

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18854-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16F18854 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RB2/ANB2/SDA2 ^(3,4) /SDI2 ⁽¹⁾ /	RB2	TTL/ST	CMOS/OD	General purpose I/O.
	ANB2	AN	-	ADC Channel B2 input.
	SDA2 ^(3,4)	l ² C/ SMBus	OD	MSSP2 I ² C serial data input/output.
	SDI2 ⁽¹⁾	TTL/ST	—	MSSP2 SPI serial data input.
	CWG3IN ⁽¹⁾	TTL/ST	—	Complementary Waveform Generator 3 input.
	IOCB2	TTL/ST	—	Interrupt-on-change input.
RB3/ANB3/C1IN2-/C2IN2-/IOCB3	RB3	TTL/ST	CMOS/OD	General purpose I/O.
	ANB3	AN	-	ADC Channel B3 input.
	C1IN2-	AN	-	Comparator negative input.
	C2IN2-	AN	_	Comparator negative input.
	IOCB3	TTL/ST	-	Interrupt-on-change input.
RB4/ANB4/ADCACT ⁽¹⁾ /T5G ⁽¹⁾ /	RB4	TTL/ST	CMOS/OD	General purpose I/O.
SMTWIN2 ⁽¹ //IOCB4	ANB4	AN	_	ADC Channel B4 input.
	ADCACT ⁽¹⁾	TTL/ST	_	ADC Auto-Conversion Trigger input.
	T5G ⁽¹⁾	TTL/ST	_	Timer5 gate input.
	SMTWIN2 ⁽¹⁾	TTL/ST	_	Signal Measurement Timer 2 (SMT2) window input.
	IOCB4	TTL/ST	-	Interrupt-on-change input.
RB5/ANB5/T1G ⁽¹⁾ /SMTSIG2 ⁽¹⁾ /	RB5	TTL/ST	CMOS/OD	General purpose I/O.
	ANB5	AN	-	ADC Channel B5 input.
	T1G ⁽¹⁾	TTL/ST	-	Timer1 gate input.
	SMTSIG2 ⁽¹⁾	TTL/ST	-	Signal Measurement Timer 2 (SMT2) signal input.
	CCP3 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM3 (default input location for capture function).
	IOCB5	TTL/ST	-	Interrupt-on-change input.
RB6/ANB6/CLCIN2 ⁽¹⁾ /IOCB6/ICSPCLK	RB6	TTL/ST	CMOS/OD	General purpose I/O.
	ANB6	AN	-	ADC Channel B6 input.
	CLCIN2 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCB6	TTL/ST	_	Interrupt-on-change input.
	ICSPCLK	ST	_	In-Circuit Serial Programming [™] and debugging clock input.

AN = Analog input or output TTL = TTL compatible input egend: I²C ST = Schmitt Trigger input with CMOS levels = Schmitt Trigger input with I^2C HV = High Voltage

XTAL = Crystal levels

1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

4: These pins are configured for I^2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Note

Ρ
 6(
Ĺ,
F1
88
354

Bank /										PUR, BUR	other Resets
Dalik 4	Bank 4										
				c	PU CORE REGIS	TERS; see Table	3-2 for specifics				
20Ch	TMR1L	Holding Registe	er for the Least	Significant Byte o	f the 16-bit TMR1 F	Register				0000 0000	uuuu uuuu
20Dh	TMR1H	TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register									uuuu uuuu
20Eh	T1CON	_	-	CKP	S<1:0>	_	SYNC	RD16	ON	00 -000	uu -uuu
20Fh	T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	—	0000 0x	uuuu ux
210h	T1GATE	—	—	_			GSS<4:0>			0 0000	u uuuu
211h	T1CLK	—	—	_	—		CS<3	3:0>		0000	uuuu
212h	12h TMR3L Holding Register for the Least Significant Byte of the 16-bit TMR3 Register									0000 0000	uuuu uuuu
213h	TMR3H	Holding Registe	er for the Most S	Significant Byte of	the 16-bit TMR3 R	legister				0000 0000	uuuu uuuu
214h	T3CON	—	_	CKP	S<1:0>	_	SYNC	RD16	ON	00 -000	uu -uuu
215h	T3GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	_	—	x0 0000	uuuu ux
216h	T3GATE	—	—	_			GSS<4:0>			0 0000	u uuuu
217h	T3CLK	—	—	_	—		CS<3	3:0>		0000	uuuu
218h	TMR5L	Holding Registe	er for the Least	Significant Byte o	f the 16-bit TMR5 F	Register				0000 0000	uuuu uuuu
219h	TMR5H	Holding Registe	er for the Most S	Significant Byte of	the 16-bit TMR5 R	legister				0000 0000	uuuu uuuu
21Ah	T5CON	—	_	CKP	S<1:0>	_	SYNC	RD16	ON	00 -000	uu -uuu
21Bh	T5GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	—	x0 0000	uuuu ux
21Ch	T5GATE	—	_	_			GSS<4:0>			0 0000	u uuuu
21Dh	T5CLK	—	—	—	—		CS<3	3:0>		0000	uuuu
21Eh	CCPTMRS0	C4TSE	L<1:0>	C3TS	EL<1:0>	C2TS	EL<1:0>	C1TSE	EL<1:0>	0101 0101	0101 0101
21Fh	CCPTMRS1	—	_	P7TS	EL<1:0>	P6TS	EL<1:0>	C5TSE	EL<1:0>	01 0101	01 0101

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18854 devices only.

2: Unimplemented, read as '1'.

6.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

6.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 6-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz-crystal resonators and ceramic resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 determine the type of oscillator that will be used when the device reset, including when it is first powered up.

The internal clock modes, LFINTOSC, HFINTOSC (set at 1 MHz), or HFINTOSC (set at 32 MHz) can be set through the RSTOSC bits.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used in conjunction with the RSTOSC bits to select the external clock mode.

The external oscillator module can be configured in one of the following clock modes, by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode (below 500 kHz)
- 2. ECM External Clock Medium Power mode (500 kHz to 8 MHz)
- 3. ECH External Clock High-Power mode (above 8 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 6-1). A wide selection of device clock frequencies may be derived from these clock sources.

INE OID I EIN				INEQUEU	I KEOIOTEK	0	
R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
CLC4IF	CLC3IF	CLC2IF	CLC1IF	—	TMR5GIF	TMR3GIF	TMR1GIF
bit 7		•	•				bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set	I	'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7	CLC4IF: CLC	4 Interrupt Flag	g bit				
	1 = A CLC4O	UT interrupt co	ondition has oc	curred (must	be cleared in so	oftware)	
	0 = No CLC4	interrupt event	has occurred				
bit 6	CLC3IF: CLC	3 Interrupt Flag	g bit				
	1 = A CLC4O	UT interrupt co	ndition has or	curred (must	be cleared in so	ftware)	
L:1 F		Interrupt event					
DIL 5			y Dit malitiana la ana an			(1 ,,, .)	
	1 = A CLC4O 0 = No CLC4O	interrupt co	has occurred	currea (must	be cleared in so	mware)	
hit 4		1 Interrunt Flag	n hit				
	1 = A C C C 4 O	UT interrupt co	ondition has or	curred (must	be cleared in so	oftware)	
	0 = No CLC4	interrupt event	has occurred				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	TMR5GIF: Tir	mer5 Gate Inte	rrupt Flag bit				
	1 = The Time	r5 Gate has go	ne inactive (th	e gate is close	ed)		
	0 = The Time	r5 Gate has no	t gone inactive	e			
bit 1	TMR3GIF: Tir	mer3 Gate Inte	rrupt Flag bit				
	1 = The Time	r5 Gate has go	ne inactive (th	e gate is close	ed)		
	0 = The Time	r5 Gate has no	t gone inactive	e			
bit 0	TMR1GIF: Tir	mer1 Gate Inte	rrupt Flag bit				
	1 = The Time	r1 Gate has go r1 Gate has no	ne inactive (th	e gate is close	ed)		
		i i Gale nas no	t gone mactive	5			
Note: Int	terrupt flag bits a	re set when an	interrupt				
CO	ndition occurs, r	egardless of the	e state of				
its	corresponding	enable bit or th	e Global				
Er	IADIE DIT. GIE. O	n the INTCON	realster.				

REGISTER 7-16: PIR5: PERIPHERAL INTERRUPT REQUEST REGISTER 5

User software should ensure the appropriate interrupt flag bits are clear

prior to enabling an interrupt.

9.7 Register Definitions: Windowed Watchdog Timer Control

REGISTER 9-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0		
-	-			WDTPS<4:0>(1)			SEN		
bit 7							bit 0		
Legend:									
R = Reada	ble bit	W = Writable b	bit	U = Unimplem	ented bit, read	as '0'			
u = Bit is u	nchanged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is s	set	'0' = Bit is clea	ired	q = Value dep	ends on condit	on			
L									
bit 7-6	Unimpleme	nted: Read as 'o)'						
bit 5-1	WDTPS<4:0	>: Watchdog Tir	ner Prescale S	elect bits ⁽¹⁾					
	Bit Value =	Prescale Rate							
	11111 = R e	eserved. Results	in minimum in	iterval (1:32)					
	•								
	•								
	10011 = Re	eserved. Results	in minimum in	terval (1:32)					
	10011 14			(1102)					
	10010 = 1 :	8388608 (2 ²³) (I	nterval 256s no	ominal)					
	10001 = 1:	4194304 (2 ²²) (I	nterval 128s no	ominal)					
	10000 = 1:	2097152 (2 ') (I 1048576 (2 ²⁰) (I	nterval 64s noi	minal) minal)					
	01111 = 1	524288 (2 ¹⁹) (In	terval 16s nom	inal)					
	01101 = 1:	262144 (2 ¹⁸) (In	terval 8s nomir	nal)					
	01100 = 1:	131072 (2 ¹⁷) (In	terval 4s nomir	nal)					
	01011 = 1:	65536 (Interval 2	2s nominal) (Re	eset value)					
	01010 = 1:	32768 (Interval 1 16384 (Interval 6	Is nominal)						
	01001 = 1	10304 (Interval 24 8192 (Interval 24	56 ms nominal	(1 <i>)</i>					
	00111 = 1	4096 (Interval 12	28 ms nominal))					
	00110 = 1:	2048 (Interval 64	1 ms nominal)						
	00101 = 1:	1024 (Interval 32	2 ms nominal)						
	00100 = 1:	512 (Interval 16	ms nominal)						
	00011 = 1	200 (Interval 8 ff 128 (Interval 4 m	is nominal)						
	00010 = 1: 00001 = 1:	64 (Interval 2 ms	s nominal)						
	00000 = 1:	32 (Interval 1 ms	s nominal)						
bit 0	SEN: Softwa	re Enable/Disab	le for Watchdo	g Timer bit					
	If WDTE<1:0)> = 1x:							
	This bit is igr	nored.							
	$\frac{\text{If WDTE} < 1:0}{1 - WDT in}$) > = 01:							
	1 = WDT is	turned on							
	If WDTF<1.0)> = 00:							
	This bit is igr	nored.							
Note 1:	Times are appro	ximate. WDT tin	ne is based on	31 kHz LFINTO	DSC.				

- 2: When WDTCPS <4:0> in CONFIG3 = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3.
- 3: When WDTCPS <4:0> in CONFIG3 \neq 11111, these bits are read-only.

10.2 Data EEPROM Memory

Data EEPROM Memory consists of 256 bytes of user data memory. The EEPROM provides storage locations for 8-bit user defined data.

EEPROM can be read and/or written through:

- FSR/INDF indirect access (Section 10.3 "FSR and INDF Access")
- NVMREG access (Section 10.4 "NVMREG Access")
- In-Circuit Serial Programming (ICSP)

Unlike PFM, which must be written to by row, EEPROM can be written to word by word.

10.3 FSR and INDF Access

The FSR and INDF registers allow indirect access to the PFM or EEPROM.

10.3.1 FSR READ

With the intended address loaded into an FSR register a MOVIW instruction or read of INDF will read data from the PFM or EEPROM.

Reading from NVM requires one instruction cycle. The CPU operation is suspended during the read, and resumes immediately after. Read operations return a single word of memory.

10.3.2 FSR WRITE

Writing/erasing the NVM through the FSR registers (ex. MOVWI instruction) is not supported in the PIC16(L)F18854 devices.

10.4 NVMREG Access

The NVMREG interface allows read/write access to all the locations accessible by FSRs, and also read/write access to the User ID locations, and read-only access to the device identification, revision, and Configuration data.

Reading, writing, or erasing of NVM via the NVMREG interface is prevented when the device is code-protected.

10.4.1 NVMREG READ OPERATION

To read a NVM location using the NVMREG interface, the user must:

- Clear the NVMREGS bit of the NVMCON1 register if the user intends to access PFM locations, or set NMVREGS if the user intends to access User ID, Configuration, or EEPROM locations.
- Write the desired address into the NVMADRH:NVMADRL register pair (Table 10-2).
- 3. Set the RD bit of the NVMCON1 register to initiate the read.

Once the read control bit is set, the CPU operation is suspended during the read, and resumes immediately after. The data is available in the very next cycle, in the NVMDATH:NVMDATL register pair; therefore, it can be read as two bytes in the following instructions.

NVMDATH:NVMDATL register pair will hold this value until another read or until it is written to by the user.

11.0 CYCLIC REDUNDANCY CHECK (CRC) MODULE

The Cyclic Redundancy Check (CRC) module provides a software-configurable hardware-implemented CRC checksum generator. This module includes the following features:

- Any standard CRC up to 16 bits can be used
- · Configurable Polynomial
- · Any seed value up to 16 bits can be used
- · Standard and reversed bit order available
- Augmented zeros can be added automatically or by the user
- Memory scanner for fast CRC calculations on program memory user data
- Software loadable data registers for calculating CRC values not from the memory scanner

11.1 CRC Module Overview

The CRC module provides a means for calculating a check value of program memory. The CRC module is coupled with a memory scanner for faster CRC calculations. The memory scanner can automatically provide data to the CRC module. The CRC module can also be operated by directly writing data to SFRs, without using the scanner.

11.2 CRC Functional Overview

The CRC module can be used to detect bit errors in the Flash memory using the built-in memory scanner or through user input RAM memory. The CRC module can accept up to a 16-bit polynomial with up to a 16-bit seed value. A CRC calculated check value (or checksum) will then be generated into the CRCACC<15:0> registers for user storage. The CRC module uses an XOR shift register implementation to perform the polynomial division required for the CRC calculation.

EXAMPLE 11-1: BASIC CRC OPERATION EXAMPLE

CRC-16-ANSI

 $x^{16} + x^{15} + x^2 + 1$ (17 bits) Standard 16-bit representation = 0x8005

> CRCXORH = 0b10000000 CRCXORL = 0b0000010- (1)

> > Data Sequence: 0x55, 0x66, 0x77, 0x88

DLEN = 0b0111 PLEN = 0b1111

Data entered into the CRC:

SHIFTM = 0: 01010101 01100110 01110111 10001000

SHIFTM = 1: 10101010 01100110 11101110 00010001

Check Value (ACCM = 1):

SHIFTM = 0: 0x32D6 CRCACCH = 0b00110010 CRCACCL = 0b11010110

SHIFTM = 1: 0x6BA2

CRCACCH = 0b01101011 CRCACCL = 0b10100010

Note 1: Bit 0 is unimplemented. The LSb of any CRC polynomial is always '1' and will always be treated as a '1' by the CRC for calculating the CRC check value. This bit will be read in software as a '0'.

11.3 CRC Polynomial Implementation

Any standard polynomial up to 17 bits can be used. The PLEN<3:0> bits are used to specify how long the polynomial used will be. For an x^n polynomial, PLEN = n-2. In an n-bit polynomial the x^n bit and the LSb will be used as a '1' in the CRC calculation because the MSb and LSb must always be a '1' for a CRC polynomial. For example, if using CRC-16-ANSI, the polynomial will look like 0x8005. This will be implemented into the CRCXOR<15:1> registers, as shown in Example 11-1.

REGISTER 11-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DAT	<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
u = Bit is unchange	ed	x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Rese	ts
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 DAT<15:8>: CRC Input/Output Data bits

REGISTER 11-4: CRCDATL: CRC DATA LOW BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DAT	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0		
u = Bit is unchanged	d	x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	e at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 DAT<7:0>

DAT<7:0>: CRC Input/Output Data bits Writing to this register fills the shifter.

REGISTER 11-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC	<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	2	
u = Bit is unchang	led	x = Bit is unknown	1	-n/n = Value at F	POR and BOR/Val	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 ACC<15:8>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register. Reading from this register reads the CRC accumulator.

REGISTER 11-6: CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	ACC<7:0>									
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

ACC<7:0>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register through the CRC write bus. Reading from this register reads the CRC accumulator.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
RA4PPS	—	—		RA4PPS<5:0>						
RA5PPS	—	—		RA5PPS<5:0>						
RA6PPS	_	_		RA6PPS<5:0>						
RA7PPS	_	_		RA7PPS<5:0>						
RB0PPS	—	—			RBC)PPS<5:0>			215	
RB1PPS	_	_			RB1	PPS<5:0>			215	
RB2PPS	_	_			RB2	2PPS<5:0>			215	
RB3PPS	_	_			RB3	3PPS<5:0>			215	
RB4PPS	_	_			RB4	PPS<5:0>			215	
RB5PPS	_	_			RB	5PPS<5:0>			215	
RB6PPS	—	—			RB6	SPPS<5:0>			215	
RB7PPS	—	—			RB7	'PPS<5:0>			215	
RC0PPS	—	—			RCO)PPS<5:0>			215	
RC1PPS	—	—			RC	IPPS<5:0>			215	
RC2PPS	—	—			RC2	2PPS<5:0>			215	
RC3PPS	_	_			RC	3PPS<5:0>			215	
RC4PPS	—	—			RC4	IPPS<5:0>			215	
RC5PPS	_	_		RC5PPS<5:0>					215	
RC6PPS	—	—		RC6PPS<5:0>						
RC7PPS	_	_			RC	'PPS<5:0>			215	

TABLE 13-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE (CONTINUED)

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

18.12 Register Definitions: Comparator Control

REGISTER 18-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
ON	OUT	_	POL	_	—	HYS	SYNC	
bit 7 bit (
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'		
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value	at POR and BO	OR/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	ON: Comparat 1 = Comparat 0 = Comparat	tor Enable bit or is enabled or is disabled a	and consumes	s no active pow	ver			
bit 6 OUT: Comparator Output bit $ \frac{\text{If } CxPOL = 1 \text{ (inverted polarity):}}{1 = CxVP < CxVN} $ $ 0 = CxVP > CxVN $ $ \frac{\text{If } CxPOL = 0 \text{ (non-inverted polarity):}}{1 = CxVP > CxVN} $ $ 0 = CxVP > CxVN $								
bit 5	Unimplemen	ted: Read as '	0'					
bit 4	 POL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted 							
bit 3-2	Unimplemen	ted: Read as '	0'					
bit 1	HYS: Compare 1 = Compare 0 = Compare	ator Hysteresi tor hysteresis tor hysteresis	s Enable bit enabled disabled					
bit 0	 SYNC: Comparator Nysteresis disabled SYNC: Comparator Output Synchronous Mode bit 1 = Comparator output to Timer1 and I/O pin is synchronous to changes on Timer1 clock source. Output updated on the falling edge of Timer1 clock source. 0 = Comparator output to Timer1 and I/O pin is asynchronous 							

22.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR5 register will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · CLCxIE bit of the PIE5 register
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the PIR5 register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

22.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the LCxOUT bits in the individual CLCxCON registers.

22.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

22.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

22.6 CLCx Setup Steps

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 22-2).
- Clear any associated ANSEL bits.
- Set all TRIS bits associated with inputs.
- · Clear all TRIS bits associated with outputs.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxGyPOL bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the PIE5 register.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

23.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether or not the ADC interrupt is enabled
	or not the Abo interrupt is chabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIE1 register and the PEIE bit of the INTCON register must both be set and the GIE bit of the INTCON register must be cleared. If all three of these bits are set, the execution will switch to the Interrupt Service Routine.

23.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFRM0 bit of the ADCON0 register controls the output format.

Figure 23-3 shows the two output formats.

Software writes to the ADRES register pair are always right justified regardless of the selected format mode. Therefore, data read after writing to ADRES when ADFRM0 = 0 will be shifted left six places. For example, writing 0xFF to ADRESL will be read as 0xC0 in ADRESL and 0x3F logical OR'd with whatever was in the two MSbits in ADRESH.

FIGURE 23-3: 10-BIT ADC CONVERSION RESULT FORMAT

<u>C</u> 1
6
F1
88
54

L TA

TABLE 23-3: COMPUTATION MODES

		Clear Conditions	Value after Trig	ger completion	Threshold Operations			Value at ADTIF interrupt		
Mode	ADMD	ADACC and ADCNT	ADACC	ADCNT	Retrigger	Threshold Test	Interrupt	ADAOV	ADFLTR	ADCNT
Basic	0	ADACLR = 1	Unchanged	Unchanged	No	Every Sample	If thresh- old=true	N/A	N/A	count
Accumulate	1	ADACLR = 1	S + ADACC or (S2-S1) + ADACC	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	Every Sample	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count
Average	2	ADACLR = 1 or ADCNT>=ADRPT at ADGO or retrigger	S + ADACC or (S2-S1) + ADACC	If (ADCNT>=ADRPT):1, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count
Burst Average	3	ADACLR = 1 or ADGO set or retrigger	Each repetition: same as Average End with sum of all samples	Reset and count up until ADCNT=ADRPT	Repeat while ADCNT <adrpt< td=""><td>lf ADCNT>= ADRPT</td><td>If thresh- old=true</td><td>ADACC Overflow</td><td>ADACC/2^{ADCRS}</td><td>ADRPT</td></adrpt<>	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	ADRPT
Lowpass Filter	4	ADACLR = 1	S+ADACC-ADACC/ 2 ^{ADCRS} or (S2-S1)+ADACC-ADACC/ 2 ^{ADCRS}	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	Filtered Value	count

Note 1: S, S1, and S2 are abbreviations for ADRES, ADRES(n), and ADRES(n+1), respectively. When ADDSEN = 0: S = ADRES. When ADDSEN = 1: S1 = ADPREV, and S2 = ADRES.

2: All results of divisions using the ADCRS bits are truncated, not rounded.

© 2016 Microchip Technology Inc.

Maria	MODE<4:0>		Output	Oursentlier	Timer Control				
wode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop		
		000		Software gate (Figure 29-4)	ON = 1	_	ON = 0		
		001	Period	Hardware gate, active-high (Figure 29-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0		
		010	r uise	Hardware gate, active-low	ON = 1 and TMRx_ers = 0	_	ON = 0 or TMRx_ers = 1		
Free Running Period		011		Rising or falling edge Reset		TMRx_ers			
	00	100	Period	Rising edge Reset (Figure 29-6)		TMRx_ers ↑	ON = 0		
		101	Pulse	Falling edge Reset		TMRx_ers ↓			
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0		
		111	Reset	High level Reset (Figure 29-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1		
		000	One-shot	Software start (Figure 29-8)	ON = 1	_			
		001	Edae	Rising edge start (Figure 29-9)	ON = 1 and TMRx_ers ↑	_			
		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_			
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or		
One-shot	01	100	Edge	Rising edge start and Rising edge Reset (Figure 29-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	after TMRx = PRx		
		101	triggered start	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓	(Note 2)		
		110	hardware Reset	Rising edge start and Low level Reset (Figure 29-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0			
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1			
		000		Rese					
		001	Edge	Rising edge start (Figure 29-12)	ON = 1 and TMRx_ers ↑	_	ON = 0 or		
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	-	Next clock after		
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)		
Reserved	10	100		Rese	erved				
Reserved		101		Rese	rved				
		110	Level triggered	High level start and Low level Reset (Figure 29-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or		
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)		
Reserved	11	xxx	Reserved						

TABLE 29-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

30.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

The Capture/Compare/PWM modules available are shown in Table 30-1.

TABLE 30-1: AVAILABLE CCP MODUL

Device	CCP1	CCP2	CCP3	CCP4	CCP5
PIC16(L)F18854	٠	٠	٠	٠	٠

The Capture and Compare functions are identical for all CCP modules.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

32.6.9 COUNTER MODE

This mode increments the timer on each pulse of the SMTx_signal input. This mode is asynchronous to the SMT clock and uses the SMTx_signal as a time source. The SMTxCPW register will be updated with the current SMTxTMR value on the rising edge of the SMTxWIN input. See Figure 32-18.

SUPPLY CURRENT (IDD)^(1,2,4) **TABLE 37-2**:

PIC16LF	18854 Standard Operating Conditions (unless other					less otherwise stated)			
PIC16F1	8854								
Param.				- .			Conditions		
No.	Symbol	nbol Device Characteristics Min. Typ.		Тур.†	Max.	Units	VDD	Note	
D100	IDD _{XT4}	XT = 4 MHz	—	360	600	ζμΑ <	3.0V		
D100	IDD _{XT4}	XT = 4 MHz	_	380	700	μA	3.0√	1	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	_	1.4	2.0	mA	3.0V	$\mathbf{\mathbf{N}}$	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	_	1.5	2.1	₩A/	3.0		
D102	IDD _{HFOPLL}	HFINTOSC = 32 MHz	_	2.6	3.6	/mA	3.0V		
D102	IDD _{HFOPLL}	HFINTOSC = 32 MHz		2.7	\3.7∖	mA	3.0V		
D103	IDD _{HSPLL32}	HS+PLL = 32 MHz		2.6	3.6	<pre>mA</pre>	3.0V		
D103	IDD _{HSPLL32}	HS+PLL = 32 MHz	_	2.7	3.7	mA	3.0V		
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz		1.05		mA	3.0V		
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	K	1.15		mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	$\overline{\langle}$	1.1		mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 18		1.8	_	mA	3.0V		

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from Note 1:

rail-to-rail; all I/O pins are outputs driven low; MOLR - VDD, WDT disabled. The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switch-

2: ing rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. $IDD_{DOZE} = [IDD_{IDLE}^{*}(N-1)/N] + IDD_{HFO}^{-16/N}$ where N = DOZE Ratio (Register 8-2).

3:

PMD bits are all in the default state, no modules are disabled. 4:

© 2016 Microchip Technology Inc.

 \wedge

TABLE 37-4. I/O PORTS

TABLE	37-4:	I/O PORTS					\bigwedge
Standar	d Operat	ing Conditions (unless otherwi	se stated)				
Param. No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O PORT:	_			,	
D300		with TTL buffer	-	_	0.8	V Š	4.5V ≤ 10p ≤ 5.5V
D301			—	—	0.15 Vdd	V	1.8V< ≤ VDp ≤ 4.5V
D302		with Schmitt Trigger buffer	_	_	0.2 VDD	V	2.0V ≤ VDD ≥ 5.5V
D303		with I ² C levels	_	_	0.3 VDQ	V	
D304		with SMBus levels	_		0.8	V	$2.7V \le VDD \le 5.5V$
D305		MCLR	_		0.2 VDD	\ Ŵ	
	Vih	Input High Voltage	•			\cdot	· · · · · · · · · · · · · · · · · · ·
		I/O PORT:			//		\rangle
D320		with TTL buffer	2.0	-		$\setminus \vee \vee$	$4.5V \le VDD \le 5.5V$
D321			0.25 VDD + 0.8	, /,		\searrow	$1.8V \leq V\text{DD} \leq 4.5V$
D322		with Schmitt Trigger buffer	0.8 VDD <	$\left(\begin{array}{c} \end{array}\right)$	$\langle \mathcal{F} \rangle$	V	$2.0V \le VDD \le 5.5V$
D323		with I ² C levels	0.7 Yrsp	/-/	\searrow	V	
D324		with SMBus levels	2.1		$\setminus -$	V	$2.7V \le VDD \le 5.5V$
D325		MCLR	0.7 VDD	<u> </u>	/ _	V	
	lı∟	Input Leakage Current ⁽¹⁾	<				
D340		I/O Ports	R	±5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C
D341				± 5	± 1000	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 125°C
D342		MCLR ⁽²⁾	$\overline{\mathbf{a}}$	± 50	± 200	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C
	IPUR	Weak Pull-up Current					
D350			25	120	200	μA	VDD = 3.0V, VPIN = VSS
	Vol	Output Løw Voltage		•		•	•
D360		I/O ports	_	_	0.6	V	IOL = 10.0mA, VDD = 3.0V
	Voн	Øutput High Voltage			1	1	
D370		I/O ports	Vdd - 0.7	_	_	V	ЮН = 6.0 mA, VDD = 3.0V
D380	Сю	All I/O pins	—	5	50	pF	
	/ -						

† Data in "Typ) column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Note 1: Negative current is defined as current sourced by the pin.
 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent

normal operating conditions. Higher leakage current may be measured at different input voltages.