

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC140 Core
Interface	Communications Processor Module (CPM)
Clock Rate	300MHz
Non-Volatile Memory	External
On-Chip RAM	512kB
Voltage - I/O	3.30V
Voltage - Core	1.60V
Operating Temperature	-40°C ~ 75°C (TJ)
Mounting Type	Surface Mount
Package / Case	332-BFBGA, FCBGA
Supplier Device Package	332-FCBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8101vt1500f

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note: Refer to the System Interface Unit (SIU) chapter in the MSC8101 Reference Manual for details on how to configure these pins. Figure 1-1. MSC8101 External Signals

Name		Dedicated		
General- Purpose I/O	Peripheral Controller: Dedicated Signal Protocol	I/O Data Description Direction		
PA7	SMC2: SMSYN	Input	SMC2: Serial Management Synchronization The SMC interface consists of SMTXD, SMRXD, SMSYN, and a clock. Not all signals are used for all applications. SMCs are full-duplex ports that supports three protocols or modes: UART, transparent, or general- circuit interface (GCI).	
	SI1 TDMA1: L1TSYNC <i>TDM nibble</i> and <i>TDM serial</i>	Input	Time-Division Multiplexing A1: Layer 1 Transmit Synchronization The synchronizing signal for the transmit channel. See the <i>Serial</i> <i>Interface with</i> time-slot assigner chapter in the <i>MSC8101 Reference</i> <i>Manual.</i>	
PA6	SI1 TDMA1: L1RSYNC TDM nibble and TDM serial	Input	Time-Division Multiplexing A1: Layer 1 Receive Synchronization. The synchronizing signal for the receive channel.	

1.6.2 Port B Signals

Table 1-8.	Port B Signals
------------	----------------

Name		Dedicated	
General- Purpose I/O	Peripheral Controller: Dedicated I/O Protocol	I/O Data Direction	Description
PB31	FCC2: TX_ER MII	Output	FCC2: Media Independent Interface Transmit Error Asserted by the MSC8101 to force propagation of transmit errors.
	SCC2: RXD	Input	SCC2: Receive Data SCC2 receives serial data from RXD.
	SI2 TDMB2: L1TXD <i>TDM serial</i>	Output	Time-Division Multiplexing B2: Layer 1 Transmit Data TDMB2 transmits serial data out of L1TXD.
PB30	SCC2: TXD	Output	SCC2: Transmit Data. SCC2 transmits serial data out of TXD.
	FCC2: RX_DV MII	Input	FCC2: Media Independent Interface Receive Data Valid Asserted by an external fast Ethernet PHY to indicate that valid data is being sent. The presence of carrier sense, but not RX_DV, indicates reception of broken packet headers, probably due to bad wiring or a bad circuit.
	SI2 TDMB2: L1RXD TDM serial	Input	Time-Division Multiplexing B2: Layer 1 Receive Data TDMB2 receives serial data from L1RXD.
PB29	FCC2: TX_EN MII	Output	FCC2: Media Independent Interface Transmit Enable Asserted by the MSC8101 when transmitting data.
	SI2 TDMB2: L1RSYNC TDM serial	Input	Time-Division Multiplexing B2: Layer 1 Receive Synchronization The synchronizing signal for the receive channel.

Table 1-8.	Port B Signals	(Continued)
------------	----------------	-------------

Name		Dedlested			
General- Purpose I/O	Peripheral Controller: Dedicated I/O Protocol	I/O Data Direction	Description		
PB28	FCC2: RTS HDLC serial, HDLC nibble, and transparent	Output	FCC2: Request to Send One of the standard modem interface signals supported by FCC2 ($\overline{\text{RTS}}$, $\overline{\text{CTS}}$, and $\overline{\text{CD}}$). $\overline{\text{RTS}}$ is asynchronous with the data. $\overline{\text{RTS}}$ is typically used in conjunction with $\overline{\text{CD}}$. The MSC8101 FCC2 transmitter requests the receiver to send data by asserting $\overline{\text{RTS}}$ low. The request is accepted when $\overline{\text{CTS}}$ is returned low.		
	FCC2: RX_ER MII	Input	FCC2: Media Independent Interface Receive Error Asserted by an external fast Ethernet PHY to indicate a receive error, which often indicates bad wiring.		
	SCC2: RTS, TENA	Output	SCC2: Request to Send, Transmit Enable Typically used in conjunction with CD supported by SCC2. The MSC8101 SCC2 transmitter requests the receiver to send data by asserting RTS low. The request is accepted when CTS is returned low. TENA is the signal used in Ethernet mode.		
	SI2 TDMB2: L1TSYNC TDM serial	Input	Time-Division Multiplexing B2: Layer 1 Transmit Synchronization The synchronizing signal for the transmit channel. See the serial interface with time-slot assigner chapter in the <i>MSC8101 Reference</i> <i>Manual.</i>		
PB27	FCC2: COL MII	Input	FCC2: Media Independent Interface Collision Detect Asserted by an external fast Ethernet PHY when a collision is detected.		
	SI2 TDMC2: L1TXD <i>TDM serial</i>	Output	Time-Division Multiplexing C2: Layer 1 Transmit Data TDMC2 transmits serial data out of L1TXD.		
PB26	FCC2: CRS MII	Input	FCC2: Media Independent Interface Carrier Sense Input Asserted by an external fast Ethernet PHY to indicate activity on the cable.		
	SI2 TDMC2: L1RXD TDM serial	Input	Time-Division Multiplexing C2: Layer 1 Receive Data TDMC2 receives serial data from L1RXD.		
PB25	FCC2: TXD3 <i>MII</i> and <i>HDLC nibble</i>	Output	FCC2: MII and HDLC Nibble Transmit Data Bit 3 TXD3 is bit 3 and the most significant bit of the transmit data nibble.		
	SI1 TDMA1: L1TXD3 <i>TDM nibble</i>	Output	Time-Division Multiplexing A1: Nibble Layer 1 Transmit Data Bit 3 L1TXD3 is bit 3 and the most significant bit of the transmit data nibble.		
	SI2 TDMC2: L1TSYNC TDM serial	Input	Time-Division Multiplexing C2: Layer 1 Transmit Synchronization The synchronizing signal for the transmit channel. See the <i>Serial</i> <i>Interface with Time-Slot Assigner</i> chapter in the <i>MSC8101 Reference</i> <i>Manual.</i>		
PB24	FCC2: TXD2 <i>MII</i> and <i>HDLC nibble</i>	Output	FCC2: MII and HDLC Nibble: Transmit Data Bit 2 TXD2 is bit 2 of the transmit data nibble.		
	SI1 TDMA1: L1RXD3 nibble	Input	Time-Division Multiplexing A1: Nibble Layer 1 Receive Data Bit 3 L1RXD3 is bit 3 and the most significant bit of the receive data nibble.		
	SI2 TDMC2: L1RSYNC serial	Input	Time-Division Multiplexing C2: Layer 1 Receive Synchronization The synchronizing signal for the receive channel.		

 Table 1-8.
 Port B Signals (Continued)

Name		Dedicated		
General- Purpose I/O	Peripheral Controller: Dedicated I/O Protocol	I/O Data Direction	Description	
PB23	FCC2: TXD1 <i>MII</i> and <i>HDLC nibble</i>	Output	FCC2: MII and HDLC Nibble: Transmit Data Bit 1 TXD1 is bit 1 of the transmit data nibble.	
	SI1 TDMA1: L1RXD2 <i>TDM nibble</i>	Input	Time-Division Multiplexing A1: Nibble Layer 1 Receive Data Bit 2 L1RXD2 is bit 2 of the receive data nibble.	
	SI2 TDMD2: L1TXD TDM serial	Output	Time-Division Multiplexing D2: Layer 1 Transmit Data TDMA1 transmits serial data out of L1TXD.	
PB22	FCC2: TXD0 <i>MII</i> and <i>HDLC nibble</i>	Output	FCC2: MII and HDLC Nibble Transmit Data Bit 0 TXD0 is bit 0 and the least significant bit of the transmit data nibble.	
	FCC2: TXD HDLC serial and transparent	Output	FCC2: HDLC Serial and Transparent Transmit Data Serial data is transmitted via TXD.	
	SI1 TDMA1: L1RXD1 <i>TDM nibble</i>	Input	Time-Division Multiplexing A1: Nibble Layer 1 Receive Data Bit 1 L1RXD1 is bit 1 of the receive data nibble.	
	SI2 TDMD2: L1RXD TDM serial	Input	Time-Division Multiplexing D2: Layer 1 Receive Data Serial data is received via L1RXD.	
PB21	FCC2: RXD0 <i>MII</i> and <i>HDLC nibble</i>	Input	FCC2: MII and HDLC Nibble Receive Data Bit 0 RXD0 is bit 0 and the least significant bit of the receive data nibble.	
	FCC2: RXD HDLC serial and transparent	Input	FCC2: HDLC Serial and Transparent Receive Data Serial data is received via RXD.	
	SI1 TDMA1: L1TXD2 <i>TDM nibble</i>	Output	Time-Division Multiplexing A1: Nibble Layer 1 Transmit Data Bit L1TXD2 is bit 2 of the transmit data nibble.	
	SI2 TDMD2: L1TSYNC TDM serial	Input	Time-Division Multiplexing D2: Layer 1 Transmit Synchronize Data The synchronizing signal for the transmit channel. See the <i>Serial</i> <i>Interface with Time-Slot Assigner</i> chapter in the <i>MSC8101 Reference</i> <i>Manual.</i>	
PB20	FCC2: RXD1 <i>MII</i> and <i>HDLC nibble</i>	Input	FCC2: MII and HDLC Nibble: Receive Data Bit 1 RXD1 is bit 1 of the receive data nibble.	
	SI1 TDMA1: L1TXD1 <i>TDM nibble</i>	Output	Time-Division Multiplexing A1: Nibble Layer 1 Transmit Data Bit 1 L1TXD1 is bit 1 of the transmit data nibble.	
	SI2 TDMD2: L1RSYNC TDM serial	Input	Time-Division Multiplexing D2: Layer 1 Receive Synchronize Data The synchronizing signal for the receive channel.	
PB19	FCC2: RXD2 <i>MII</i> and <i>HDLC nibble</i>	Input	FCC2: MII and HDLC Nibble Receive Data Bit 2 RXD2 is bit 2 of the receive data nibble.	
	I ² C: SDA	Input/ Output	I ² C: Inter-Integrated Circuit Serial Data The I ² C interface comprises two signals: serial data (SDA) and serial clock (SDA). The I ² C controller uses a synchronous, multimaster bus that can connect several integrated circuits on a board. Clock rates run up to 520 kHz@25 MHz system clock.	

 Table 1-9.
 Port C Signals (Continued)

Name		Dedlerated			
General- Purpose I/O	Peripheral Controller: Dedicated I/O Protocol	I/O Data Direction	Description		
PC30	BRG2O	Output	Baud-Rate Generator 2 Output The CPM supports up to 8 BRGs used internally by the bank-of-clocks selection logic and/or to provide an output to one of the 8 BRG pins.		
	CLK2	Input	Clock 2 The CPM supports up to 10 clock input pins sent to the bank-of-clocks selection logic, where they can be routed to the controllers.		
	Timer1: TOUT1	Output	Timer 1: Timer Out 1 The timers (Timer[1–4]) can output a signal on a timer output ($\overline{TOUT[1-4]}$) when the reference value is reached. This signal can be an active-low pulse or a toggle of the current output. The output can also connect internally to the input of another timer, resulting in a 32-bit timer.		
	EXT1	Input	External Request 1 Asserts an internal request to the CPM processor. The signal can be programmed as level- or edge-sensitive, and also has programmable priority. Refer to the RISC Controller Configuration Register (RCCR) description in the Chapter 17 of the <i>MSC8101 Reference Manual</i> for programming information. There are no current microcode applications for this request line. It is reserved for future development.		
PC29	BRG3O	Output	Baud-Rate Generator 3 Output The CPM supports up to 8 BRGs used internally by the bank-of-clocks selection logic and/or to provide an output to one of the 8 BRG pins.		
	CLK3	Input	Clock 3 The CPM supports up to 10 clock input pins sent to the bank-of-clocks selection logic, where they can be routed to the controllers.		
	TIN2	Input	Timer Input 2 A timer can have one of the following sources: another timer, system clock, system clock divided by 16 or a timer input. The CPM supports up to 4 timer inputs. The timer inputs can be captured on the rising, falling or both edges.		
	SCC1: CTS, CLSN	Input	SCC1: Clear to Send, Collision Typically used in conjunction with $\overline{\text{RTS}}$. The MSC8101 SCC1 transmitter sends out a request to send data signal ($\overline{\text{RTS}}$). The request is accepted when $\overline{\text{CTS}}$ is returned low. CLSN is the signal used in Ethernet mode. See also PC15.		

2.4 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC8101. The measurements in **Table 2-4** assume the following system conditions:

- $T_J = 0 100 \ ^{\circ}C$
- $V_{DD} = 1.6 \text{ V} \pm 5\% \text{ V}_{DC}$
- $V_{\text{DDH}} = 3.3 \text{ V} \pm 5\% \text{ V}_{\text{DC}}$
- $\bullet \quad \mathsf{GND} = 0 \ V_{DC}$

Note: The leakage current is measured for nominal V_{DDH} and V_{DD} or both V_{DDH} and V_{DD} must vary in the same direction (for example, both V_{DDH} and V_{DD} vary by ± 5 percent).

Characteristic	Symbol	Min	Max	Unit	
Input high voltage ¹ , all inputs except CLKIN	V _{IH}	2.0	3.465	V	
Input low voltage ¹	V _{IL}	GND	0.8	V	
CLKIN input high voltage	V _{IHC}	2.5	3.465	V	
CLKIN input low voltage ²	V _{ILC}	0.8	V		
Input leakage current, V _{IN} = V _{DDH}	I _{IN} —		10	μA	
Tri-state (high impedance off state) leakage current,	I _{OZ}	—	10	μA	
$V_{IN} = V_{DDH}$					
Signal low input current ³ , V _{IL} = 0.8 V	۱ _L	-	-4.0	mA	
Signal high input current ³ , V _{IH} = 2.0 V	Ι _Η	_	4.0	mA	
Output high voltage, $I_{OH} = -2$ mA, except open drain pins	V _{OH}	2.4	—	V	
Output low voltage, I _{OL} = 3.2 mA	V _{OL}	_	0.4	V	
 Notes: 1. See Figure 2-1 for undershoot and overshoot voltages. 2. The optimum CLKIN duty cycle is obtained when: V_{ILC} = V_{DDH} - V_{IHC}. 3. Not tested. Guaranteed by design. 					

Table 2-4. DC Electrical Characteristics

Figure 2-1. Overshoot/Undershoot Voltage for V_{IH} and V_{IL}

Table 2-5.Typical Power Dissipation

Characteristic	Symbol	Typical	Unit
Core power dissipation at 300 MHz	P _{CORE}	450	mW
CPM power dissipation at 200 MHz	P _{CPM}	320	mW
SIU power dissipation at 100 MHz	P _{SIU}	80	mW
Core leakage power	P _{LCO}	3	mW
CPM leakage power	P _{LCP}	6	mW
SIU leakage power	P _{LSI}	2	mW

2.5.2.1 System Clock Control Register

SCCR is memory-mapped into the SIU register map of the MSC8101.

Name	Defa	ults	Description		Sottingo	
Bit No.	PORESET	Hard Reset			Settings	
 0–26	—	—	Reserved. Write to 0 fro future compatibility.			
CLKODIS 27	0	Unaffected	CLKOUT Disable Disables the CLKOUT signal. The value of CLKOUT when disabled is indeterminate (can be 1 or 0).	0 1	CLKOUT enabled (default) CLKOUT disabled	
 28–29	—	—	Reserved. Write to 0 fro future compatibility.			
DFBRG 30–31	01	Unaffected	Division Factor for the BRG Clock Defines the BRGCLK frequency. Changing this value does not result in a loss of lock condition.	00 01 10 11	Divide by 4 Divide by 16 (default value) Divide by 64 Divide by 256	

Table 2-7.	SCCR Bit Descriptions
------------	-----------------------

2.5.2.2 System Clock Mode Register

Figure 2-3. System Clock Mode Register (SCMR)-0x10C88

SCMR is a read-only register that is updated during power-on reset (PORESET) and provides the mode control signals to the PLLs, DLL, and clock logic. This register reflects the currently defined configuration settings. For details of the available setting options, see *AN2306/D*.

2.6.5 System Bus Access Timing

2.6.5.1 Core Data Transfers

Generally, all MSC8101 bus and system output signals are driven from the rising edge of the reference clock (REFCLK), which is DLLIN. Memory controller signals, however, trigger on four points within a DLLIN cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge of DLLIN (and T3 at the falling edge), but the spacing of T2 and T4 depends on the PLL clock ratio selected, as **Table 2-15** shows.

PLL Clock Ratio	Tick Spacing (T1 Occurs at the Rising Edge of DLLIN)		
	T2	Т3	T4
	1/4 DLLIN	1/2 DLLIN	3/4 DLLIN
1:2.5	3/10 DLLIN	1/2 DLLIN	8/10 DLLIN
1:3.5	4/14 DLLIN	1/2 DLLIN	11/14 DLLIN

Table 2-15.	Tick Spacing for Memory Controller Sig	gnals
-------------	--	-------

Figure 2-9 is a graphical representation of Table 2-15.

Note: The UPM machine and GPCM machine outputs change on the internal tick determined by the memory controller programming; the AC specifications are relative to the internal tick. SDRAM machine outputs change only on the DLLIN rising edge.

Table 2-16.	AC Timing for SIU Inputs
-------------	--------------------------

No.	Characteristic	Value ²	Units
10	Hold time for all signals after the 50% level of the DLLIN rising edge	0.5	ns
11a	ABB/AACK set-up time before the 50% level of the DLLIN rising edge	3.5	ns
11b	DBG/DBB/BR/TC set-up time before the 50% level of the DLLIN rising edge	5.0	ns
11c	ARTRY set-up time before the 50% level of the DLLIN rising edge	4.0	ns
11d	 TA set-up time before the 50% level of the DLLIN rising edge Pipeline mode Non-pipeline mode 	3.5 4.0	ns ns
11e	 TEA set-up time before the 50% level of the DLLIN rising edge Pipeline mode Non-pipeline mode 	4.0 3.0	ns ns
11f	 PSDVAL set-up time before the 50% level of the DLLIN rising edge Pipeline mode Non-pipeline mode 	3.5 3.5	ns ns

Figure 2-10. Bus Signal Timing

2.6.5.2 DMA Data Transfers

Table 2-18 describes the DMA signal timing.

Number	Characteristic	Minimum	Maximum	Units
72	DREQ set-up time before DLLIN falling edge	6	_	ns
73	DREQ hold time after DLLIN falling edge	0.5	—	ns
74	DONE set-up time before DLLIN rising edge	9	—	ns
75	DONE hold time after DLLIN rising edge	0.5	_	ns
76	DACK/DRACK/DONE delay after DLLIN rising edge	0.5	9	ns

Table 2-18. DMA Signals

The DREQ signal is synchronized with the falling edge of DLLIN. DONE timing is relative to the rising edge of DLLIN. To achieve fast response, a synchronized peripheral should assert DREQ according to the timings in **Table 2-18**. **Figure 2-11** shows synchronous peripheral interaction.

Figure 2-11. DMA Signals

Figure 2-13. Read Timing Diagram, Double Data Strobe

Figure 2-14. Write Timing Diagram, Single Data Strobe

ical and Electrical Specifications

Packaging

This chapter provides information about the MSC8101 package, including diagrams of the package pinouts and tables showing how the signals discussed in **Chapter 1** are allocated. The MSC8101 is available in a 332-pin lidded flip chip-plastic ball grid array (FC-PBGA).

3.1 FC-PBGA Package Description

Figure 3-1 and **Figure 3-2** show top and bottom views of the FC-PBGA package, including pinouts. **Table 3-1** lists the MSC8101 signals alphabetically by signal name. Connections with multiple names are listed individually by each name. Signals with programmable polarity are shown both as signals which are asserted low (default) and high (that is, NAME/NAME). **Table 3-2** lists the signals numerically by pin number. Each pin number is listed once with the various signals that are multiplexed to it. For simplicity, signals with programmable polarity are shown in this table only with their default name (asserted low).

Note: The package description in this chapter applies to packages with lead-bearing and lead-free spheres.

Signal Name	Number
GND	G14
GND	G6
GND	G8
GND	H15
GND	H5
GND	H7
GND	J14
GND	J5
GND	J6
GND	K13
GND	K15
GND	К6
GND	К7
GND	L14
GND	L15
GND	L5
GND	L6
GND	M15
GND	M5
GND	N6
GND	N9
GND	P11
GND	P12
GND	P13
GND	P14
GND	P15
GND	P6
GND	P7
GND	P9
GND _{SYN}	V7
GND _{SYN1}	U7
H8BIT	B16
HAO	D14
HA1	C14

 Table 3-1.
 MSC8101 Signal Listing By Name (Continued)

Signal Name	Number
IRQ1	D18
IRQ2	C19
IRQ2	D4
IRQ2	V11
IRQ3	B2
IRQ3	C18
IRQ3	H14
IRQ4	C3
IRQ5	A2
IRQ5	H13
IRQ6	D5
IRQ7	F6
IRQ7	W11
L1RSYNC for SI1 TDMA1	T11
L1RSYNC for SI2 TDMB2	K4
L1RSYNC for SI2 TDMC2	P3
L1RSYNC for SI2 TDMD2	P5
L1RXD for SI1 TDMA1 Serial	U10
L1RXD for SI2 TDMB2	H1
L1RXD for SI2 TDMC2	М3
L1RXD for SI2 TDMD2	T2
L1RXD0 for SI1 TDMA1 Nibble	U10
L1RXD1 for SI1 TDMA1 Nibble	T2
L1RXD2 for SI1 TDMA1 Nibble	V1
L1RXD3 for SI1 TDMA1 Nibble	P3
L1TSYNC for SI1 TDMA1	V10
L1TSYNC for SI2 TDMB2	L2
L1TSYNC for SI2 TDMC2	N3
L1TSYNC for SI2 TDMD2	T1
L1TXD for SI1 TDMA1 Serial	W9
L1TXD for SI2 TDMB2	H4
L1TXD for SI2 TDMC2	M1
L1TXD for SI2 TDMD2	V1
L1TXD0 for SI1 TDMA1 Nibble	W9

MSC8101 Signal Listing By Name (Continued) Table 3-1.

Signal Name	Number
PA18	W2
PA19	R5
PA20	Т3
PA21	U1
PA22	R3
PA23	P4
PA24	P2
PA25	N2
PA26	M6
PA27	L1
PA28	K1
PA29	J1
PA30	J7
PA31	G1
PB18	R4
PB19	U2
PB20	P5
PB21	T1
PB22	T2
PB23	V1
PB24	P3
PB25	N3
PB26	M3
PB27	M1
PB28	L2
PB29	K4
PB30	H1
PB31	H4
PBS0	K18
PBS1	K17
PBS2	K14
PBS3	J19
PBS4	H19
PBS5	D17

 Table 3-1.
 MSC8101 Signal Listing By Name (Continued)

Number	Signal Name
E5	V _{DD}
E6	V _{DDH}
E7	D13
E8	V _{DDH}
E9	V _{DD}
E10	V _{DDH}
E11	V _{DDH}
E12	V _{DD}
E13	V _{DDH}
E14	D47 / HD15
E15	V _{DDH}
E16	D56 / HACK / HRRQ
E17	PSDA10 / PGPL0
E18	MODCK1 / TC0 / BNKSEL0
E19	PSDCAS / PGPL3
F1	TDO
F2	EED
F3	BTM1 / EE5
F4	V _{DD}
F5	GND
F6	IRQ7 / DP7 / DACK4
F7	GND
F8	D18
F9	GND
F10	D28
F11	GND
F12	D38 / HD6
F13	GND
F14	PSDWE / PGPL1
F15	GND
F16	V _{DD}
F17	PWE7 / PSDDQM7 / PBS7
F18	MODCK2 / TC1 / BNKSEL1
F19	BCTL0
G1	PA31 / FCC1:UTOPIA8:TXENB / FCC1:MII:COL
G2	TMS
G3	TRST
G4	тск
G5	V _{DDH}

 Table 3-2.
 MSC8101 Signal Listing by Pin Designator (Continued)

Number	Signal Name
G6	GND
G7	D12
G8	GND
G9	D23
G10	GND
G11	D33 / HD1
G12	GND
G13	PSDVAL
G14	GND
G15	V _{DDH}
G16	V _{DDH}
G17	TEA
G18	MODCK3 / TC2 / BNKSEL2
G19	POE / PSDRAS / PGPL2
H1	PB30 / FCC2:MII:RX_DV / SCC2:TXD / TDBM2:L1RXD
H2	PD31 / SCC1:RXD / DRACK1 / DONE1
H3	PC31 / BRG10 / CLK1 / TGATE1
H4	PB31 / FCC2:MII:TX_ER / SCC2:RXD / TDMB2:L1TXD
H5	GND
H6	TDI
H7	GND
H13	Reserved / BADDR31 / IRQ5
H14	Reserved / BADDR30 / IRQ3
H15	GND
H16	V _{DD}
H17	BR
H18	ALE
H19	PWE4 / PSDDQM4 / PBS4
J1	PA29 / FCC1:UTOPIA8:TXSOC / FCC1:MII:TX_ER
J2	PD30 / SCC1:TXD / DMA:DRACK2/DONE2
J3	PC30 / EXT1 / BRG2O / CLK2 / TOUT1
J4	V _{DD}
J5	GND
J6	GND
J7	PA30 / FCC1:UTOPIA8:TXCLAV / FCC1:UTOPIA8:TXCLAV0 / FCC1:MII:CRS / FCC1:HDLC and transparent:RTS
J13	TA
J14	GND
J15	V _{DDH}

 Table 3-2.
 MSC8101 Signal Listing by Pin Designator (Continued)

Number	Signal Name
V7	GND _{SYN}
V8	PA11 / FCC1:UTOPIA8:RXD1 / SDMA:MSNUM4
V9	PD7 / FCC1:UTOPIA8:TXADDR3 / FCC1:UTOPIA8:TXCLAV2 / SMC1:SMSYN
V10	PA7 / SMC2: SMSYN / TDMA1: L1TSYNC
V11	ABB / IRQ2
V12	BG
V13	TSIZO
V14	ТТ3
V15	A2
V16	A6
V17	A9
V18	A13
V19	A14
W2	PA18 / FCC1:UTOPIA8:TXD7 / FCC1:MII and HDLC nibble:TXD0 / FCC1:transparent and HDLC serial:TXD
W3	PA15 / FCC1:UTOPIA8:RXD5 / FCC1:MII and HDLC nibble:RXD2
W4	SRESET
W5	PORESET
W6	TEST
W7	V _{CCSYN}
W8	PA14 / FCC1:UTOPIA8 RXD4 / FCC1:MII and HDLC nibble:RXD3
W9	PA9 / SMC2:SMTXD / TDMA1:serial:L1TXD /TDMA1:nibble:L1TXD0
W10	PC5 / FCC2:CTS / SMC1:SMTXD / SI2:LIST3
W11	IRQ7 / INT_OUT
W12	TSIZ2
W13	TSIZ1
W14	TT4
W15	A0
W16	A5
W17	Α7
W18	A10

 Table 3-2.
 MSC8101 Signal Listing by Pin Designator (Continued)

