

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

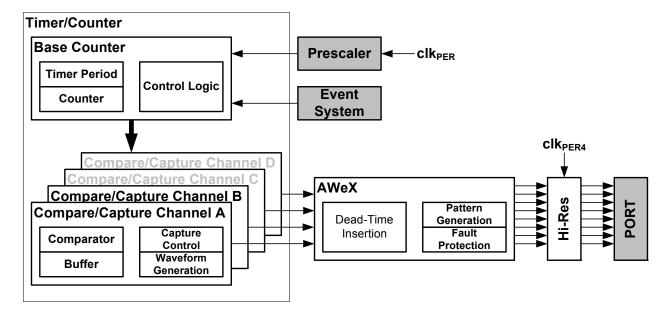
Details

E·XF

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega32d3-mh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


There are two differences between timer/counter type 0 and type 1. Timer/counter 0 has four CC channels, and timer/counter 1 has two CC channels. All information related to CC channels 3 and 4 is valid only for timer/counter 0. Only Timer/Counter 0 has the split mode feature that split it into two 8-bit Timer/Counters with four compare channels each.

Some timer/counters have extensions to enable more specialized waveform and frequency generation. The advanced waveform extension (AWeX) is intended for motor control and other power control applications. It enables low- and high-side output with dead-time insertion, as well as fault protection for disabling and shutting down external drivers. It can also generate a synchronized bit pattern across the port pins.

The advanced waveform extension can be enabled to provide extra and more advanced features for the Timer/Counter. This are only available for Timer/Counter 0. See "AWeX – Advanced Waveform Extension" on page 37 for more details.

The high-resolution (hi-res) extension can be used to increase the waveform output resolution by four or eight times by using an internal clock source running up to four times faster than the peripheral clock. See "Hi-Res – High Resolution Extension" on page 38 for more details.

PORTC has one Timer/Counter 0 and one Timer/Counter1. PORTD, PORTE and PORTF each has one Timer/Counter 0. Notation of these are TCC0 (Time/Counter C0), TCC1, TCD0, TCE0, and TCF0, respectively.

28. Pinout and Pin Functions

The device pinout is shown in "Pinout/block Diagram" on page 5. In addition to general purpose I/O functionality, each pin can have several alternate functions. This will depend on which peripheral is enabled and connected to the actual pin. Only one of the pin functions can be used at time.

28.1 Alternate Pin Function Description

The tables below show the notation for all pin functions available and describe its function.

28.1.1 Operation/power Supply

V _{CC}	Digital supply voltage
AV _{CC}	Analog supply voltage
GND	Ground

28.1.2 Port Interrupt Functions

SYNC	Port pin with full synchronous and limited asynchronous interrupt function
ASYNC	Port pin with full synchronous and full asynchronous interrupt function

28.1.3 Analog Functions

ACn	Analog comparator input pin n
ACnOUT	Analog comparator n output
ADCn	Analog to digital converter input pin n
A _{REF}	Analog reference input pin

28.1.4 Timer/counter and AWEX Functions

OCnxLS	Output compare channel x low side for Timer/Counter n	
OCnxHS	Output compare channel x high side for Timer/Counter n	

28.1.5 Communication Functions

201				
SCL	Serial Clock for TWI			
SDA	Serial Data for TWI			
SCLIN	erial Clock In for TWI when external driver interface is enabled			
SCLOUT	erial Clock Out for TWI when external driver interface is enabled			
SDAIN	Serial Data In for TWI when external driver interface is enabled			
SDAOUT	Serial Data Out for TWI when external driver interface is enabled			
XCKn	Transfer Clock for USART n			
RXDn	Receiver Data for USART n			
TXDn	Transmitter Data for USART n			
SS	Slave Select for SPI			
MOSI	Master Out Slave In for SPI			
MISO	Master In Slave Out for SPI			
SCK	Serial Clock for SPI			

28.1.6 Oscillators, Clock, and Event

TOSCn	Timer Oscillator pin n
XTALn	Input/Output for Oscillator pin n
CLKOUT	Peripheral Clock Output
EVOUT	Event Channel Output
RTCOUT	RTC Clock Source Output

28.1.7 Debug/system Functions

RESET	Reset pin
PDI_CLK	Program and Debug Interface Clock pin
PDI_DATA	Program and Debug Interface Data pin

28.2 Alternate Pin Functions

The tables below show the primary/default function for each pin on a port in the first column, the pin number in the second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral that enable and use the alternate pin functions.

For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted under the first table where this apply.

Atmel

29. Peripheral Module Address Map

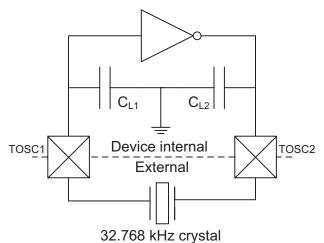
The address maps show the base address for each peripheral and module in Atmel AVR XMEGA D3. For complete register description and summary for each peripheral module, refer to the XMEGA D manual.

Base address	Name	Description			
0x0000	GPIO	General Purpose IO Registers			
0x0010	VPORT0	Virtual Port 0			
0x0014	VPORT1	Virtual Port 1			
0x0018	VPORT2	Virtual Port 2			
0x001C	VPORT3	Virtual Port			
0x0030	CPU	CPU			
0x0040	CLK	Clock Control			
0x0048	SLEEP	Sleep Controller			
0x0050	OSC	Oscillator Control			
0x0060	DFLLRC32M	DFLL for the 32MHz Internal Oscillator			
0x0068	DFLLRC2M	DFLL for the 2MHz Internal Oscillator			
0x0070	PR	Power Reduction			
0x0078	RST	Reset Controller			
0x0080	WDT	Watchdog Timer			
0x0090	MCU	MCU Contro			
0x00A0	PMIC	Programmable Multilevel Interrupt Controller			
0x00B0	PORTCFG	Port Configuration			
0x0180	EVSYS	Event System			
0x00D0	CRC	CRC Module			
0x01C0	NVM	Non Volatile Memory (NVM) Controller			
0x0200	ADCA	Analog to Digital Converter on port A			
0x0380	ACA	Analog Comparator pair on port A			
0x0400	RTC	Real-Time Counter			
0x0480	TWIC	Two-Wire Interface on port C			
0x04A0	TWIE	Two-Wire Interface on port E			
0x0600	PORTA	Port A			
0x0620	PORTB	Port B			
0x0640	PORTC	Port C			

Table 29-1. Peripheral Module Address Map

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
C _{XTAL1}	Parasitic capacitance XTAL1 pin			5.9		
C _{XTAL2}	Parasitic capacitance XTAL2 pin			8.3		pF
C _{LOAD}	Parasitic capacitance load			3.5		

Notes: 1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.


32.4.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
		Crystal load capacitance 6.5pF			60	kΩ	
	Recommended crystal equivalent series resistance (ESR)	Crystal load capacitance 9.0pF			35		
		Crystal load capacitance 12pF			28		
C _{TOSC1}	Parasitic capacitance TOSC1 pin			3.5		~ F	
C _{TOSC2}	Parasitic capacitance TOSC2 pin			3.5		pF	
	Recommended safety factor	Capacitance load matched to crystal specification	3				

Note:

See Figure 32-25 for definition.

Figure 32-25. TOSC Input Capacitance

The parasitic capacitance between the TOSC pins is $C_{L1} + C_{L2}$ in series as seen from the crystal when oscillating without external capacitors.

32.6.8 Bandgap and Internal 1.0V Reference Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Startup time	As reference for ADC	1 Clk _{PER} + 2.5µs			
		As input voltage to ADC and AC		1.5		μs
	Bandgap voltage			1.1		V
INT1V	Internal 1.00V reference	T = 85°C, after calibration	0.99	1	1.01	V
	Variation over voltage and temperature	Calibrated at T = 85°C		2		%

32.6.9 Brownout Detection Characteristics

Table 32-159. Brownout Detection Characteristics ⁽¹⁾

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	BOD level 0 falling V _{CC}		1.60	1.62	1.72	
	BOD level 1 falling V _{CC}			1.9		
	BOD level 2 falling V _{CC}			2.0		
V	BOD level 3 falling V _{CC}			2.2		V
V _{BOT}	BOD level 4 falling V _{CC}			2.4		
	BOD level 5 falling V _{CC}			2.6		
	BOD level 6 falling V_{CC}			2.8		
	BOD level 7 falling V _{CC}			3.0		
+	Detection time	Continuous mode		0.4		ue
t _{BOD}	Detection time	Sampled mode		1000		μs
V _{HYST}	Hysteresis			1.0		%

Note: 1. BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.

32.6.10 External Reset Characteristics

Table 32-160. External Reset Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
t _{EXT}	Minimum reset pulse width		1000	90		ns
	V _{RST} Reset threshold voltage	V _{CC} = 2.7 - 3.6V		0.45 * V _{CC}		V
VRST		V _{CC} = 1.6 - 2.7V		0.42 * V _{CC}		v
R _{RST}	Reset pin pull-up resistor			25		kΩ

32.6.11 Power-on Reset Characteristics

Table 32-161. Power-on Reset Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V (1)	$V_{POT-}^{(1)}$ POR threshold voltage falling V_{CC}	V_{CC} falls faster than 1V/ms	0.4	1.0		
V POT-		V_{CC} falls at 1V/ms or slower	0.8	1.3		V
V _{POT+}	POR threshold voltage rising $\rm V_{\rm CC}$			1.3	1.59	

Note: 1. V_{POT-} values are only valid when BOD is disabled. When BOD is enabled $V_{POT-} = V_{POT+}$.

32.6.12 Flash and EEPROM Memory Characteristics

Table 32-162. Endurance and Data Retention

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
			25°C	10K			Cycle
			85°C	10K			
	Flash		105°C	2K			
	FIGSII	Data retention	25°C	100			Year
			85°C	25			
			105°C	10			
		Write/Erase cycles	25°C	100K			Cycle
	EEPROM		85°C	100K			
			105°C	30K			
			25°C	100			
		Data retention	85°C	25			Year
			105°C	10			

Table 32-163. Programming Time

Symbol	Parameter	Condition	Min.	Typ. ⁽¹⁾	Max.	Units
	Chip erase ⁽²⁾	384KB Flash, EEPROM		130		
	Application erase	Section erase		6		
		Page erase		6		
		Page write		6		ms
		Atomic page erase and write		12		1113
		Page erase		6		
	EEPROM	Page write		6		
		Atomic page erase and write		12		

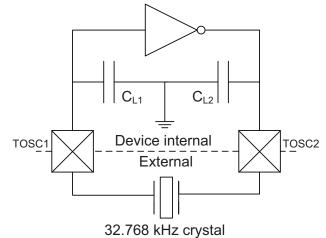
Notes: 1. Programming is timed from the 2MHz internal oscillator.

2. EEPROM is not erased if the EESAVE fuse is programmed.

Parameter	Condition	Min.	Тур.	Max.	Units
Parasitic capacitance XTAL1 pin			5.9		
Parasitic capacitance XTAL2 pin			8.3		pF
Parasitic capacitance load			3.5		
	Parasitic capacitance XTAL1 pin Parasitic capacitance XTAL2 pin	Parasitic capacitance XTAL1 pin Parasitic capacitance XTAL2 pin	Parasitic capacitance Image: Capacitance XTAL1 pin Image: Capacitance Parasitic capacitance Image: Capacitance XTAL2 pin Image: Capacitance	Parasitic capacitance XTAL1 pin 5.9 Parasitic capacitance XTAL2 pin 8.3	Parasitic capacitance XTAL1 pin5.9Parasitic capacitance XTAL2 pin6

Note: 1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.

32.6.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics


Table 32-172.	External 32.768kHz Crystal Oscillator and TOSC Characteristics
---------------	--

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	ESR/R1 Recommended crystal equivalent series resistance (ESR)	Crystal load capacitance 6.5pF			60	
ESR/R1		Crystal load capacitance 9.0pF			35	kΩ
		Crystal load capacitance 12pF			28	
C _{TOSC1}	Parasitic capacitance TOSC1 pin			3.5		ъĘ
C _{TOSC2}	Parasitic capacitance TOSC2 pin			3.5		pF
	Recommended safety factor	Capacitance load matched to crystal specification	3			

Note:

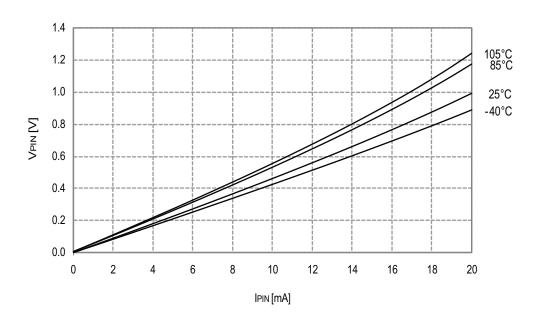
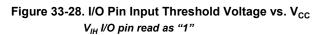

See Figure 32-39 on page 173 for definition.

Figure 32-39. TOSC Input Capacitance



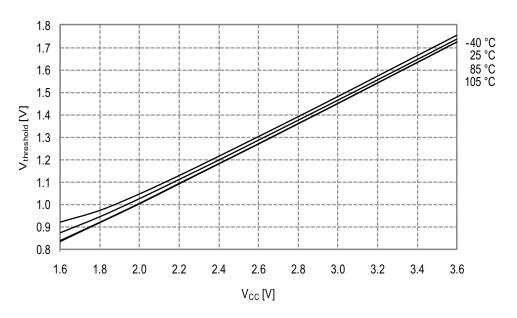
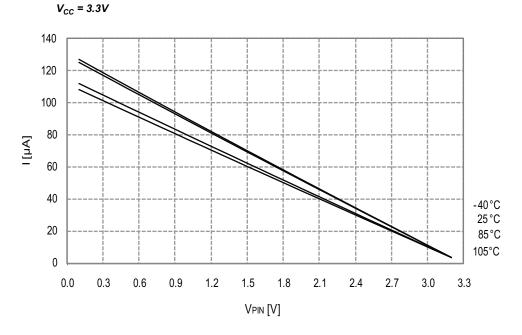

The parasitic capacitance between the TOSC pins is $C_{L1} + C_{L2}$ in series as seen from the crystal when oscillating without external capacitors.

Figure 33-27. I/O Pin Output Voltage vs. Sink Current V_{CC} = 3.3V


33.1.2.3 Thresholds and Hysteresis

Atmel

Figure 33-92. I/O Pin Pull-up Resistor Current vs. Input Voltage

33.2.2.2 Output Voltage vs. Sink/Source Current

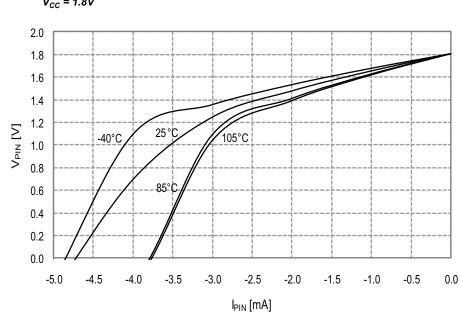


Figure 33-93. I/O Pin Output Voltage vs. Source Current $V_{CC} = 1.8V$

Atmel

Figure 33-106. DNL Error vs. Sample Rate

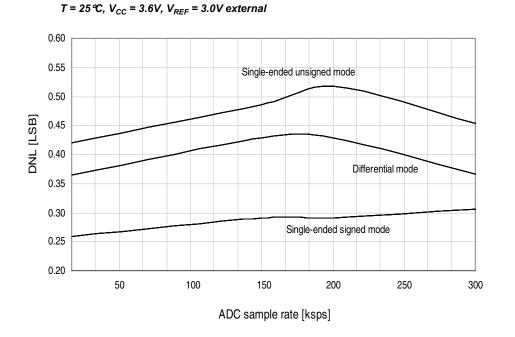


Figure 33-107. DNL Error vs. Input Code

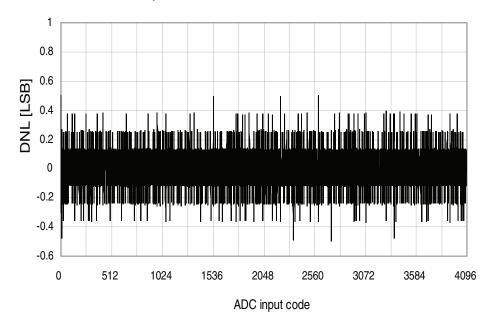
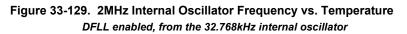
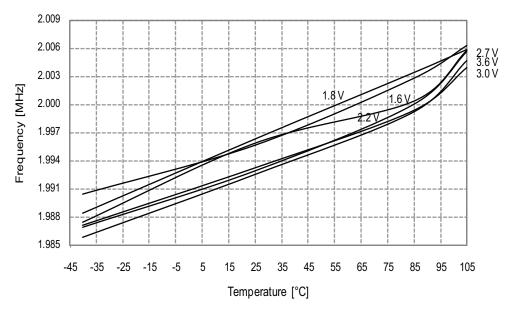




Figure 33-128. 2MHz Internal Oscillator Frequency vs. Temperature DFLL disabled

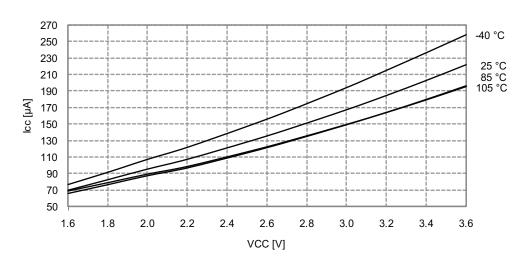
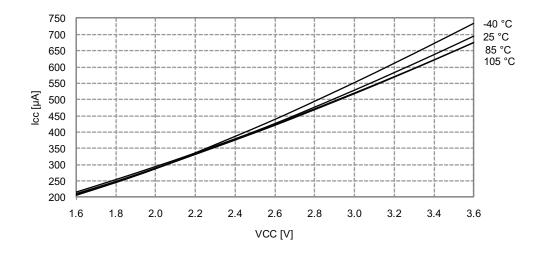



Figure 33-215. Active Mode Supply Current vs. V_{CC} f_{SYS} = 32.768kHz internal oscillator

Figure 33-216.Active Mode Supply Current vs. V_{CC} $f_{SYS} = 1MHz \ external \ clock$

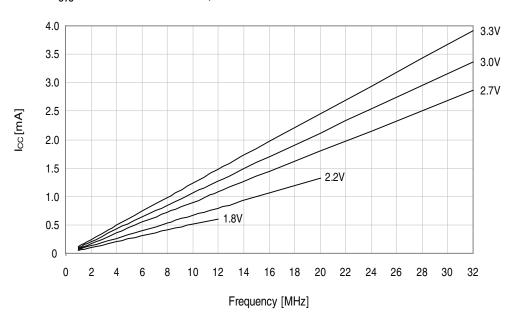
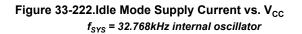
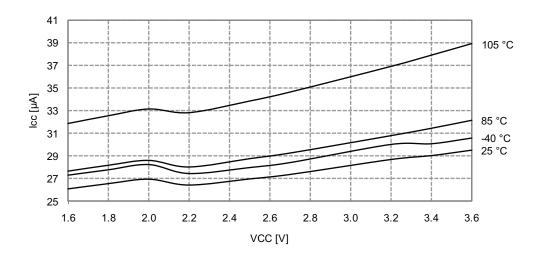
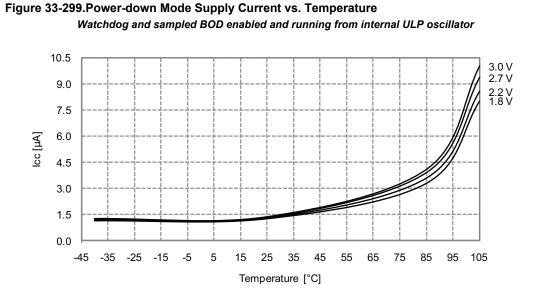
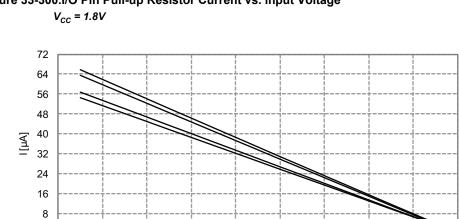





Figure 33-221.Idle Mode Supply Current vs. Frequency $f_{SYS} = 1 - 32MHz \text{ external clock}, T = 25^{\circ}C$

33.5.2 I/O Pin Characteristics


0 0.0

0.2

0.4

0.6

33.5.2.1 Pull-up

0.8

VPIN [V]

1.0

1.2

1.4

1.6

Figure 33-300.I/O Pin Pull-up Resistor Current vs. Input Voltage

-40 °C

25 °C 85 °C

105 °C

1.8

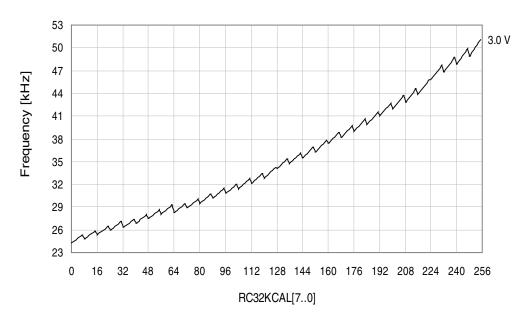
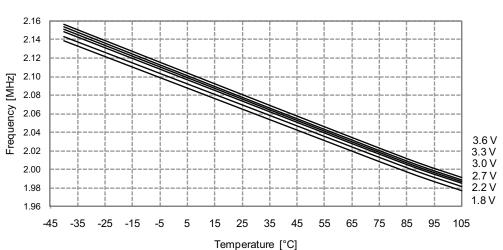



Figure 33-337. 32.768kHz Internal Oscillator Frequency vs. Calibration Value $V_{cc} = 3.0V$, $T = 25^{\circ}C$

33.5.8.3 2MHz Internal Oscillator

Figure 33-338. 2MHz Internal Oscillator Frequency vs. Temperature DFLL disabled

33.6.4 Analog Comparator Characteristics

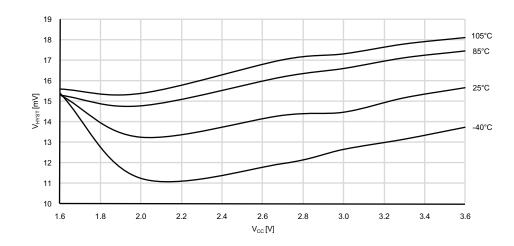
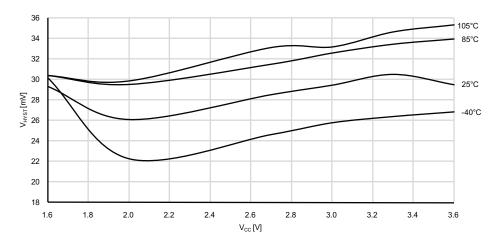



Figure 33-393. Analog Comparator Hysteresis vs. V_{CC} Small hysteresis

Figure 33-394. Analog Comparator Hysteresis vs. V_{CC} Large hysteresis

16. NMI Flag for Crystal Oscillator Failure automatically cleared

NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when executing the NMI interrupt handler.

Problem fix/workaround

This device revision has only one NMI interrupt source, so checking the interrupt source in software is not required.

17. RTC Counter value not correctly read after sleep

If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to bit 0 of RTC PER as the device is entering sleep, the value in the RTC count register can not be read correctly within the first prescaled RTC clock cycle after wake-up. The value read will be the same as the value in the register when entering sleep.

The same applies if RTC Compare Match is used as wake-up source.

Problem fix/workaround

Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.

18. Pending asynchronous RTC-interrupts will not wake up device

Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed, will be ignored until the device is woken from another source or the source triggers again.

Problem fix/workaround

None.

19. TWI Transmit collision flag not cleared on repeated start

The TWI transmit collision flag should be automatically cleared on start and repeated start, but is only cleared on start.

Problem fix/workaround

Clear the flag in software after address interrupt.

20. Clearing TWI Stop Interrupt Flag may lock the bus

If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the hardware sets this flag due to a new address received, CLKHOLD is not cleared and the SCL line is not released. This will lock the bus.

Problem fix/workaround

Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is not IDLE, wait for the SCL pin to be low before clearing APIF.

Code:

Problem fix/workaround

Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is not IDLE, wait for the SCL pin to be low before clearing APIF.

Code:

```
/* Only clear the interrupt flag if within a "safe zone". */
while ( /* Bus not IDLE: */
       ((COMMS TWI.MASTER.STATUS & TWI MASTER BUSSTATE gm) !=
         TWI MASTER BUSSTATE IDLE gc)) &&
         /* SCL not held by slave: */
         ! (COMMS TWI.SLAVE.STATUS & TWI SLAVE CLKHOLD bm)
      )
{
    /* Ensure that the SCL line is low */
    if ( !(COMMS PORT.IN & PIN1 bm) )
        if ( !(COMMS PORT.IN & PIN1 bm) )
            break;
}
/* Check for an pending address match interrupt */
if ( ! (COMMS TWI.SLAVE.STATUS & TWI SLAVE CLKHOLD bm) )
{
    /* Safely clear interrupt flag */
   COMMS TWI.SLAVE.STATUS |= (uint8 t) TWI SLAVE APIF bm;
}
```

22. TWI START condition at bus timeout will cause transaction to be dropped

If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a START is detected, the transaction will be dropped.

Problem fix/workaround

None.

23. TWI Data Interrupt Flag erroneously read as set

When issuing the TWI slave response command CMD=0b11, it takes one Peripheral Clock cycle to clear the data interrupt flag (DIF). A read of DIF directly after issuing the command will show the DIF still set.

Problem fix/workaround

Add one NOP instruction before checking DIF.

24. WDR instruction inside closed window will not issue reset

When a WDR instruction is execute within one ULP clock cycle after updating the window control register, the counter can be cleared without giving a system reset.

Problem fix/workaround

Wait at least one ULP clock cycle before executing a WDR instruction.

25. Non available functions and options

The below function and options are not available. Writing to any registers or fuse to try and enable or configure these functions or options will have no effect, and will be as writing to a reserved address location.

- TWIE, the TWI module on PORTE
- TWI SDAHOLD option in the TWI CTRL register is one bit
- CRC generator module
- ADC 1/2× gain option, and this configuration option in the GAIN bits in the ADC Channel CTRL register
- ADC VCC/2 reference option and this configuration option in the REFSEL bits on the ADC REFCTRL register
- ADC option to use internal Gnd as negative input in differential measurements and this configuration option in the MUXNEG bits in the ADC Channel MUXCTRL register
- ADC channel scan and the ADC SCAN register
- ADC current limitation option, and the CURRLIMIT bits in the ADC CTRLB register
- ADC impedance mode selection for the gain stage, and the IMPMODE bit in the ADC CTRLB register
- Timer/Counter 2 and the SPLITMODE configuration option in the BYTEM bits in the Timer/Counter 0 CTRLE register
- Analog Comparator (AC) current output option, and the AC CURRCTRL and CURRCALIB registers
- PORT remap functions with alternate pin locations for Timer/Counter output compare channels, USART0 and SPI, and the PORT REMAP register
- PORT RTC clock output option and the RTCOUT bit in the PORT CLKEVOUT register
- PORT remap functions with alternate pin locations for the clock and event output, and the CLKEVPIN bit in the PORT CLKEVOUT register
- TOSC alternate pin locations, and TOSCSEL bit in FUSEBYTE2
- Real Time Counter clock source options of external clock from TOSC1, and 32.768kHz from TOSC, and 32.768kHz from the 32.768kHz internal oscillator, and these configuration options in the RTCSRC bits in the Clock RTCTRL register
- PLL divide by two option, and the PLLDIV bit in the Clock PLLCTRL register
- PLL lock detection failure function and the PLLDIF and PLLFDEN bits in the Clock XOSCFAIL register
- The high drive option for external crystal and the XOSCPWR bit on the Oscillator XOSCCTRL register
- The option to enable sequential startup of the analog modules and the ANAINIT register in MCU Control memory

Problem fix/workaround

None.

26. Sampled BOD in Active mode will cause noise when bandgap is used as reference

Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap reference for ADC, DAC and Analog Comparator.

Problem fix/workaround

If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in sampled mode.

27. Temperature sensor not calibrated

Temperature sensor factory calibration not implemented.

Problem fix/workaround

None.

