

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18854-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-3: PIC16(L)F18854 MEMORY MAP BANK 0-7

= Unimplemented data memory locations, read as '0'.

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	ADRESL	10Ch	ADCNT	18Ch	SSP1BUF	20Ch	TMR1L	28Ch	T2TMR	30Ch	CCPR1L	38Ch	PWM6DCL
00Dh	PORTB	08Dh	ADRESH	10Dh	ADRPT	18Dh	SSP1ADD	20Dh	TMR1H	28Dh	T2PR	30Dh	CCPR1H	38Dh	PWM6DCH
00Eh	PORTC	08Eh	ADPREVL	10Eh	ADLTHL	18Eh	SSP1MSK	20Eh	T1CON	28Eh	T2CON	30Eh	CCP1CON	38Eh	PWM6CON
00Fh	—	08Fh	ADPREVH	10Fh	ADLTHH	18Fh	SSP1STAT	20Fh	T1GCON	28Fh	T2HLT	30Fh	CCP1CAP	38Fh	—
010h	PORTE	090h	ADACCL	110h	ADUTHL	190h	SSP1CON1	210h	T1GATE	290h	T2CLKCON	310h	CCPR2L	390h	PWM7DCL
011h	TRISA	091h	ADACCH	111h	ADUTHH	191h	SSP1CON2	211h	T1CLK	291h	T2RST	311h	CCPR2H	391h	PWM7DCH
012h	TRISB	092h		112h	ADSTPTL	192h	SSP1CON3	212h	TMR3L	292h	T4TMR	312h	CCP2CON	392h	PWM7CON
013h	TRISC	093h	ADCON0	113h	ADSTPTH	193h	—	213h	TMR3H	293h	T4PR	313h	CCP2CAP	393h	—
014h	—	094h	ADCON1	114h	ADFLTRL	194h	—	214h	T3CON	294h	T4CON	314h	CCPR3L	394h	
015h	_	095h	ADCON2	115h	ADFLTRH	195h	—	215h	T3GCON	295h	T4HLT	315h	CCPR3H	395h	—
016h	LATA	096h	ADCON3	116h	ADERRL	196h	SSP2BUF	216h	T3GATE	296h	T4CLKCON	316h	CCP3CON	396h	—
017h	LATB	097h	ADSTAT	117h	ADERRH	197h	SSP2ADD	217h	T3CLK	297h	T4RST	317h	CCP3CAP	397h	—
018h	LATC	098h	ADCLK	118h	—	198h	SSP2MSK	218h	TMR5L	298h	T6TMR	318h	CCPR4L	398h	
019h	—	099h	ADACT	119h	RC1REG	199h	SSP2STAT	219h	TMR5H	299h	T6PR	319h	CCPR4H	399h	
01Ah	—	09Ah	ADREF	11Ah	TX1REG	19Ah	SSP2CON1	21Ah	T5CON	29Ah	T6CON	31Ah	CCP4CON	39Ah	
01Bh	—	09Bh	ADCAP	11Bh	SP1BRGL	19Bh	SSP2CON2	21Bh	T5GCON	29Bh	T6HLT	31Bh	CCP4CAP	39Bh	
01Ch	TMR0L	09Ch	ADPRE	11Ch	SP1BRGH	19Ch	SSP2CON3	21Ch	T5GATE	29Ch	T6CLKCON	31Ch	CCPR5L	39Ch	—
01Dh	TMR0H	09Dh	ADACQ	11Dh	RC1STA	19Dh	—	21Dh	T5CLK	29Dh	T6RST	31Dh	CCPR5H	39Dh	
01Eh	T0CON0	09Eh	ADPCH	11Eh	TX1STA	19Eh	—	21Eh	CCPTMRS0	29Eh	—	31Eh	CCP5CON	39Eh	
01Fh	T0CON1	09Fh	—	11Fh	BAUD1CON	19Fh	—	21Fh	CCPTMRS1	29Fh	—	31Fh	CCP5CAP	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h	General Purpose	3A0h	
													Register		
			General	32Fh	48 Bytes										
	- ·		Purpose		. ,		Unimplemented								
	General		Register	330h			Read as '0'								
	Purpose		80 Bytes		Unimplemented										
	Register 96 Bytes												Read as '0'		
	90 Byles	0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
		0F0h	Common RAM	170h	Common RAM	1F0h	Common RAM	270h	Common RAM	2F0h	Common RAM	370h	Common RAM	3F0h	Common RAM
			(Accesses		(Accesses										
07Fh		0FFh	70h – 7Fh)	17Fh	70h – 7Fh)	1FFh	70h – 7Fh)	27Fh	70h – 7Fh)	2FFh	70h – 7Fh)	37Fh	70h – 7Fh)	3FFh	, 70h – 7Fh)

Preliminary

DS40001826A-page 28

Legend:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30	(Continued)										
F24h	RC4PPS	—	—			RC4	PPS<5:0>			00 0000	uu uuuu
F25h	RC5PPS	—	—			RC5	PPS<5:0>			00 0000	uu uuuu
F26h	RC6PPS	—	—			00 0000	uu uuuu				
F27h	RC7PPS	—	—			00 0000	uu uuuu				
F28h to F37h	—				Unimplemented						—
F38h	ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1111 1111	1111 1111
F39h	WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	0000 0000	0000 0000
F3Ah	ODCONA	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000 0000	0000 0000
F3Bh	SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	1111 1111	1111 1111
F3Ch	INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	1111 1111	1111 1111
F3Dh	IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	0000 0000	0000 0000
F3Eh	IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	0000 0000	0000 0000
F3Fh	IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	0000 0000	0000 0000
F40h	CCDNA	CCDNA7	CCDNA6	CCDNA5	CCDNA4	CCDNA3	CCDNA2	CCDNA1	CCDNA0	0000 0000	0000 0000
F41h	CCDPA	CCDPA7	CCDPA6	CCDPA5	CCDPA4	CCDPA3	CCDPA2	CCDPA1	CCDPA0	0000 0000	0000 0000
F42h	—				U	nimplemented			I	—	_
F43h	ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111
F44h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	0000 0000	0000 0000
F45h	ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000 0000	0000 0000
F46h	SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	1111 1111	1111 1111

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18854 devices only.

2: Unimplemented, read as '1'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_		—	_	INTEDG	114
PIE0	_	—	TMR0IE	IOCIE	_	_	_	INTE	115
PIE1	OSFIE	CSWIE	—	—	_	—	ADTIE	ADIE	116
PIE2	_	ZCDIE	—	_	_	—	C2IE	C1IE	117
PIE3	_	_	RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	118
PIE4	_	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	119
PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	_	TMR5GIE	TMR3GIE	TMR1GIE	120
PIE6	_	—	—	CCP5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	121
PIE7	SCANIE	CRCIE	NVMIE	NCO1IE	—	CWG3IE	CWG2IE	CWG1IE	122
PIE8	_	—	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	123
PIR0	_	—	TMR0IF	IOCIF	_	—	_	INTF	124
PIR1	OSFIF	CSWIF	_	_	_	_	ADTIF	ADIF	125
PIR2	_	ZCDIF	_	_	_	_	C2IF	C1IF	126
PIR3	_	_	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	127
PIR4	_	_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	128
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF		TMR5GIF	TMR3GIF	TMR1GIF	129
PIR6	_	_	—	CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	130
PIR7	SCANIF	CRCIF	NVMIF	NCO1IF	_	CWG3IF	CWG2IF	CWG1IF	132
PIR8	_	_	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	133

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

8.3 Register Definitions: Voltage Regulator and DOZE Control

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER ⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1				
_											
	—	—	—	—	_	VREGPM	Reserved				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U =				U = Unimplemented bit, read as '0'							
u = Bit is unchanged		x = Bit is unkn	= Bit is unknown -n/n = Value at POR and BOR/Value at all other Rese				-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared								

bit 7-2	Unimplemented: Read as '0'
1.11.4	

bit 1	VREGPM: Voltage Regulator Power Mode Selection bit
	1 = Low-Power Sleep mode enabled in Sleep ⁽²⁾
	Draws lowest current in Sleep, slower wake-up

0 = Normal Power mode enabled in Sleep⁽²⁾

Draws higher current in Sleep, faster wake-up

bit 0 **Reserved:** Read as '1'. Maintain this bit set.

Note 1: PIC16F18855/75 only.

2: See Section 37.0 "Electrical Specifications".

REGISTER 12-20: CCDPB: CURRENT CONTROLLED DRIVE POSITIVE PORTB REGISTER

CCDPB7 CCDPB6 CCDPB	5 CCDPB4	CCDPB3	CCDPB2	CCDPB1	CCDPB0
		CCDI D3	CCDFB2	CCDFDI	CCDPBU
bit 7					bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

bit 7-0

- CCDPB<7:0>: RB<7:0> Current Controlled Drive Positive Control bits
- 1 = Current-controlled source enabled⁽¹⁾
- 0 = Current-controlled source disabled

Note 1: If CCDPBy is set, when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

REGISTER 12-21: CCDNB: CURRENT CONTROLLED DRIVE NEGATIVE PORTB REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCDNB7 | CCDNB6 | CCDNB5 | CCDNB4 | CCDNB3 | CCDNB2 | CCDNB1 | CCDNB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

CCDNB<7:0>: RB<7:0> Current Controlled Drive Negative Control bits

- 1 = Current-controlled source enabled⁽¹⁾
- 0 = Current-controlled source disabled

Note 1: If CCDNBy is set when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	192
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	192
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	193
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	193
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	194
ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	194
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	195
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	195
CCDPB	CCDPB7	CCDPB6	CCDPB5	CCDPB4	CCDPB3	CCDPB2	CCDPB1	CCDPB0	196
CCDNB	CCDNB7	CCDNB6	CCDNB5	CCDNB4	CCDNB3	CCDNB2	CCDNB1	CCDNB0	196
CCDCON	CCDEN	_	_	_	—	_	CCDS	S<1:0>	181

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

Note 1: Unimplemented, read as '1'.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
NCOMD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD
bit 7	•						bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BOI	R/Value at all o	ther Resets
'1' = Bit is se	t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 7		able Numerical	ly Control Osci	illator bit			
		odule disabled					
bit 6		sable Timer TM	186				
		odule disabled					
	0 = TMR6 m	odule enabled					
bit 5		sable Timer TM	1R5				
		odule disabled					
		odule enabled					
bit 4		sable Timer TN odule disabled	1R4				
		odule enabled					
bit 3	TMR3MD: Dis	sable Timer TM	1R3				
	-	odule disabled					
	0 = TMR3 m	odule enabled					
bit 2		sable Timer TN	1R2				
	1 = TMR2 mo 0 = TMR2 mo	odule disabled					
bit 1		sable Timer TM					
		odule disabled					
	0 = TMR1 m	odule enabled					
bit 0	TMR0MD: Dis	sable Timer TM	1R0				
		odule disabled					
	0 = TMR0 m	odule enabled					

20.9 CWG Steering Mode

In Steering mode (MODE = 00x), the CWG allows any combination of the CWGxx pins to be the modulated signal. The same signal can be simultaneously available on multiple pins, or a fixed-value output can be presented.

When the respective STRx bit of CWGxOCON0 is '0', the corresponding pin is held at the level defined. When the respective STRx bit of CWGxOCON0 is '1', the pin is driven by the input data signal. The user can assign the input data signal to one, two, three, or all four output pins.

The POLx bits of the CWGxCON1 register control the signal polarity only when STRx = 1.

The CWG auto-shutdown operation also applies in Steering modes as described in **Section 20.10 "Auto-Shutdown"**. An auto-shutdown event will only affect pins that have STRx = 1.

20.9.1 STEERING SYNCHRONIZATION

Changing the MODE bits allows for two modes of steering, synchronous and asynchronous.

When MODE = 000, the steering event is asynchronous and will happen at the end of the instruction that writes to STRx (that is, immediately). In this case, the output signal at the output pin may be an incomplete waveform. This can be useful for immediately removing a signal from the pin.

When MODE = 001, the steering update is synchronous and occurs at the beginning of the next rising edge of the input data signal. In this case, steering the output on/off will always produce a complete waveform.

Figure 20-10 and Figure 20-11 illustrate the timing of asynchronous and synchronous steering, respectively.

FIGURE 20-10: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (MODE<2:0> = 000)

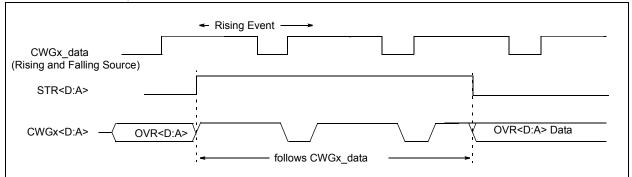
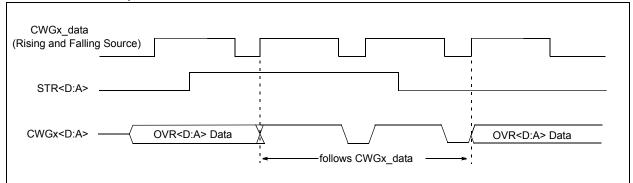



FIGURE 20-11: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION (MODE<2:0> = 001)

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E
bit 7							bit (
Legend:							
R = Readal	ole bit	W = Writable	bit		mented bit, read		
u = Bit is ur	nchanged	x = Bit is unkr	nown		at POR and BO		other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7	Unimpleme	nted: Read as '	1'				
bit 6	AS6E: CLC2	2 Output bit					
	1 = LC2_ou	t shut down is e	nabled				
	0 = LC2_ou	t shut down is d	isabled				
bit 5	AS5E: Com	parator C2 Outp	ut bit				
		ut shut-down is					
	•	ut shut-down is					
bit 4	-	parator C1 Outp					
		ut shut-down is ut shut-down is					
bit 3	•	6 Postscale Out					
		utput shut-dowr					
		utput shut-dowr					
bit 2	AS2E: TMR	4 Postscale Out	put bit				
		utput shut-dowr					
		utput shut-dowr					
bit 2	AS1E: TMR2 Postscale Output bit 1 = TMR2 Postscale shut-down is enabled						
		ostscale shut-d					
bit 0	AS0E: CWG	Sx Input Pin bit					
		n selected by C\	NGxPPS shut	-down is enabl	ed		
		•		-down is disabl			

REGISTER 20-6: CWGxAS1: CWGx AUTO-SHUTDOWN CONTROL REGISTER 1

22.1.2 DATA GATING

Outputs from the input multiplexers are directed to the desired logic function input through the data gating stage. Each data gate can direct any combination of the four selected inputs.

Note: Data gating is undefined at power-up.

The gate stage is more than just signal direction. The gate can be configured to direct each input signal as inverted or non-inverted data. Directed signals are ANDed together in each gate. The output of each gate can be inverted before going on to the logic function stage.

The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and the output is inverted, the gate is an OR of all enabled data inputs. When the inputs and output are not inverted, the gate is an AND or all enabled inputs.

Table 22-3 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select bits. The table shows the logic of four input variables, but each gate can be configured to use less than four. If no inputs are selected, the output will be zero or one, depending on the gate output polarity bit.

CLCxGLSy	LCxGyPOL	Gate Logic
0x55	1	AND
0x55	0	NAND
0xAA	1	NOR
0xAA	0	OR
0x00	0	Logic 0
0x00	1	Logic 1

TABLE 22-3: DATA GATING LOGIC

It is possible (but not recommended) to select both the true and negated values of an input. When this is done, the gate output is zero, regardless of the other inputs, but may emit logic glitches (transient-induced pulses). If the output of the channel must be zero or one, the recommended method is to set all gate bits to zero and use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select registers as follows:

- Gate 1: CLCxGLS0 (Register 22-7)
- Gate 2: CLCxGLS1 (Register 22-8)
- Gate 3: CLCxGLS2 (Register 22-9)
- Gate 4: CLCxGLS3 (Register 22-10)

Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register. Data gating is indicated in the right side of Figure 22-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate.

22.1.3 LOGIC FUNCTION

There are eight available logic functions including:

- AND-OR
- OR-XOR
- AND
- S-R Latch
- D Flip-Flop with Set and Reset
- D Flip-Flop with Reset
- · J-K Flip-Flop with Reset
- · Transparent Latch with Set and Reset

Logic functions are shown in Figure 22-2. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLCx itself.

22.1.4 OUTPUT POLARITY

The last stage in the Configurable Logic Cell is the output polarity. Setting the LCxPOL bit of the CLCxPOL register inverts the output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

23.3 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 23-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 23-4. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be completed before the conversion can be started. To calculate the minimum acquisition time, Equation 23-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 23-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} ; [1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-TC}{RC}}\right) = V_{CHOLD} ; [2] V_{CHOLD} charge response to V_{APPLIED} V_{APPLIED}\left(1 - e^{\frac{-TC}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) ; combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

ł

$$TC = -CHOLD(RIC + RSS + RS) \ln(1/2047)$$

= -10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)
= 1.37\mus

Therefore:

$$TACQ = 2\mu s + 892ns + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.62\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

© 2016 Microchip Technology Inc.

24.1 NCO OPERATION

The NCO operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCO output (NCO_overflow). This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See Equation 24-1.

The NCO output can be further modified by stretching the pulse or toggling a flip-flop. The modified NCO output is then distributed internally to other peripherals and can be optionally output to a pin. The accumulator overflow also generates an interrupt (NCO_overflow).

The NCO period changes in discrete steps to create an average frequency. This output depends on the ability of the receiving circuit (i.e., CWG or external resonant converter circuitry) to average the NCO output to reduce uncertainty.

EQUATION 24-1: NCO OVERFLOW FREQUENCY

 $FOVERFLOW = \frac{NCO \ Clock \ Frequency \times Increment \ Value}{2^{20}}$

24.1.1 NCO CLOCK SOURCES

Clock sources available to the NCO include:

- HFINTOSC
- Fosc
- LC1_out
- LC2_out
- LC3_out
- LC4_out

The NCO clock source is selected by configuring the N1CKS<2:0> bits in the NCO1CLK register.

24.1.2 ACCUMULATOR

The accumulator is a 20-bit register. Read and write access to the accumulator is available through three registers:

- NCO1ACCL
- NCO1ACCH
- NCO1ACCU

24.1.3 ADDER

The NCO Adder is a full adder, which operates independently from the source clock. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock.

24.1.4 INCREMENT REGISTERS

The increment value is stored in three registers making up a 20-bit incrementer. In order of LSB to MSB they are:

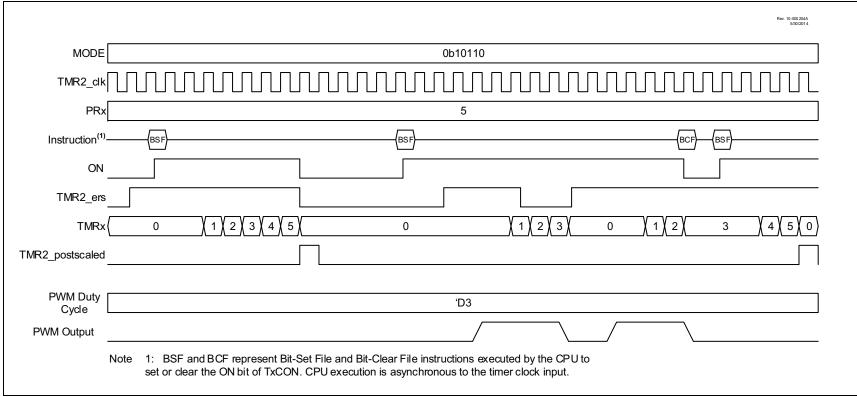
- NCO1INCL
- NCO1INCH
- NCO1INCU

When the NCO module is enabled, the NCO1INCU and NCO1INCH registers should be written first, then the NCO1INCL register. Writing to the NCO1INCL register initiates the increment buffer registers to be loaded simultaneously on the second rising edge of the NCO_clk signal.

The registers are readable and writable. The increment registers are double-buffered to allow value changes to be made without first disabling the NCO module.

When the NCO module is disabled, the increment buffers are loaded immediately after a write to the increment registers.

Note: The increment buffer registers are not user-accessible.


U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	_	_			MDMS<4:0>		
bit 7							bit
Levendu							
Legend: R = Readable	e hit	W = Writable	> hit	l I = l Inimplen	nented bit, read	las '0'	
u = Bit is unc		x = Bit is unl		•	at POR and BO		ther Resets
'1' = Bit is se	•	'0' = Bit is cl					
1 Dit lo co							
bit 7-5	Unimpleme	ented: Read as	' 0'				
bit 4-0	MDMS<4:0	> Modulation Se	ource Selectior	n bits			
	11111 = Re	eserved. No cha	nnel connecte	d.			
	•						
	•						
	10100 = Re	eserved. No cha	nnel connecte	d.			
	10011 = M						
	10010 = M						
		JSART TX/CK					
		JSART DT outp	ut				
	01111 = Cl 01110 = Cl						
	01101 = Cl						
	01100 = Cl						
		2 (Comparator 2					
		1 (Comparator 1) output				
	01001 = NO	•					
		NM7 output NM6 output					
		CP5 output (PW	M Output mod	e only)			
		CP4 output (PW					
		CP3 output (PW					
	00011 = CO	CP2 output (PW	M Output mod	e only)			
		CP1 output (PW					
	00001 = M	DRIT of MDCOI	N0 register is m	nodulation sour	ce		
	00000 = M		to regiotor io n		00		

REGISTER 26-3: MDSRC: MODULATION SOURCE CONTROL REGISTER

U-0		U-0	3/5 GATE SE R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
_	_	_			GSS<4:0>		
bit 7							bit
Legend : R = Read		W = Writable	e bit	U = Unimplei	mented bit, rea	d as '0'	
	unchanged	x = Bit is unl		-	at POR and BC		other Resets
'1' = Bit is	0	'0' = Bit is cl			leared by hardv		
bit 7-5	-	ented: Read as					
bit 4-0		Timer1 Gate S	elect bits				
	11111 = Re	eserved					
	•						
	•						
	11001 = Re	eserved					
	11000 = LC						
	10111 = LC						
	10110 = LC 10101 = LC						
	10100 = ZC						
	10011 = C 2						
	10010 = C 2						
	10001 = D [
	10000 = PV						
	01111 = PV 01110 = CC						
	01101 = C						
	01100 = C						
	01011 = CC						
	01010 = C						
	01001 = SN	_					
	01000 = SN 00111 = TN	/IR6_postscale	Ч				
		/IR5 overflow o					
		/IR4_postscale					
	00100 = TN	/IR3 overflow o	utput ⁽²⁾				
	00011 = TN	/IR2_postscale	d				
		IR1 overflow o					
	00001 = 100000 = T100000 = T1000000 = T1000000 = T10000000 = T10000000000	/IR0 overflow o GPPS	սւթու				
Note 1:	For Timer1, this						
2:	For Timer3, this						

REGISTER 28-4: TxGATE TIMER1/3/5 GATE SELECT REGISTER

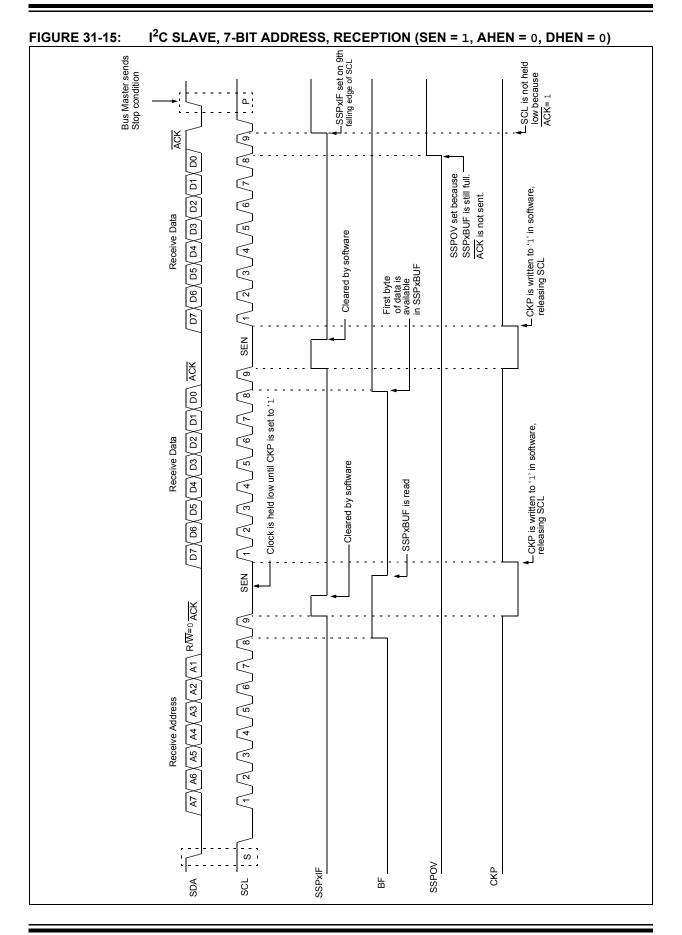

- **2:** For Timer3, this bit is Reserved.
- **3:** For Timer5, this bit is Reserved.

FIGURE 29-13: LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE = 10110)

REGISTER 30-1: CCPxCON: CCPx CONTROL REGISTER (CONTINUED)

- bit 3-0
- MODE<3:0>: CCPx Mode Select bits⁽¹⁾ 1111 = PWM mode
- 1110 = Reserved
- 1101 = Reserved
- 1100 = Reserved
- 1011 = Compare mode: output will pulse 0-1-0; Clears TMR1
- 1010 = Compare mode: output will pulse 0-1-0
- 1001 = Compare mode: clear output on compare match
- 1000 = Compare mode: set output on compare match
- 0111 = Capture mode: every 16th rising edge of CCPx input
- 0110 = Capture mode: every 4th rising edge of CCPx input
- 0101 = Capture mode: every rising edge of CCPx input
- 0100 = Capture mode: every falling edge of CCPx input
- 0011 = Capture mode: every edge of CCPx input
- 0010 = Compare mode: toggle output on match
- 0001 = Compare mode: toggle output on match; clear TMR1
- 0000 = Capture/Compare/PWM off (resets CCPx module)
- **Note 1:** All modes will set the CCPxIF bit, and will trigger an ADC conversion if CCPx is selected as the ADC trigger source.

REGISTER 31-5: SSPxMSK: SSPx MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
			SSPxN	1SK<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7-1	SSPyMSK<	7:1>: Mask bits						
	1 = The received address bit n is compared to SSPxADD <n> to detect I^2C address match 0 = The received address bit n is not used to detect I^2C address match</n>							
bit 0	it 0 SSPxMSK<0>: Mask bit for I ² C Slave mode, 10-bit Address							
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):							
		eived address b					atch	
	0 = The received address bit 0 is not used to detect I ² C address match							

MSK0 bit is ignored.

REGISTER 31-6: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I²C MODE)

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SSPxAD | D<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0	SSPxADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

I²C Slave mode, 7-bit address:

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 SSPxADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode – Least Significant Address Byte:</u>

bit 7-0 SSPxADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

- bit 7-1 SSPxADD<7:1>: 7-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

REGISTER 32-16: SMTxPRL: SMT PERIOD REGISTER – LOW BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxF	PR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 SMTxPR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

REGISTER 32-17: SMTxPRH: SMT PERIOD REGISTER – HIGH BYTE

| R/W-x/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SMTxPF | R<15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 32-18: SMTxPRU: SMT PERIOD REGISTER – UPPER BYTE

'0' = Bit is cleared

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1			
			SMTxPF	R<23:16>						
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						

bit 7-0 SMTxPR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte

'1' = Bit is set

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD RATE	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_		_	_		_		_	_		_	_	
1200	—		—	—		—	—	—	—	—	—	—	
2400	—		—	—	_	—	—	—	—	_	_	_	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

TABLE 33-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

BAUD RATE	SYNC = 0, BRGH = 1, BRG16 = 0											
	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	-	_	_	_	_	_	_	300	0.16	207
1200	—	_	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	—	_	—	—	_	—	115.2k	0.00	1	_	_	—

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 32.000 MHz			Fosc	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303	
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575	
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	