

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC140 Core
Interface	Communications Processor Module (CPM)
Clock Rate	275MHz
Non-Volatile Memory	External
On-Chip RAM	512kB
Voltage - I/O	3.30V
Voltage - Core	1.60V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	332-BFBGA, FCBGA
Supplier Device Package	332-FCBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8101vt1375f

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

	MSC8101 Features		
	Target	iv	
	Produc	ct Documentation	iv
Chapter 1	Signa	als/Connections	
	1.1	Power Signals	
	1.2	Clock Signals	
	1.3	Reset, Configuration, and EOnCE Event Signals	
	1.4	System Bus, HDI16, and Interrupt Signals	
	1.5	Memory Controller Signals	
	1.6	CPM Ports	
	1.7	JTAG Test Access Port Signals	
	1.8	Reserved Signals	
Chapter 2	Phys		
-	2.1	Absolute Maximum Ratings	
	2.2	Recommended Operating Conditions	
	2.3	Thermal Characteristics	
	2.4	DC Electrical Characteristics	
	2.5	Clock Configuration	
	2.6	AC Timings	
Chapter 3 Packaging			
-	3.1	FC-PBGA Package Description	
	3.2	Lidded FC-PBGA Package Mechanical Drawing	
Chapter 4	Desig	gn Considerations	
	4.1	Thermal Design Considerations	
	4.2	Electrical Design Considerations	
	4.3	Power Considerations	
	4.4	Layout Practices	
Ordering and	Contact I	information	Back Cover

Data Sheet Conventions

pin and pin- out	Although the device package does not have pins, the term pins and pin-out are used for convenience and indicate specific signal locations within the ball-grid array.			
OVERBAR	Used to indicate a signal that is active when pulled low (For example, the $\overline{\text{RESET}}$ pin is active when low.)			
"asserted"	Means that a high true (a	active high) signal is hi	gh or that a low true (activ	ve low) signal is low
"deasserted"	Means that a high true (active high) signal is low or that a low true (active low) signal is high			
Examples:	Signal/Symbol	Logic State	Signal State	Voltage
	PIN	True	Asserted	V_{IL}/V_{OL}
	PIN	False	Deasserted	V _{IH} /V _{OH}
	PIN	True	Asserted	V_{IH}/V_{OH}
	PIN	False	Deasserted	V _{IL} /V _{OL}

Note: Values for V_{IL} , V_{OL} , V_{IH} , and V_{OH} are defined by individual product specifications.

System Bus, HDI16, and Interrupt Signals

Although there are eight interrupt request (\overline{IRQ}) connections to the core processor, there are multiple external lines that can connect to these internal signal lines. After reset, the default configuration includes two $\overline{IRQ1}$ and two $\overline{IRQ7}$ input lines. The designer must select one line for each required interrupt and reconfigure the other external signal line or lines for alternate functions.

Signal	Data Flow	Description
A[0-31]	Input/Output	Address Bus When the MSC8101 is in external master bus mode, these pins function as the address bus. The MSC8101 drives the address of its internal bus masters and responds to addresses generated by external bus masters. When the MSC8101 is in Internal Master Bus mode, these pins are used as address lines connected to memory devices and are controlled by the MSC8101 memory controller.
TT[0-4]	Input/Output	Bus Transfer Type The bus master drives these pins during the address tenure to specify the type of transaction.
TSIZ[0–3]	Input/Output	Transfer Size The bus master drives these pins with a value indicating the number of bytes transferred in the current transaction.
TBST	Input/Output	Bus Transfer Burst The bus master asserts this pin to indicate that the current transaction is a burst transaction (transfers four quad words).
IRQ1	Input	Interrupt Request 1 ¹ One of eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
GBL	Input/Output	Global ¹ When a master within the chip initiates a bus transaction, it drives this pin. When an external master initiates a bus transaction, it should drive this pin. Assertion of this pin indicates that the transfer is global and it should be snooped by caches in the system.
Reserved	Output	The primary configuration is reserved.
BADDR29	Output	Burst Address 29¹ One of five outputs of the memory controller. These pins connect directly to memory devices controlled by the MSC8101 memory controller.
IRQ2	Input	Interrupt Request 2 ¹ One of eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
Reserved	Output	The primary configuration is reserved.
BADDR30	Output	Burst Address 30 ¹ One of five outputs of the memory controller. These pins connect directly to memory devices controlled by the MSC8101 memory controller.
IRQ3	Input	Interrupt Request 3 ¹ One of eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
Reserved	Output	The primary configuration is reserved.
BADDR31	Output	Burst Address 31¹ One of five outputs of the memory controller. These pins connect directly to memory devices controlled by the MSC8101 memory controller.
IRQ5	Input	Interrupt Request 5 ¹ One of eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.

Table 1-5.	System Bus,	HDI16, and	Interrupt	Signals
		- ,		

Signal	Data Flow	Description
BR	Input/Output Output	Bus Request ² An output when an external arbiter is used. The MSC8101 asserts this pin to request ownership of the bus.
	Input	An input when an internal arbiter is used. An external master should assert this pin to request bus ownership from the internal arbiter.
BG	Input/Output Output	Bus Grant ² An output when an internal arbiter is used. The MSC8101 asserts this pin to grant bus ownership to an external bus master.
	Input	An input when an external arbiter is used. The external arbiter should assert this pin to grant bus ownership to the MSC8101.
ABB	Input/Output Output	Address Bus Busy ¹ The MSC8101 asserts this pin for the duration of the address bus tenure. Following an address acknowledge (AACK) signal, which terminates the address bus tenure, the MSC8101 deasserts ABB for a fraction of a bus cycle and then stops driving this pin.
	Input	The MSC8101 does not assume bus ownership while it this pin is asserted by an external bus master.
IRQ2	Input	Interrupt Request 2 ¹ One of the eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
TS	Input/Output	Bus Transfer Start Signals the beginning of a new address bus tenure. The MSC8101 asserts this signal when one of its internal bus masters (SC140 core or DMA controller) begins an address tenure. When the MSC8101 senses this pin being asserted by an external bus master, it responds to the address bus tenure as required (snoop if enabled, access internal MSC8101 resources, memory controller support).
AACK	Input/Output	Address Acknowledge A bus slave asserts this signal to indicate that it identified the address tenure. Assertion of this signal terminates the address tenure.
ARTRY	Input	Address Retry Assertion of this signal indicates that the bus transaction should be retried by the bus master. The MSC8101 asserts this signal to enforce data coherency with its internal cache and to prevent deadlock situations.
DBG	Input/Output Output	Data Bus Grant ² An output when an internal arbiter is used. The MSC8101 asserts this pin as an output to grant data bus ownership to an external bus master.
	Input	An input when an external arbiter is used. The external arbiter should assert this pin as an input to grant data bus ownership to the MSC8101.
DBB	Input/Output Output	Data Bus Busy ¹ The MSC8101 asserts this pin as an output for the duration of the data bus tenure. Following a \overline{TA} , which terminates the data bus tenure, the MSC8101 deasserts \overline{DBB} for a fraction of a bus cycle and then stops driving this pin.
	Input	The MSC8101 does not assume data bus ownership while $\overline{\text{DBB}}$ is asserted by an external bus master.
IRQ3	Input	Interrupt Request 3 ¹ One of the eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.
D[0–31]	Input/Output	Data Bus Most Significant Word In write transactions the bus master drives the valid data on this bus. In read transactions the slave drives the valid data on this bus. In Host Port Disabled mode, these 32 bits are part of the 64-bit data bus. In Host Port Enabled mode, these bits are used as the bus in 32-bit mode.

 Table 1-5.
 System Bus, HDI16, and Interrupt Signals (Continued)

Name		Dediested	
General- Purpose I/O	Peripheral Controller: Dedicated Signal Protocol	I/O Data Direction	a Description
PA7	SMC2: SMSYN	Input	SMC2: Serial Management Synchronization The SMC interface consists of SMTXD, SMRXD, SMSYN, and a clock. Not all signals are used for all applications. SMCs are full-duplex ports that supports three protocols or modes: UART, transparent, or general- circuit interface (GCI).
	SI1 TDMA1: L1TSYNC <i>TDM nibble</i> and <i>TDM serial</i>	Input	Time-Division Multiplexing A1: Layer 1 Transmit Synchronization The synchronizing signal for the transmit channel. See the <i>Serial</i> <i>Interface with</i> time-slot assigner chapter in the <i>MSC8101 Reference</i> <i>Manual.</i>
PA6	SI1 TDMA1: L1RSYNC TDM nibble and TDM serial	Input	Time-Division Multiplexing A1: Layer 1 Receive Synchronization. The synchronizing signal for the receive channel.

1.6.2 Port B Signals

Table 1-8.	Port B Signals
------------	----------------

Name		Dedicated	
General- Purpose I/O	Peripheral Controller: Dedicated I/O Protocol	I/O Data Direction	Description
PB31	FCC2: TX_ER MII	Output	FCC2: Media Independent Interface Transmit Error Asserted by the MSC8101 to force propagation of transmit errors.
	SCC2: RXD	Input	SCC2: Receive Data SCC2 receives serial data from RXD.
	SI2 TDMB2: L1TXD <i>TDM serial</i>	Output	Time-Division Multiplexing B2: Layer 1 Transmit Data TDMB2 transmits serial data out of L1TXD.
PB30	SCC2: TXD	Output	SCC2: Transmit Data. SCC2 transmits serial data out of TXD.
	FCC2: RX_DV MII	Input	FCC2: Media Independent Interface Receive Data Valid Asserted by an external fast Ethernet PHY to indicate that valid data is being sent. The presence of carrier sense, but not RX_DV, indicates reception of broken packet headers, probably due to bad wiring or a bad circuit.
	SI2 TDMB2: L1RXD TDM serial	Input	Time-Division Multiplexing B2: Layer 1 Receive Data TDMB2 receives serial data from L1RXD.
PB29	FCC2: TX_EN MII	Output	FCC2: Media Independent Interface Transmit Enable Asserted by the MSC8101 when transmitting data.
	SI2 TDMB2: L1RSYNC TDM serial	Input	Time-Division Multiplexing B2: Layer 1 Receive Synchronization The synchronizing signal for the receive channel.

Table 1-8.	Port B Signals	(Continued)
------------	----------------	-------------

Name			
General- Purpose I/O	Peripheral Controller: Dedicated I/O Protocol	I/O Data Direction	Description
PB28	FCC2: RTS HDLC serial, HDLC nibble, and transparent	Output	FCC2: Request to Send One of the standard modem interface signals supported by FCC2 ($\overline{\text{RTS}}$, $\overline{\text{CTS}}$, and $\overline{\text{CD}}$). $\overline{\text{RTS}}$ is asynchronous with the data. $\overline{\text{RTS}}$ is typically used in conjunction with $\overline{\text{CD}}$. The MSC8101 FCC2 transmitter requests the receiver to send data by asserting $\overline{\text{RTS}}$ low. The request is accepted when $\overline{\text{CTS}}$ is returned low.
	FCC2: RX_ER MII	Input	FCC2: Media Independent Interface Receive Error Asserted by an external fast Ethernet PHY to indicate a receive error, which often indicates bad wiring.
	SCC2: RTS, TENA	Output	SCC2: Request to Send, Transmit Enable Typically used in conjunction with CD supported by SCC2. The MSC8101 SCC2 transmitter requests the receiver to send data by asserting RTS low. The request is accepted when CTS is returned low. TENA is the signal used in Ethernet mode.
	SI2 TDMB2: L1TSYNC TDM serial	Input	Time-Division Multiplexing B2: Layer 1 Transmit Synchronization The synchronizing signal for the transmit channel. See the serial interface with time-slot assigner chapter in the <i>MSC8101 Reference</i> <i>Manual.</i>
PB27	FCC2: COL MII	Input	FCC2: Media Independent Interface Collision Detect Asserted by an external fast Ethernet PHY when a collision is detected.
	SI2 TDMC2: L1TXD <i>TDM serial</i>	Output	Time-Division Multiplexing C2: Layer 1 Transmit Data TDMC2 transmits serial data out of L1TXD.
PB26	FCC2: CRS MII	Input	FCC2: Media Independent Interface Carrier Sense Input Asserted by an external fast Ethernet PHY to indicate activity on the cable.
	SI2 TDMC2: L1RXD TDM serial	Input	Time-Division Multiplexing C2: Layer 1 Receive Data TDMC2 receives serial data from L1RXD.
PB25	FCC2: TXD3 <i>MII</i> and <i>HDLC nibble</i>	Output	FCC2: MII and HDLC Nibble Transmit Data Bit 3 TXD3 is bit 3 and the most significant bit of the transmit data nibble.
	SI1 TDMA1: L1TXD3 <i>TDM nibble</i>	Output	Time-Division Multiplexing A1: Nibble Layer 1 Transmit Data Bit 3 L1TXD3 is bit 3 and the most significant bit of the transmit data nibble.
	SI2 TDMC2: L1TSYNC TDM serial	Input	Time-Division Multiplexing C2: Layer 1 Transmit Synchronization The synchronizing signal for the transmit channel. See the <i>Serial</i> <i>Interface with Time-Slot Assigner</i> chapter in the <i>MSC8101 Reference</i> <i>Manual.</i>
PB24	FCC2: TXD2 <i>MII</i> and <i>HDLC nibble</i>	Output	FCC2: MII and HDLC Nibble: Transmit Data Bit 2 TXD2 is bit 2 of the transmit data nibble.
	SI1 TDMA1: L1RXD3 nibble	Input	Time-Division Multiplexing A1: Nibble Layer 1 Receive Data Bit 3 L1RXD3 is bit 3 and the most significant bit of the receive data nibble.
	SI2 TDMC2: L1RSYNC serial	Input	Time-Division Multiplexing C2: Layer 1 Receive Synchronization The synchronizing signal for the receive channel.

Table 1-9.	Port C Signals	(Continued)
------------	----------------	-------------

Name		Dedicated		
General- Purpose I/O	Peripheral Controller: Dedicated I/O Protocol	I/O Data Direction	Description	
PC24	BRG8O	Output	Baud-Rate Generator 8 Output The CPM supports up to 8 BRGs used internally by the bank-of-clocks selection logic and/or to provide an output to one of the 8 BRG pins.	
	CLK8	Input	Clock 8 The CPM supports up to 10 clock input pins. The clocks are sent to the bank-of-clocks selection logic, where they can be routed to the controllers.	
	TIN3	Input	Timer Input 3 A timer can have one of the following sources: another timer, system clock, system clock divided by 16, or a timer input. The CPM supports up to four timer inputs. The timer inputs can be captured on the rising, falling, or both edges.	
	Timer4: TOUT4	Output	Timer 4: Timer Out 4 The timers (Timer1–4]) can output a signal on a timer output (TOUT[1–4]) when the reference value is reached. This signal can be an active-low pulse or a toggle of the current output. The output can also be connected internally to the input of another timer, resulting in a 32-bit timer.	
	DMA: DREQ2	Input	DMA: Data Request 2 DACK2, DREQ2, DRACK2, and DONE2 belong to the SIU DMA controller. DONE2 and DRACK2 are signals on the same pin and therefore cannot be used simultaneously. There are two sets of DMA pins associated with the PIO ports.	
PC23	CLK9	Input	Clock 9 The CPM supports up to 10 clock input pins sent to the bank-of-clocks selection logic, where they can be routed to the controllers.	
	DMA: DACK1	Output	DMA: Data Acknowledge 1 DACK1, DREQ1, DRACK1, and DONE1 belong to the SIU DMA controller. DONE1 and DRACK1 are signals on the same pin and therefore cannot be used simultaneously. There are two sets of DMA pins associated with the PIO ports.	
	EXT2	Input	External Request 2 External request input line 2 asserts an internal request to the CPM processor. The signal can be programmed as level- or edge-sensitive, and also has programmable priority. Refer to the risc controller configuration register (RCCR) description in the Chapter 17 of the <i>MSC8101 Reference Manual</i> for programming information. There are no current microcode applications for this request line. It is reserved for future development.	

ical and Electrical Specifications

2.5 Clock Configuration

The following sections provide a general description of clock configuration.

2.5.1 Valid Clock Modes

Table 2-6 shows the maximum frequency values for each rated core frequency (250, 275, or 300 MHz). The user must ensure that maximum frequency values are not exceeded.

Characteristic	Maximum Frequency in MHz			
Core Frequency	250	275	300	
CPM Frequency (CPMCLK)	166.67	183.33	200	
Bus Frequency (BCLK)	83.33	91.67	100	
Serial Communication Controller Clock Frequency (SCLK)	83.33	91.67	100	
Baud Rate Generator Clock Frequency (BRGCLK)	83.33	91.67	100	
External Clock Output Frequency (CLKOUT)	83.33	91.67	100	

Table 2-6.Maximum Frequencies

Six bit values map the MSC8101 clocks to one of the valid configuration mode options. Each option determines the CLKIN, SC140, system bus, SCC clock, CPM, and CLKOUT frequencies. The six bit values are derived from three dedicated input pins (MODCK[1–3]) and three bits from the hard reset configuration word (MODCK_H). To configure the SPLL pre-division factor, SPLL multiplication factor, and the frequencies for the SC140, SCC clocks, CPM parallel I/O ports, and system buses, the MODCK[1–3] pins are sampled and combined with the MODCK_H values when the internal power-on reset (internal PORESET) is deasserted. Clock configuration changes only when the internal PORESET signal is deasserted. The following factors are configured:

- SPLL pre-division factor (SPLL PDF)
- SPLL multiplication factor (SPLL MF)
- Bus post-division factor (Bus DF)
- CPM division factor (CPM DF)
- Core division factor (Core DF)
- CPLL pre-division factor (CPLL PDF)
- CPLL multiplication factor (CPLL MF)

The SCC division factor (SCC DF) is fixed at 4. The BRG division factor (BRG DF) is configured through the System Clock Control Register (SCCR) and can be 4, 16 (default after reset), 64, or 256.

Note: Refer to *Clock Mode Selection for MSC8101 and MSC8103 Mask Set 2K87M* (AN2306) for details on clock configuration.

2.5.2 Clocks Programming Model

This section describes the clock registers in detail. The registers discussed are as follows:

- System Clock Control Register (SCCR)
- System Clock Mode Register (SCMR)

No.	Characteristic	Value ²	Units
11g	TS set-up time before the 50% level of the DLLIN rising edge	5.0	ns
11h	BG set-up time before the 50% level of the DLLIN rising edge	4.5	ns
12	 Data bus set-up time before the 50% level of the DLLIN rising edge in Normal Pipeline mode Non-pipeline mode 	2.5 5.0	ns ns
13	 Data bus set-up time before the 50% level of the DLLIN rising edge in ECC and PARITY modes Pipeline mode Non-pipeline mode 	2.5 8.0	ns ns
14	DP set-up time before the 50% level of the DLLIN rising edge Pipeline mode Non-pipeline mode 	4.0 9.0	ns ns
15a	Address bus set-up time before the 50% level of the DLLIN rising edge Extra cycle mode (SIUBCR[EXDD] = 0) Non-extra cycle mode (SIUBCR[EXDD] = 1) 	5.0 8.0	ns ns
15b	Address attributes: TT/TBST/TSIZ/GBL set-up time before the 50% level of the DLLIN rising edge Extra cycle mode (SIUBCR[EXDD] = 0) Non-extra cycle mode (SIUBCR[EXDD] = 1) 	5.0 5.5	ns ns
16 ¹	PUPMWAIT/IRQ signals set-up time before the 50% level of the DLLIN rising edge	3.0	ns
 Notes: 1. The set-up time for these signals is for synchronous operation. Any set-up time can be used for asynchronous operation. Input specifications are measured from the 50% level of the rising edge of DLLIN to the 50% level of the signal. Timings are measured at the pin. 			

 Table 2-16.
 AC Timing for SIU Inputs

Table 2-17.	AC Timing for SIU Outputs

Na	Chanastariatia	Min	Maxii	mum ²	Unite
NO.	Characteristic	wiin.	30 pF	50 pF	Units
31a	 TA delay from the 50% level of the DLLIN rising edge Pipeline mode Non-pipeline mode 	1.0 1.0	5.0 4.0	6.5 5.5	ns ns
31b	 TEA delay from the 50% level of the DLLIN rising edge Pipeline mode Non-pipeline mode 	1.0 1.0	3.0 3.5	4.5 5.0	ns ns
31c	 PSDVAL delay from the 50% level of the DLLIN rising edge Pipeline mode Non-pipeline mode 	1.0 1.0	4.0 3.5	5.5 5.0	ns ns
32a	Address bus delay from the 50% level of the DLLIN rising edge • Multi master mode (SIUBCR[EBM] = 1) • Single master mode (SIUBCR[EBM] = 0)	1.0 1.0	6.3 5.5	7.8 7.0	ns ns
32b	Address attributes: TT/TBST/TSIZ/GBL delay from the 50% level of the DLLIN rising edge	1.0	5.5	7.0	ns
32c	BADDR delay from the 50% level of the DLLIN rising edge	1.0	3.5	5.0	ns
33a	Data bus delay from the 50% level of the DLLIN rising edgePipeline modeNon-pipeline mode	1.0 1.0	5.0 6.0	6.5 7.5	ns ns
33b	DP delay from the 50% level of the DLLIN rising edgePipeline modeNon-pipeline mode	1.0 1.0	4.0 6.5	5.5 8.0	ns ns
34	Memory controller signals/ALE delay from the 50% level of the DLLIN rising edge	1.0	5.5	7.0	ns
35a	DBG/BR/DBB delay from the 50% level of the DLLIN rising edge	1.0	4.0	5.5	ns
35b	AACK/ABB/CS delay from the 50% level of the DLLIN rising edge	1.0	4.5	6.0	ns

Figure 2-10. Bus Signal Timing

Figure 2-17 shows Host DMA write timing.

Figure 2-17. Host DMA Write Timing Diagram, HPCR[OAD] = 0

2.6.7 CPM Timings

Table 2-20.	CPM Input Characteristics
-------------	---------------------------

No.	Characteristic	Typical	Unit
39	FCC input set-up time before low-to-high clock transition a. internal clock (BRGxO) b. external clock (serial clock input)	10 5	ns ns
17	FCC input hold time after low-to-high clock transition a. internal clock (BRGxO) b. external clock (serial clock input)	0 3	ns ns
18	SCC/SMC/SPI/I ² C input set-up time before low-to-high clock transition a. internal clock (BRGxO) b. external clock (serial clock input)	20 5	ns ns
19	SCC/SMC/SPI/I ² C input hold time after low-to-high clock transition a. internal clock (BRGxO) b. external clock (serial clock input)	0 5	ns ns
20	TDM input set-up time before low-to-high serial clock transition	5	ns
21	TDM input hold time after low-to-high serial transition	5	ns
22	PIO/TIMER/DMA input set-up time before low-to-high serial clock transition	10	ns
23	PIO/TIMER/DMA input hold time after low-to-high serial clock transition	3	ns
Note:	FCC, SCC, SMC, SPI, I ² C are Non-Multiplexed Serial Interface signals.	•	

No.	Characteristic	Min	Max	Unit
41	FCC output delay after low-to-high clock transition a. internal clock (BRGxO) b. external clock (serial input clock)	0 2	6 18	ns ns

Figure 3-1. MSC8101 Flip Chip Plastic Ball Grid Array (FC-PBGA), Top View

Note: Signal names in this figure are the default signals after reset, except for signals C2, C19, D1, D2, D18, E1, F3, H13, H14, and W11 which show the second configuration signal name.

Figure 3-2. MSC8101 Flip Chip Plastic Ball Grid Array (FC-PBGA), Bottom Vie

Signal Name	Number
GND	G14
GND	G6
GND	G8
GND	H15
GND	H5
GND	H7
GND	J14
GND	J5
GND	J6
GND	K13
GND	K15
GND	К6
GND	К7
GND	L14
GND	L15
GND	L5
GND	L6
GND	M15
GND	M5
GND	N6
GND	N9
GND	P11
GND	P12
GND	P13
GND	P14
GND	P15
GND	P6
GND	P7
GND	P9
GND _{SYN}	V7
GND _{SYN1}	U7
H8BIT	B16
HAO	D14
HA1	C14

 Table 3-1.
 MSC8101 Signal Listing By Name (Continued)

Signal Name	Number
HA2	B14
НАЗ	A14
HACK/HACK	E16
HCS1/HCS1	D15
HCS2/HCS2	A16
HD0	A10
HD1	G11
HD2	D11
HD3	C11
HD4	B11
HD5	A11
HD6	F12
HD7	D12
HD8	C12
HD9	B12
HD10	A12
HD11	D13
HD12	C13
HD13	B13
HD14	A13
HD15	E14
HDDS	C16
HDS/HDS	B15
HDSP	D16
HPE	D1
HRD/HRD	C15
HREQ/HREQ	A15
HRESET	V6
HRRQ/HRRQ	E16
HRW	C15
HTRQ/HTRQ	A15
HWR/HWR	B15
INT_OUT	W11
ĪRQ1	B1

 Table 3-1.
 MSC8101 Signal Listing By Name (Continued)

Signal Name	Number
PBS6	B17
PBS7	F17
PC4	P10
PC5	W10
PC6	N10
PC7	T10
PC12	V4
PC13	T5
PC14	T6
PC15	V3
PC22	R1
PC23	N5
PC24	P1
PC25	N1
PC26	M2
PC27	L7
PC28	L3
PC29	КЗ
PC30	J3
PC31	НЗ
PD7	V9
PD16	U4
PD17	N7
PD18	U3
PD19	V2
PD29	К2
PD30	J2
PD31	H2
PGPL0	E17
PGPL1	F14
PGPL2	G19
PGPL3	E19
PGPL4	J18
PGPI 5	.117
	.

 Table 3-1.
 MSC8101 Signal Listing By Name (Continued)

Signal Name	Number
TXCLAV0 for FCC1 UTOPIA 8	J7
TXCLAV1 for FCC1 UTOPIA 8	T10
TXCLAV2 for FCC1 UTOPIA 8	V9
TXCLAV3 for FCC1 UTOPIA 8	V2
TXD for FCC1 transparent/HDLC serial	W2
TXD for FCC2 transparent/HDLC serial	T2
TXD for SCC1	J2
TXD for SCC2	H1
TXD0 for FCC1 MII/HDLC nibble	W2
TXD0 for FCC1 UTOPIA 8	N2
TXD0 for FCC2 MII/HDLC nibble	T2
TXD1 for FCC1 MII/HDLC nibble	R5
TXD1 for FCC1 UTOPIA 8	P2
TXD1 for FCC2 MII/HDLC nibble	V1
TXD2 for FCC1 MII/HDLC nibble	Т3
TXD2 for FCC1 UTOPIA 8	P4
TXD2 for FCC2 MII/HDLC nibble	P3
TXD3 for FCC1 MII/HDLC nibble	U1
TXD3 for FCC1 UTOPIA 8	R3
TXD3 for FCC2 MII/HDLC nibble	N3
TXD4 for FCC1 UTOPIA 8	U1
TXD5 for FCC1 UTOPIA 8	Т3
TXD6 for FCC1 UTOPIA 8	R5
TXD7 for FCC1 UTOPIA 8	W2
TXENB for FCC1	G1
TXPRTY for FCC1 UTOPIA 8	U4
TXSOC for FCC1	J1
V _{CCSYN}	W7
V _{CCSYN1}	T7
V _{DD}	E12
V _{DD}	E5
V _{DD}	E9
V _{DD}	F16
V _{DD}	F4

 Table 3-1.
 MSC8101 Signal Listing By Name (Continued)

Signal Name	Number
V _{DD}	H16
V _{DD}	J4
V _{DD}	L16
V _{DD}	L4
V _{DD}	N4
V _{DD}	P16
V _{DD}	R11
V _{DD}	R13
V _{DD}	R8
V _{DDH}	E10
V _{DDH}	E11
V _{DDH}	E13
V _{DDH}	E15
V _{DDH}	E4
V _{DDH}	E6
V _{DDH}	E8
V _{DDH}	G15
V _{DDH}	G16
V _{DDH}	G5
V _{DDH}	J15
V _{DDH}	J16
V _{DDH}	K16
V _{DDH}	K5
V _{DDH}	M4
V _{DDH}	N15
V _{DDH}	N16
V _{DDH}	R10
V _{DDH}	R12
V _{DDH}	R14
V _{DDH}	R15
V _{DDH}	R6
V _{DDH}	R7
V _{DDH}	R9
V _{DDH}	T15

 Table 3-1.
 MSC8101 Signal Listing By Name (Continued)

3.2 Lidded FC-PBGA Package Mechanical Drawing

Notes: 1. Dimensioning and tolerancing per ASME Y14.5M–1994.

2. Dimensions in millimeters.

A Maximum solder ball diameter measured parallel to Datum A.

A Primary Datum A and the seating plane are defined by the spherical crowns of the solder balls.

CASE 1473-01

Figure 3-3. Case 1473-01 Mechanical Information, 332-pin Lidded FC-PBGA Package

