

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18854-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Enhanced Mid-Range CPU	
3.0	Memory Organization	
4.0	Device Configuration	
5.0	Resets	
6.0	Oscillator Module (with Fail-Safe Clock Monitor)	
7.0	Interrupts	
8.0	Power-Saving Operation Modes	
9.0	Windowed Watchdog Timer (WWDT)	
10.0	Nonvolatile Memory (NVM) Control	
11.0	Cyclic Redundancy Check (CRC) Module	
12.0	I/O Ports	
13.0	Peripheral Pin Select (PPS) Module	
14.0	Peripheral Module Disable	
15.0	Interrupt-On-Change	
16.0	Fixed Voltage Reference (FVR)	
17.0	Temperature Indicator Module	
18.0	Comparator Module	
19.0	Pulse-Width Modulation (PWM)	
20.0	Complementary Waveform Generator (CWG) Module	
21.0	Zero-Cross Detection (ZCD) Module	
22.0	Configurable Logic Cell (CLC)	
23.0	Analog-to-Digital Converter With Computation (ADC2) Module	
24.0	Numerically Controlled Oscillator (NCO) Module	
25.0	5-Bit Digital-to-Analog Converter (DAC1) Module	
26.0	Data Signal Modulator (DSM) Module	
27.0	Timer0 Module	
28.0	Timer1/3/5 Module with Gate Control	
29.0	Timer2/4/6 Module	
30.0	Capture/Compare/PWM Modules	
31.0	Master Synchronous Serial Port (MSSP) Modules	
32.0	Signal Measurement Timer (SMT)	
33.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	
34.0	Reference Clock Output Module	
35.0	In-Circuit Serial Programming™ (ICSP™)	
36.0	Instruction Set Summary	
37.0	Electrical Specifications	
38.0	DC and AC Characteristics Graphs and Charts	
39.0	Development Support	
40.0	Packaging Information	
Data	Sheet Revision History	

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_		_	CCP5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE
bit 7							bit 0
Legend:							
R = Read	lable bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is	unchanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is	set	'0' = Bit is cle	ared	HS = Hardwa	are set		
bit 7-5	Unimplemer	nted: Read as '	0'.				
bit 4	CCP5IE: CC	P5 Interrupt En	able bit				
	1 = CCP5 i	nterrupt is enat	bled				
hit 3		D4 Intorrupt En	ushla hit				
DIL 3	1 = CCP4 i	nterrupt is enab	able bit				
	0 = CCP4 i	nterrupt is disal	bled				
bit 2	CCP3IE: CC	P3 Interrupt En	able bit				
	1 = CCP3 i	nterrupt is enat	oled				
	0 = CCP3 i	nterrupt is disa	bled				
bit 1	CCP2IE: CC	P2 Interrupt En	able bit				
	1 = CCP2I 0 = CCP2i	nterrupt is enac nterrupt is disal	pled				
bit 0	CCP1IF: CC	P1 Interrupt En	able bit				
bit o	1 = CCP1 i	nterrupt is enat	oled				
	0 = CCP1 ir	nterrupt is disat	bled				
Note:	Bit PEIE of the IN	ITCON register	must be				
	controlled by regis	sters PIF1-PIF	mterrupt 3.				
			-				

REGISTER 7-8: PIE6: PERIPHERAL INTERRUPT ENABLE REGISTER 6

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	_	_	—	—	INTEDG	114
PIE0	_	—	TMR0IE	IOCIE	_	—	_	INTE	115
PIE1	OSFIE	CSWIE	—	—	—	—	ADTIE	ADIE	116
PIE2	_	ZCDIE	—	_	_	_	C2IE	C1IE	117
PIE3	-	—	RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	118
PIE4	_	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	119
PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	_	TMR5GIE	TMR3GIE	TMR1GIE	120
PIE6	_	—	—	CCP5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	121
PIE7	SCANIE	CRCIE	NVMIE	NCO1IE	_	CWG3IE	CWG2IE	CWG1IE	122
PIE8	_	—	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	123
PIR0	_	—	TMR0IF	IOCIF	—	—	—	INTF	124
PIR1	OSFIF	CSWIF	—	_	_	_	ADTIF	ADIF	125
PIR2	_	ZCDIF	—	—	_	—	C2IF	C1IF	126
PIR3	_	_	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	127
PIR4	_	_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	128
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	TMR5GIF	TMR3GIF	TMR1GIF	129
PIR6	_	_	—	CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	130
PIR7	SCANIF	CRCIF	NVMIF	NCO1IF	—	CWG3IF	CWG2IF	CWG1IF	132
PIR8	_	—	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	133

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

10.4.8 WRITE VERIFY

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 10-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART

12.7 Register Definitions: PORTB

REGISTER 12-12: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 **RB<7:0>**: PORTB I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

- **Note 1:** Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.
 - 2: Bit RB3 is read-only, and will read '1' when MCLRE = 1 (master clear enabled).

REGISTER 12-13: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TRISB<7:0>:** PORTB Tri-State Control bit 1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

U-0	U-0	U-0	U-0	R/W-1/1	U-0	U-0	U-0
—	_	—	_	INLVLE3	—		
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 12-34: INLVLE: PORTE INPUT LEVEL CONTROL REGISTER

bit 7-4	Unimplemented: Read as '0'
bit 3	INLVLE3: PORTE Input Level Select bits
	1 = ST input used for PORT reads and interrupt-on-change 0 = TTL input used for PORT reads and interrupt-on-change
bit 2-0	Unimplemented: Read as '0'

TABLE 12-5: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTE				-	RE3	_	_	_	206
WPUE	—	-	—		WPUE3	_	_	-	206
INLVLE	_			_	INLVLE3		_		207

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

TABLE 12-6: SUMMARY OF CONFIGURATION WORD WITH PORTE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	—	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV	_	74
CONFIGZ	7:0	BORE	N<1:0>	LPBOREN	_	—	-	PWRTE	MCLRE	74

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTE.

15.0 INTERRUPT-ON-CHANGE

All pins on all ports (except PORTD on PIC16F18875 devices) can be configured to operate as Interrupt-On-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual pin, or combination of pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- Individual pin interrupt flags

Figure 15-1 is a block diagram of the IOC module.

15.1 Enabling the Module

To allow individual pins to generate an interrupt, the IOCIE bit of the PIE0 register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

15.2 Individual Pin Configuration

For each pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting the associated bits in both of the IOCxP and IOCxN registers.

15.3 Interrupt Flags

The bits located in the IOCxF registers are status flags that correspond to the interrupt-on-change pins of each port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the PIR0 register reflects the status of all IOCxF bits.

15.4 Clearing Interrupt Flags

The individual status flags, (IOCxF register bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 15-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

15.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the affected IOCxF register will be updated prior to the first instruction executed out of Sleep.

REGISTER 15-7: IOCCP: INTERRUPT-ON-CHANGE PORTC POSITIVE EDGE REGISTE	REGISTER 15-7:	IOCCP: INTERRUPT-ON-CHANGE PORTC POSITIVE EDGE REGISTER
---	----------------	---

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkr	known -n/n = Value at POR and BOR/Value at all other F			ther Resets	

bit 7-0

'1' = Bit is set

IOCCP<7:0>: Interrupt-on-Change PORTC Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

'0' = Bit is cleared

REGISTER 15-8: IOCCN: INTERRUPT-ON-CHANGE PORTC NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCCN7 | IOCCN6 | IOCCN5 | IOCCN4 | IOCCN3 | IOCCN2 | IOCCN1 | IOCCN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCCN<7:0>: Interrupt-on-Change PORTC Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

REGISTER 15-9: IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCCF7 | IOCCF6 | IOCCF5 | IOCCF4 | IOCCF3 | IOCCF2 | IOCCF1 | IOCCF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

- IOCCF<7:0>: Interrupt-on-Change PORTC Flag bits
- 1 = An enabled change was detected on the associated pin
 - Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.
- 0 = No change was detected, or the user cleared the detected change

16.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- · ADC positive reference
- · Comparator positive input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

Note: Fixed Voltage Reference output cannot exceed VDD.

16.1 Independent Gain Amplifiers

The output of the FVR, which is connected to the ADC, comparators, and DAC, is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 23.0** "**Analog-to-Digital Converter With Computation (ADC2) Module**" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Reference **Section 25.0** "**5-Bit Digital-to-Analog Converter (DAC1) Module**" and **Section 18.0** "**Comparator Module**" for additional information.

16.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set.

FIGURE 16-1: VOLTAGE REFERENCE BLOCK DIAGRAM

18.12 Register Definitions: Comparator Control

REGISTER 18-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
ON	OUT	_	POL	_	—	HYS	SYNC	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'		
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	OR/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7 ON: Comparator Enable bit 1 = Comparator is enabled 0 = Comparator is disabled and consumes no active power								
bit 6	OUT: Comparator Output bit $\frac{If CxPOL = 1 (inverted polarity):}{1 = CxVP < CxVN}$ $0 = CxVP > CxVN$ $\frac{If CxPOL = 0 (non-inverted polarity):}{1 = CxVP > CxVN}$ $0 = CxVP < CxVN$							
bit 5	Unimplement	ted: Read as '	0'					
bit 4	POL: Compare 1 = Comparet 0 = Comparet	rator Output Po or output is inv or output is no	plarity Select b verted t inverted	it				
bit 3-2	Unimplement	ted: Read as '	0'					
bit 1	HYS: Compare 1 = Compare 0 = Compare	Unimplemented: Read as 0 HYS: Comparator Hysteresis Enable bit 1 = Comparator hysteresis enabled 0 = Comparator hysteresis disabled						
bit 0	SYNC: Comp 1 = Compara Output up 0 = Compara	arator Output S tor output to T odated on the f tor output to Ti	Synchronous M Timer1 and I/C Talling edge of Timer1 and I/O	Mode bit) pin is synchr Timer1 clock s pin is asynchro	onous to chan ource. onous	ges on Timer1	clock source.	

REGISTER 18-3: CMxNSEL: COMPARATOR Cx NEGATIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	_	_	—		NCH<2:0>	
bit 7							bit 0

Legend:

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: R	ead as '0'

bit 2-0 NCH<2:0>: Comparator Negative Input Channel Select bits

- 111 = CxVN connects to AVss
- 110 = CxVN connects to FVR Buffer 2
- 101 = CxVN unconnected
- 100 = CxVN unconnected
- 011 = CxVN connects to CxIN3- pin
- 010 = CxVN connects to CxIN2- pin
- 001 = CxVN connects to CxIN1- pin 000 = CxVN connects to CxIN0- pin

REGISTER 18-4: CMxPSEL: COMPARATOR Cx POSITIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	_	_	—		PCH<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 5-3 PCH<2:0>: Comparator Positive Input Channel Select bits

- 111 = CxVP connects to AVss
- 110 = CxVP connects to FVR Buffer 2
- 101 = CxVP connects to DAC output
- 100 = CxVP unconnected
- 011 = CxVP unconnected
- 010 = CxVP unconnected
- 001 = CxVP connects to CxIN1+ pin
- 000 = CxVP connects to CxIN0+ pin

REGISTER 18-5: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
—	—	—	—	_	—	MC2OUT	MC10UT
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-2 Unimplemented: Read as '0'
- bit 1 MC2OUT: Mirror Copy of C2OUT bit

bit 0 MC10UT: Mirror Copy of C10UT bit

Register Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 on Page ANSELA ANSA7 ANSA6 ANSA5 ANSA4 ANSA3 ANSA2 ANSA1 ANSA0 185 ANSELB ANSB7 ANSB4 ANSB2 ANSB6 ANSB5 ANSB3 ANSB1 ANSB0 193 CMxCON0 ____ POL HYS SYNC 245 ON OUT CMxCON1 INTP INTN 246 _ CMOUT MC2OUT MC10UT 248 _ _ ____ _ _ _ CWG1AS1 AS6E AS5E AS4E AS3E AS2E AS1E AS0E 276 CWG2AS1 AS6E AS5E AS4E AS3E AS2E AS1E AS0E 276 CWG3AS1 AS6E AS5E AS4E AS3E AS2E AS1E AS0E 276 **FVRCON FVREN** FVRRDY TSEN TSRNG CDAFVR<1:0> ADFVR<1:0> 234 DAC1CON0 DAC1EN DAC10E1 DAC10E2 DAC1PSS<1:0> DAC1NSS 354 DAC1CON1 _ _ DAC1R<4:0> 354 INTCON GIE PEIE 114 PIE2 ZCDIE C2IE C1IE 117 ____ _ _ ____ — PIR2 C1IF ZCDIF C2IF 126 **RxyPPS** RxyPPS<5:0> 215 **CLCINxPPS** 214 _ _ CLCIN0PPS<4:0> _ **MDSRCPPS** MDSRCPPS<4:0> 214 _ T1GPPS T1GPPS<4:0> 214 TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 184 TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 192

TABLE 18-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the Comparator module.

TMRxGE
TxGPOL
TxGTM
selectedgate input
TxGVAL
TMRxH: TMRxL N XN+1 XN+2 XN+3 N+4 XN+5 XN+6 XN+7 XN+8 Count

FIGURE 28-5: TIMER1 GATE SINGLE-PULSE MODE

REGISTER 31-5: SSPxMSK: SSPx MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1				
	SSPxMSK<7:0>										
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared								
bit 7-1	SSPxMSK<	7:1>: Mask bits									
	1 = The rec 0 = The rec	eived address b eived address b	it n is compar it n is not use	ed to SSPxADI to detect I ² C	D <n> to detect address match</n>	I ² C address ma	atch				
bit 0	SSPxMSK<	0>: Mask bit for	I ² C Slave mo	de, 10-bit Addr	ess						
	<u>l²C Slave m</u>	ode, 10-bit addr	ess (SSPM<3	3:0> = 0111 or	1111):	_					
	1 = The rec	eived address b	it 0 is compar	ed to SSPxADI	O<0> to detect	I ² C address ma	atch				
	$0 =$ The received address bit 0 is not used to detect 1^2 C address match										

MSK0 bit is ignored.

REGISTER 31-6: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
SSPxADD<7:0>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0	SSPxADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

I²C Slave mode, 7-bit address:

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 SSPxADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode – Least Significant Address Byte:</u>

bit 7-0 SSPxADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

- bit 7-1 SSPxADD<7:1>: 7-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

	SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc	= 32.00	0 MHz	Fosc = 20.000 MHz		Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_		_	_		_	_		_	_	
1200	—	_	—	—	_	—	—	_	—	—	—	—
2400	—	_	—	—	_	—	—	_	—	—	_	_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

TABLE 33-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Foso	: = 3.686	4 MHz	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	_	_	_	_	_	_	_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	—	_	—	_	_	—	115.2k	0.00	1	_	_	_

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 32.000 MHz			Fosc	= 20.00	0 MHz	Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	0 → (f)
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch	BTFSS	Bit Test f, Skip if Set		
Syntax:	[label] BRA label	Syntax:	[label] BTFSS f,b		
	[<i>label</i>]BRA \$+k	Operands:	$0 \leq f \leq 127$		
Operands:	-256 \leq label - PC + 1 \leq 255		$0 \le b \le 7$		
	$-256 \le k \le 255$	Operation:	skip if (f) = 1		
Operation:	$(PC) + 1 + k \rightarrow PC$	Status Affected:	None		
Status Affected:	None	Description:	If bit 'b' in register 'f' is '0', the next		
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.		instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.		

BRW	Relative	Branch	with	w

Syntax:	[label] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f
Syntax:	[label] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

RRF	Rotate Right f through Carry			
Syntax:	[label] RRF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	See description below			
Status Affected:	С			
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.			

SUBLW	Subtract W from literal			
Syntax:	[label] S	UBLW k		
Operands:	$0 \leq k \leq 255$			
Operation:	$k - (W) \to (V$	V)		
Status Affected:	C, DC, Z			
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.			
	C = 0	W > k		
	C = 1	$W \le k$		
	DC = 0	W<3:0> > k<3:0>		

DC = 1

 $W<3:0> \le k<3:0>$

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT}, \\ 0 \rightarrow \text{WDT prescaler}, \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. See Section 8.2 "Sleep Mode" for more information.

SUBWF	Subtract W from f				
Syntax:	[label] SU	JBWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(f) - (W) \to (d$	lestination)			
Status Affected:	C, DC, Z				
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.				
	C = 0	W > f			
	C = 1	$W \leq f$			
	DC = 0	W<3:0> > f<3:0>			
	DC = 1 W<3:0> ≤ f<3:0>				

SUBWFB	Subtract W from f with Borrow		
Syntax:	SUBWFB f {,d}		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$		
Status Affected:	C, DC, Z		
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.		

FIGURE 37-15: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 37-21: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard	Standard Operating Conditions (unless otherwise stated)						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
US120	TCKH2DTV	SYNC XMIT (Master and Slave)	_	80	ns	$3.0V \leq V\text{DD} \leq 5.5V$	
		Clock high to data-out valid	$\langle - \rangle$	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
US121	TCKRF	Clock out rise time and fall time	$\langle - \rangle$	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$	
		(Master mode)		50	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
US122	TDTRF	Data-out rise time and fall time	$\langle \rangle$	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$	
			L –	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$	

FIGURE 37-16: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 37-22: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)					
Param. No. Symbol	Characteristic	Min.	Max.	Units	Conditions
US125 TDTV2CKL	SYNC RCV (Master and Slave)				
\mathbb{N}^{\sim}	Data-setup before CK \downarrow (DT hold time)	10	_	ns	
US126 TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	_	ns	

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension Limits		MIN	NOM	MAX			
Number of Pins	Ν	28					
Pitch	е	0.65 BSC					
Overall Height	Α	2.00					
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	Е	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	с	0.09	-	0.25			
Foot Angle	φ	0°	4°	8°			
Lead Width	b	0.22	_	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B