ADC conversions and discard these results after changing input channels to ADC gain stage.

10. Configuration of PGM and CWCM not as described in XMEGA D Manual

Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM), but not Common Waveform Channel Mode.

Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode (CWCM) will enable both Pattern Generation Mode and Common Waveform Channel Mode.

