

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18854-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 7.5 "Automatic Context Saving"** for more information.

2.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See **Section 3.4 "Stack"** for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.5 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 36.0 "Instruction Set Summary"** for more details.

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Program Flash Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM
 - Data EEPROM Memory

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing
- NVMREG access

TABLE 3-1:DEVICE SIZES AND ADDRESSES

Device	Program Memory Size (Words)	Last Program Memory Address
PIC16(L)F18854	4096	0FFFh

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1).

TABLE 3-4:PIC16F18854 MEMORY MAP BANK 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers (Table 3-2)	480h	Core Registers (Table 3-2)	500h	Core Registers (Table 3-2)	580h	Core Registers (Table 3-2)	600h	Core Registers (Table 3-2)	680h	Core Registers (Table 3-2)	700h	Core Registers (Table 3-2)	780h	Core Registers (Table 3-2)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	SCANLADRL	48Ch	SMT1TMRL	50Ch	SMT2TMRL	58Ch	NCO1ACCL	60Ch	CWG1CLKCON	68Ch	CWG3CLKCON	70Ch	PIR0	78Ch	
40Dh	SCANLADRH	48Dh	SMT1TMRH	50Dh	SMT2TMRH	58Dh	NCO1ACCH	60Dh	CWG1ISM	68Dh	CWG3ISM	70Dh	PIR1	78Dh	
40Eh	SCANHADRL	48Eh	SMT1TMRU	50Eh	SMT2TMRU	58Eh	NCO1ACCU	60Eh	CWG1DBR	68Eh	CWG3DBR	70Eh	PIR2	78Eh	
40Fh	SCANHADRH	48Fh	SMT1CPRL	50Fh	SMT2CPRL	58Fh	NCO1INCL	60Fh	CWG1DBF	68Fh	CWG3DBF	70Fh	PIR3	78Fh	_
410h	SCANCON0	490h	SMT1CPRH	510h	SMT2CPRH	590h	NCO1INCH	610h	CWG1CON0	690h	CWG3CON0	710h	PIR4	790h	
411h	SCANTRIG	491h	SMT1CPRU	511h	SMT2CPRU	591h	NCO1INCU	611h	CWG1CON1	691h	CWG3CON1	711h	PIR5	791h	
412h	_	492h	SMT1CPWL	512h	SMT2CPWL	592h	NCO1CON	612h	CWG1AS0	692h	CWG3AS0	712h	PIR6	792h	
413h		493h	SMT1CPWH	513h	SMT2CPWH	593h	NCO1CLK	613h	CWG1AS1	693h	CWG3AS1	713h	PIR7	793h	
414h	—	494h	SMT1CPWU	514h	SMT2CPWU	594h	-	614h	CWG1STR	694h	CWG3STR	714h	PIR8	794h	_
415h	—	495h	SMT1PRL	515h	SMT2PRL	595h	_	615h	—	695h		715h	_	795h	—
416h	CRCDATL	496h	SMT1PRH	516h	SMT2PRH	596h	—	616h	CWG2CLKCON	696h	—	716h	PIE0	796h	PMD0
417h	CRCDATH	497h	SMT1PRU	517h	SMT2PRU	597h	—	617h	CWG2ISM	697h	—	717h	PIE1	797h	PMD1
418h	CRCACCL	498h	SMT1CON0	518h	SMT2CON0	598h	—	618h	CWG2DBR	698h	—	718h	PIE2	798h	PMD2
419h	CRCACCH	499h	SMT1CON1	519h	SMT2CON1	599h	—	619h	CWG2DBF	699h	—	719h	PIE3	799h	PMD3
41Ah	CRCSHIFTL	49Ah	SMT1STAT	51Ah	SMT2STAT	59Ah	_	61Ah	CWG2CON0	69Ah	—	71Ah	PIE4	79Ah	PMD4
41Bh	CRCSHIFTH	49Bh	SMT1CLK	51Bh	SMT2CLK	59Bh	—	61Bh	CWG2CON1	69Bh	—	71Bh	PIE5	79Bh	PMD5
41Ch	CRCXORL	49Ch	SMT1SIG	51Ch	SMT2SIG	59Ch		61Ch	CWG2AS0	69Ch	_	71Ch	PIE6	79Ch	
41Dh	CRCXORH	49Dh	SMT1WIN	51Dh	SMT2WIN	59Dh	_	61Dh	CWG2AS1	69Dh		71Dh	PIE7	79Dh	_
41Eh	CRCCON0	49Eh	—	51Eh	_	59Eh	—	61Eh	CWG2STR	69Eh	—	71Eh	PIE8	79Eh	—
41Fh	CRCCON1	49Fh		51Fh		59Fh		61Fh	_	69Fh	_	71Fh	_	79Fh	
420n		4A0n		520n		SAUN		620n		6AUN		720n		7 AUN	
	Unimplemented Read as '0'		Unimplemented Read as '0'												
46Fh		4FFh		56Eb		5FFh		66Fb		6FFh		76Fb		7FFh	
470h	0	4F0h	0	570h	0	5F0h	0	670h		6F0h	0	770h	0	7F0h	O. DAM
•	Common RAM	•	Common RAM		Common RAM		Common RAM		Common RAM		Common RAM	••••	Common RAM	••••	Common RAM
	70h – 7Fh		70h – 7Fh												
47Fh	/011 - /111	4FFh	/01 - /11	57Fh	7011 - 7111	5FFh	7011-7111	67Fh	7011 - 7111	6FFh	7011 - 7111	77Fh	/011 - /111	7FFh	7011 7111

Legend: = Unimplemented data memory locations, read as '0'.

PIC16(L)F18854

REGISTE	R 7-14: PIR3:	PERIPHERA	L INTERRU	IPT REQUES	T REGISTER	3					
U-0	U-0	R-0	R-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0				
_	_	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF				
bit 7					I		bit 0				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
u = Bit is u	nchanged	x = Bit is unki	nown	-n/n = Value a	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is s	set	'0' = Bit is cle	ared	HS = Hardwa	are clearable						
bit 7-6	Unimplemer	nted: Read as '	0'	(4)							
bit 5	RCIF: EUSART Receive Interrupt Flag (read-only) bit ⁽¹⁾										
	 1 = The EUSART receive buffer is not empty (contains at least one byte) 0 = The EUSART receive buffer is empty 										
bit 4	TXIF: FUSA	RT Transmit Int	errupt Flag (r	ead-only) bit(2)							
	1 = The EUS	ART transmit b	uffer contain	s at least one u	noccupied spac	e					
	0 = The EUS	ART transmit b	uffer is curre	ntly full. The app	olication firmwa	re should not w	rite to TXREG				
	again, u	ntil more room l	becomes ava	ilable in the trai	nsmit buffer.						
bit 3	BCL2IF: MS	SP2 Bus Collisi	on Interrupt I	-lag bit							
	1 = A bus col	llision was dete	cted (must be	e cleared in soft	tware)						
hit 2			Dort (MSSE	2) Interrupt Ela	a hit						
DILZ	1 - The Tran	smission/Pece	ntion/Bus Co	2) Interrupt Fla	y Dil lata (must ba cla	ared in softwa	uro)				
	0 = Waiting 1	for the Transmi	ssion/Recept	ion/Bus Conditi	on in progress	caleu ili soltwa	10)				
bit 1	BCL1IF: MS	SP1 Bus Collisi	on Interrupt I	-lag bit							
	1 = A bus col 0 = No bus c	llision was dete collision was de	cted (must be tected	e cleared in sof	tware)						
bit 0	SSP1IF: Syn	chronous Seria	I Port (MSSF	21) Interrupt Fla	g bit						
	1 = The Tran	smission/Rece	ption/Bus Co	ndition is compl	ete (must be cle	eared in softwa	re)				
	0 = Waiting	for the Transmi	ssion/Recept	ion/Bus Conditi	on in progress		,				
Note 1:	The RCIF flag is a times to remove a	read-only bit. Il bytes from the	To clear the F e receive buf	RCIF flag, the fir fer.	mware must rea	ad from RCRE	G enough				
2:	The TXIF flag is a	read-only bit, ir	ndicating if th	ere is room in th	ne transmit buffe	er. To clear the	TXIF flag, the				
	firmware must writ	te enough data	to TXREG to	completely fill a	all available byte	es in the buffer.	The TXIF flag				
	does not indicate	transmit comple	etion (use TR	IMI for this purp	oose instead).						

Note:	Interrupt flag bits are set when an interrupt								
	condition occurs, regardless of the state of								
	its corresponding enable bit or the Global								
	Enable bit, GIE, of the INTCON register.								
	User software should ensure the								
	appropriate interrupt flag bits are clear								
	prior to enabling an interrupt.								

PIC16(L)F18854

FIGURE 10-5: PROGRAM FLASH MEMORY (PFM) WRITE FLOWCHART

REGISTER 11-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DAT	<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
u = Bit is unchange	ed	x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Rese	ts
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 DAT<15:8>: CRC Input/Output Data bits

REGISTER 11-4: CRCDATL: CRC DATA LOW BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DAT	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0		
u = Bit is unchanged	d	x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	e at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 DAT<7:0>

DAT<7:0>: CRC Input/Output Data bits Writing to this register fills the shifter.

REGISTER 11-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC	<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	2	
u = Bit is unchang	led	x = Bit is unknown	1	-n/n = Value at F	POR and BOR/Val	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 ACC<15:8>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register. Reading from this register reads the CRC accumulator.

REGISTER 11-6: CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	ACC<7:0>									
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

ACC<7:0>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register through the CRC write bus. Reading from this register reads the CRC accumulator.

12.8.8 CURRENT-CONTROLLED DRIVE MODE CONTROL

The CCDPC and CCDNC registers (Register 12-30 and Register 12-31) control the Current-Controlled Drive mode for both the positive-going and negative-going drivers. When a CCDPC[y] or CCDNC[y] bit is set and the CCDEN bit of the CCDCON register is set, the Current-Controlled mode is enabled for the corresponding port pin. When the CCDPC[y] or CCDNC[y] bit is clear, the Current-Controlled mode for the corresponding port pin is disabled. If the CCDPC[y] or CCDNC[y] bit is set and the CCDEN bit is clear, operation of the port pin is undefined (see **Section 12.1.1** "**Current-Controlled Drive**" for current-controlled use precautions).

12.8.9 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 13.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

20.5 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWGxDBR and CWGxDBF registers, respectively.

20.5.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 20-9.

20.5.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWGxCON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWGxA and CWGxC signals will change immediately upon the first rising input edge following a direction change, but the modulated signals (CWGxB or CWGxD, depending on the direction of the change) will experience a delay dictated by the dead-band counters. This is demonstrated in Figure 20-3.

20.6 Rising Edge and Reverse Dead Band

CWGxDBR controls the rising edge dead-band time at the leading edge of CWGxA (Half-Bridge mode) or the leading edge of CWGxB (Full-Bridge mode). The CWGxDBR value is double-buffered. When EN = 0, the CWGxDBR register is loaded immediately when CWGxDBR is written. When EN = 1, then software must set the LD bit of the CWGxCON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

20.7 Falling Edge and Forward Dead Band

CWGxDBF controls the dead-band time at the leading edge of CWGxB (Half-Bridge mode) or the leading edge of CWGxD (Full-Bridge mode). The CWGxDBF value is double-buffered. When EN = 0, the CWGxDBF register is loaded immediately when CWGxDBF is written. When EN = 1 then software must set the LD bit of the CWGxCON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output. Refer to Figure 20.6 and Figure 20-7 for examples.

23.5.8 CONTINUOUS SAMPLING MODE

Setting the ADCONT bit in the ADCON0 register automatically retriggers a new conversion cycle after updating the ADACC register. That means the ADGO bit is set to generate automatic retriggering, until the device Reset occurs or the A/D Stop-on-interrupt bit (ADSOI in the ADCON3 register) is set (correct logic).

23.5.9 DOUBLE SAMPLE CONVERSION

Double sampling is enabled by setting the ADDSEN bit of the ADCON1 register. When this bit is set, two conversions are required before the module will calculate threshold error (each conversion must still be triggered separately). The first conversion will set the ADMATH bit of the ADSTAT register and update ADACC, but will not calculate ADERR or trigger ADTIF. When the second conversion completes, the first value is transferred to ADPREV (depending on the setting of ADPSIS) and the value of the second conversion is placed into ADRES. Only upon the completion of the second conversion is ADERR calculated and ADTIF triggered (depending on the value of ADCALC).

R/W-0/	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0		
ADPSIS	6	ADCRS<2:0>		ADACLR		ADMD<2:0>			
bit 7							bit 0		
Legend:									
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'			
u = Bit is ι	unchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	OR/Value at all o	other Resets		
'1' = Bit is	set	'0' = Bit is clea	ared						
bit 7	ADPSIS: AD	C Previous Sar	nple Input Sel	ect bits					
	1 = ADRES	is transferred to	ADPREV at s	start-of-conversi	ion				
0 = ADFLTR is transferred to ADPREV at start-of-conversion									
bit 6-4	ADCRS<2:0)>: ADC Accumu	ulated Calcula	tion Right Shift	Select bits				
	111 = Rese	rved							
	110 = Rese	rved							
	101 through	- 100:							
	l ow-pass	<u>- 100</u> . s filter time cons [:]	ime constant is 2 ^{ADCRS} , filter gain is 1:1						
	If ADMD	= 001, 010 or 0	11:	, inter gain is in					
	The acc	umulated value	s right-shifted	by ADCRS (div	vided by 2 ^{ADCF}	^{RS}) ⁽²⁾			
	<u>Otherwise</u>	<u>e</u> :							
	Bits are i	gnored							
bit 3	ADACLR: A	DC Accumulato	r Clear Comm	and bit					
	1 = Initial cle 0 = Clearing	ar of ADACC, A	DAOV, and the tet of te	ne sample coun rted)	ter. Bit is clear	ed by hardware) .		
hit 2-0		• ADC Operation	a Mode Selec	tion hits(1)					
5112 0	111 = Rese	rved	g mode ceree						
	•								
	•								
	•								
	101 = Resei	rved	ved						
	100 = LOW-µ 011 = Burst								
	010 = Avera	ace mode							
	001 = Accur	mulate mode							
	000 = Basic	(Legacy) mode							
Note 1:	See Table 23-3 for	or Full mode des	criptions.						
2:	All results of divis	sions using the A	ADCRS bits ar	e truncated, no	t rounded.				

REGISTER 23-3: ADCON2: ADC CONTROL REGISTER 2

24.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCO) module is a timer that uses overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the output frequency resolution does not vary with the divider value. The NCO is most useful for application that requires frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCO include:

- 20-bit Increment Function
- Fixed Duty Cycle mode (FDC) mode
- Pulse Frequency (PF) mode
- Output Pulse Width Control
- Multiple Clock Input Sources
- Output Polarity Control
- Interrupt Capability

Figure 24-1 is a simplified block diagram of the NCO module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	185	
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	201	
INTCON	GIE	PEIE	_	_	_	—	—	INTEDG	114	
PIR2	—	ZCDIF	_	_	_	—	C2IF	C1IF	126	
PIE2	—	ZCDIE	_	_	_	_	C2IE	C1IE	117	
NCO1CON	N1EN	_	N1OUT	N1POL	—	—	—	N1PFM	346	
NCO1CLK		N1PWS<2:0)>	—	—	N	1CKS<2:0>		347	
NCO1ACCL	NCO1ACC<7:0>									
NCO1ACCH	NCO1ACC<15:8>									
NCO1ACCU	_	_	—	—		348				
NCO1INCL	NCO1INC<7:0>									
NCO1INCH				NCO1INC<	15:8>				349	
NCO1INCU	_	_	—	—		NCO1INC	<19:16>		349	
RxyPPS	—				R	xyPPS<4:0>			215	
CWG1ISM	—	_	_	—		IS<3	0>		278	
MDSRC	—	_	_		ſ	MDMS<4:0>			364	
MDCARH	_			_		MDCHS	<3:0>		365	
MDCARL	_					MDCLS	<3:0>		366	
CCP1CAP	_			_	_		CTS<2:0>		420	
CCP2CAP	_			_	_		CTS<2:0>		420	
CCP3CAP	—			_	_		CTS<2:0>		420	
CCP4CAP	_			_	_		CTS<2:0>		420	
CCP5CAP	—	—	—	—	—		CTS<2:0>		420	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	184	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	200	

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH NCO

Legend: – = unimplemented read as '0'. Shaded cells are not used for NCO module.

PIC16(L)F18854

TMRxGE
TxGPOL
TxGTM
selectedgate input
TxGVAL
TMRxH: TMRxL N XN+1 XN+2 XN+3 N+4 XN+5 XN+6 XN+7 XN+8 Count

FIGURE 28-5: TIMER1 GATE SINGLE-PULSE MODE

Maria	MODE<4:0>		Output	Oursentlier	Timer Control				
wode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop		
		000		Software gate (Figure 29-4)	ON = 1	_	ON = 0		
		001	Period	Hardware gate, active-high (Figure 29-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0		
		010	r uise	Hardware gate, active-low	ON = 1 and TMRx_ers = 0	_	ON = 0 or TMRx_ers = 1		
Free		011		Rising or falling edge Reset		TMRx_ers			
Period	00	100	Period	Rising edge Reset (Figure 29-6)		TMRx_ers ↑	ON = 0		
. enea		101	Pulse	Falling edge Reset		TMRx_ers ↓			
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0		
		111	Reset	High level Reset (Figure 29-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1		
		000	One-shot	Software start (Figure 29-8)	ON = 1	_			
		001	Edae	Rising edge start (Figure 29-9)	ON = 1 and TMRx_ers ↑	_			
		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_			
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or Next clock after TMRx = PRx (Note 2)		
One-shot	01	100	Edge	Rising edge start and Rising edge Reset (Figure 29-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑			
		101	triggered start and hardware Reset	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓			
		110		Rising edge start and Low level Reset (Figure 29-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0			
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1			
		000		Rese	rved				
		001 Edge triggered start	Rising edge start (Figure 29-12)	ON = 1 and TMRx_ers ↑	_	ON = 0 or			
Mono-stable			triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	-	Next clock after TMRx = PRx (Note 3)		
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_			
Reserved	10	100		Rese	rved				
Reserved		101		Rese	rved				
One-shot				110	Level triggered	High level start and Low level Reset (Figure 29-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or
		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)		
Reserved	11	xxx	Reserved						

TABLE 29-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

PIC16(L)F18854

32.6.6 GATED WINDOW MEASURE MODE

This mode measures the duty cycle of the SMTx_signal input over a known input window. It does so by incrementing the timer on each pulse of the clock signal while the SMTx_signal input is high, updating the SMTxCPR register and resetting the timer on every rising edge of the SMTWINx input after the first. See Figure 32-12 and Figure 32-13.

33.6 Register Definitions: EUSART Control

REGISTER 33-1: TX1STA: TRANSMIT STATUS AND CONTROL REGISTER

		DAM O/O				D 4/4	DAM O/O
R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	1 X 9	IXEN''	SYNC	SENDB	BRGH	IRMI	TX9D
bit /							bit 0
Legena:							
R = Readat	ble bit	VV = VVritable	bit		mented bit, read	as '0'	
u = Bit is un	ichanged	x = Bit is unki	nown	-n/n = Value a	at POR and BOF	R/Value at all o	other Resets
1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7	CSRC: Clock Asynchronou Unused in th Synchronous 1 = Master 0 = Slave m	x Source Select <u>is mode</u> : is mode – value <u>s mode</u> : mode (clock ge node (clock fron	: bit e ignored nerated interr n external sou	nally from BRG)		
bit 6	TX9: 9-bit Tra 1 = Selects 0 = Selects	ansmit Enable I 9-bit transmiss 8-bit transmiss	oit ion ion				
bit 5	TXEN: Trans 1 = Transmi 0 = Transmi	smit Enable bit ⁽¹ t enabled t disabled	1)				
bit 4	SYNC: EUS/ 1 = Synchro 0 = Asynchr	ART Mode Sele nous mode onous mode	ect bit				
bit 3	SENDB: Ser Asynchronou 1 = Send SY cleared 0 = SYNCH Synchronous Unused in th	nd Break Chara <u>is mode</u> : (NCH BREAK of by hardware up BREAK transm <u>s mode</u> : is mode – value	cter bit on next transm on completior ission disable e ignored	iission – start b า d or completed	it, followed by 12	2 '0' bits, follow	ved by Stop bit;
bit 2	BRGH: High Asynchronou 1 = High spe 0 = Low spe Synchronous Unused in th	Baud Rate Sel <u>is mode</u> : eed <u>s mode:</u> is mode – value	ect bit e ignored				
bit 1	TRMT: Trans 1 = TSR em 0 = TSR full	smit Shift Regist pty	ter Status bit				
bit 0	TX9D: Ninth Can be addre	bit of Transmit ess/data bit or a	Data a parity bit.				
Note 1: S	SREN/CREN ove	rrides TXEN in	Sync mode.				

TABLE 37-14: COMPARATOR SPECIFICATIONS

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units Comments		
CM01	VIOFF	Input Offset Voltage	—	_	±30	mV VICM = VDD/2		
CM02	VICM	Input Common Mode Range	GND	_	Vdd			
CM03	CMRR	Common Mode Input Rejection Ratio	—	50	—	⟨dB /		
CM04	VHYST	Comparator Hysteresis	15	25	35	mV		
CM05	TRESP ⁽¹⁾	Response Time, Rising Edge	—	300	600	ns		
		Response Time, Falling Edge	_	220	500	n5		

These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

TABLE 37-15: 5-BIT DAC SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param. No.	Param. No. Sym. Characteristics Min. Typ. Max. Units Comments								
DSB01	VLSB	Step Size		(VDASREF+ -VDACREF-) /32	_	V			
DSB01	VACC	Absolute Accuracy	X		± 0.5	LSb			
DSB03*	RUNIT	Unit Resistor Value	$\langle - \rangle$	5000	—	Ω			
DSB04*	TST	Settling Time ⁽¹⁾		> −	10	μS			

* These parameters are characterized but not tested?

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while DACR<4:0> trapsitions from '00000' to '01111'.

TABLE 37-16: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
FVR01	VFVR1	1x Gain (1,024V)	-4	_	+4	%	VDD \ge 2.5V, -40°C to 85°C	
FVR02 /	VEVR2/L	2x Gain (2.048V)	-4	_	+4	%	VDD $\geq 2.5 V$, -40°C to 85°C	
FVR03	VFVR4	4x Gain (4.096V)	-5	_	+5	%	VDD \ge 4.75V, -40°C to 85°C	
FVR04	TFVRST	FVR Start-up Time	_	25	_	us		

TABLE 37-17: ZERO CROSS DETECT (ZCD) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) V = 30V T₄ = 25°C

200 0.00, IT 200									
Param, No.	Sym.	Characteristics	Min	Тур†	Max	Units	Comments		
ZC01	VPINZC	Voltage on Zero Cross Pin	-	0.75	-	V			
ZC02	IZCD_MAX	Maximum source or sink current	_	_	600	μA			
ZC03	TRESPH	Response Time, Rising Edge	_	1	_	μS			
	TRESPL	Response Time, Falling Edge	_	1	_	μS			

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

39.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- · Flexible macro language
- MPLAB X IDE compatibility

39.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

39.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

39.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Microchip Technology Drawing C04-105C Sheet 1 of 2