

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18854t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ρ
C 1
6
)F1
88
354

		1		0			,		1	1	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Banks 1	6										
				c	PU CORE REGIS	TERS; see Table	3-2 for specifics				
80Ch	WDTCON0	—	—			PS<4:0>			SEN	dd dddo	dd dddo
80Dh	WDTCON1	—		WDTCS<2:0>	>	_		WINDOW<2:0>	•	-বর্বর -বর্বর	-ddd -ddd
80Eh	WDTPSL					PSCNT<7:0>				0000 0000	0000 0000
80Fh	WDTPSH				I	PSCNT<7:0>				0000 0000	0000 0000
810h	WDTTMR	—		WDT	TMR<3:0>		STATE	PSCNT	<17:16>	-000 0000	-000 0000
811h	BORCON	SBOREN	—	—	—	—	—	—	BORRDY	1q	u u
812h	VREGCON ⁽¹⁾	—	_	_	—	—	—	VREGPM	Reserved	01	01
813h	PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	0011 11qq	qqqq qquu
814h	CCDCON	CCDEN	—	_	—	_	—	CCDS	S<1:0>	0xx	0uu
815h	_				U	nimplemented				-	—
816h	_				U	nimplemented				-	—
817h	_				U	nimplemented				_	—
818h	_				U	nimplemented				-	—
819h	_				U	nimplemented				-	—
81Ah	NVMADRL				Ν	VMADR<7:0>				0000 0000	0000 0000
81Bh	NVMADRH	(2)				NVMADR<14	4:8>			1000 0000	1000 0000
81Ch	NVMDATL		NVMDAT<7:0>								0000 0000
81Dh	NVMDATH	—	—	- NVMDAT<13:8>							00 0000
81Eh	NVMCON1	—	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000	-000 g000
81Fh	NVMCON2				N	/MCON2<7:0>	•	-	•	0000 0000	0000 0000

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

DS40001826A-page 52

 Legend:
 x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

 Note
 1:
 Register present on PIC16F18854 devices only.

2: Unimplemented, read as '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on:	Value on all	
		DKI	BRO	Dir v	Dit 4	Вко	BRE	Bitt	BRU	POR, BOR	other Resets	
Bank 29												
				(CPU CORE REGIS	TERS; see Table	3-2 for specifics					
E8Ch	_				U	nimplemented				_	_	
E8Dh	_				U	nimplemented				_	_	
E8Eh	-	- Unimplemented										
E8Fh	PPSLOCK	—	—	—	-	– – – PPSLOCKED						
E90h	INTPPS	_	—	_	-		INTPPS	<3:0>	•	1000	uuuu	
E91h	TOCKIPPS	_	—	_	-		TOCKIPF	'S<3:0>		0100	uuuu	
E92h	T1CKIPPS	—	—	_			T1CKIPPS<4:0>			1 0000	u uuuu	
E93h	T1GPPS	—	—	_			0 1101	u uuuu				
E94h	T3CKIPPS	—	—	—			1 0000	u uuuu				
E95h	T3GPPS	—	—	_		T3GPPS<4:0>						
E96h	T5CKIPPS	—	—	—			T5CKIPPS<4:0>			1 0000	u uuuu	
E97h	T5GPPS	—	—	_			T5GPPS<4:0>			0 1100	u uuuu	
E98h	—				U	nimplemented				_	-	
E99h	_				U	nimplemented				_	—	
E9Ah	_				U	nimplemented				_	-	
E9Bh	_				U	nimplemented				_	—	
E9Ch	T2AINPPS	—	—	—			T2AINPPS<4:0>			1 0011	u uuuu	
E9Dh	T4AINPPS	—	—	_				1 0101	u uuuu			
E9Eh	T6AINPPS	—	—	_			0 1111	u uuuu				
E9Fh	_			_	—							
EA0h	_				_	-						
EA1h	CCP1PPS	—	—	—			CCP1PPS<4:0>			1 0010	u uuuu	

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, g =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18854 devices only.

2: Unimplemented, read as '1'.

IABLE	3-11: SPE	CIAL FUNC	TION RE	GISTER SU		NKS 0-31 (C	ONTINUED)	1	•					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets			
Bank 31														
	CPU CORE REGISTERS; see Table 3-2 for specifics													
F8Ch — FE3h	_	Unimplemented									_			
FE4h	STATUS_SHAD	—	_	_	—	—	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu			
FE5h	WREG_SHAD		WREG_SHAD							XXXX XXXX	uuuu uuuu			
FE6h	BSR_SHAD	_	_	BSR_SHAD							u uuuu			
FE7h	PCLATH_SHAD	_				PCLATH_SH	IAD			-xxx xxxx	-uuu uuuu			
FE8h	FSR0L_SHAD				F	SR0L_SHAD				xxxx xxxx	uuuu uuuu			
FE9h	FSR0H_SHAD				F	SR0H_SHAD				XXXX XXXX	uuuu uuuu			
FEAh	FSR1L_SHAD				F	SR1L_SHAD				XXXX XXXX	uuuu uuuu			
FEBh	FSR1H_SHAD				F	SR1H_SHAD				XXXX XXXX	uuuu uuuu			
FECh	_	Unimplemented	Unimplemented											
FEDh	STKPTR	—	STKPTR<4;0>							1 1111	1 1111			
FEEh	TOSL	TOSL<7:0>									XXXX XXXX			
FEFh	TOSH	—				TOSH<6:0	>			-xxx xxxx	-xxx xxxx			

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'. Legend:

Register present on PIC16F18854 devices only. Unimplemented, read as '1'. Note 1:

2:

4.6 Device ID and Revision ID

The 14-bit device ID word is located at 8006h and the 14-bit revision ID is located at 8005h. These locations are read-only and cannot be erased or modified.

Development tools, such as device programmers and debuggers, may be used to read the Device ID, Revision ID and Configuration Words. These locations can also be read from the NVMCON register.

4.7 Register Definitions: Device and Revision

REGISTER 4-6: DEVID: DEVICE ID REGISTER

		R	R	R	R	R	R				
				DEV<	:13:8>						
		bit 13	3 b								
R	R	R	R	R	R	R	R				
			DEV	<7:0>							
bit 7							bit 0				
Legend: R = Readable											
R = Readable	bit										

'1' = Bit is set

'0' = Bit is cleared

bit 13-0 **DEV<13:0>:** Device ID bits

Device	DEVID<13:0> Values
PIC16F18854	11 0000 0110 1010 (306Ah)
PIC16LF18854	11 0000 0110 1011 (306Bh)

REGISTER 4-7: REVISIONID: REVISION ID REGISTER

R	R	R	R	R	R	R	R	R	R	R	R	R	R	
1	0		MJRREV<5:0>						MNRREV<5:0>					
bit 13										bit 0				

Legend:			
R = Readable bit			
'0' = Bit is cleared	'1' = Bit is set	x = Bit is unknown	

bit 13-12 Fixed Value: Read-only bits

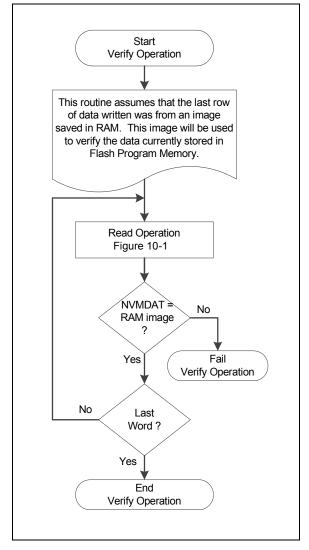
These bits are fixed with value '10' for all devices included in this data sheet.

bit 11-6 MJRREV<5:0>: Major Revision ID bits

These bits are used to identify a major revision. A major revision is indicated by an all layer revision (B0, C0, etc.)

bit 5-0 **MNRREV<5:0>**: Minor Revision ID bits These bits are used to identify a minor revision.

REGISTER	(1-10) FIEO	. FERIFIERA		ILNADLL	REGISTER 0			
U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
	—	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	
bit 7		·			•		bit C	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
u = Bit is ur	nchanged	x = Bit is unkn	own	-n/n = Value	at POR and BO	R/Value at all ot	her Resets	
'1' = Bit is s	et	'0' = Bit is clea	red	HS = Hardwa	are set			
bit 7-6	Unimpleme	nted: Read as 'o)'.					
bit 6	SMT2PWAIE	E: SMT2 Pulse-V	Vidth Acquisitio	n Interrupt En	able bit			
		s the SMT acqui						
		es the SMT acqu	•		•.			
bit 5		SMT2 Period / s the SMT acqui		rrupt Enable b	bit			
		s the SMT acqui						
bit 4		IT2 Overflow Inte	•					
		s the SMT overf						
		es the SMT over	-					
bit 2		E: SMT1 Pulse-V	•	n Interrupt En	able bit			
		s the SMT acqui les the SMT acq	-	+				
bit 1			•		vit			
bit 1 SMT1PRAIE: SMT1 Period Acquisition Interrupt Enable bit 1 = Enables the SMT acquisition interrupt								
		es the SMT acqu						
bit 0	SMT1IE: SM	IT1 Overflow Inte	errupt Enable b	it				
		s the SMT overf	•					
	0 = Disabl	es the SMT ove	rflow interrupt					


REGISTER 7-10: PIE8: PERIPHERAL INTERRUPT ENABLE REGISTER 8

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt controlled by registers PIE1-PIE8.

10.4.8 WRITE VERIFY

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 10-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART

REGISTER 11-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DAT<	15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemer	nted bit, read as '0		
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	OR and BOR/Valu	e at all other Rese	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 DAT<15:8>: CRC Input/Output Data bits

REGISTER 11-4: CRCDATL: CRC DATA LOW BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DAT	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemer	nted bit, read as '0	,	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	OR and BOR/Valu	ue at all other Rese	ts
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 DAT<7:0>

DAT<7:0>: CRC Input/Output Data bits Writing to this register fills the shifter.

REGISTER 11-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
			ACC	<15:8>				
bit 7							bit 0	
Legend:								
R = Readable bit	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is unchang	jed	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				ets	
'1' = Bit is set		'0' = Bit is cleared						

bit 7-0 ACC<15:8>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register. Reading from this register reads the CRC accumulator.

REGISTER 11-6: CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	ACC<7:0>						
bit 7	bit 7 b						

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

ACC<7:0>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register through the CRC write bus. Reading from this register reads the CRC accumulator.

REGISTER 11-7: CRCSHIFTH: CRC SHIFT HIGH BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SHI	-T<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is unchanged		x = Bit is unknown -n/n = Value at POR and BOR/Value at all other				ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

SHIFT<15:8>: CRC Shifter Register bits

Reading from this register reads the CRC Shifter.

REGISTER 11-8: CRCSHIFTL: CRC SHIFT LOW BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
SHIFT<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

SHIFT<7:0>: CRC Shifter Register bits

Reading from this register reads the CRC Shifter.

REGISTER 11-9: CRCXORH: CRC XOR HIGH BYTE REGISTER

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
X<15:8>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 X<15:8>: XOR of Polynomial Term X_N Enable bits

REGISTER 11-10: CRCXORL: CRC XOR LOW BYTE REGISTER

R/W-x/x	U-1						
			X<7:1>				—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 XOR<7:1>: XOR of Polynomial Term X_N Enable bits

bit 0 Unimplemented: Read as '1'

© 2016 Microchip Technology Inc.

REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER

R/W-1/1	R/W-1/1	R/W-x/u	R/W-x/u	R/W-1/1	R/W-x/u	R/W-x/u	R/W-x/u
LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0
bit 7		•				•	bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

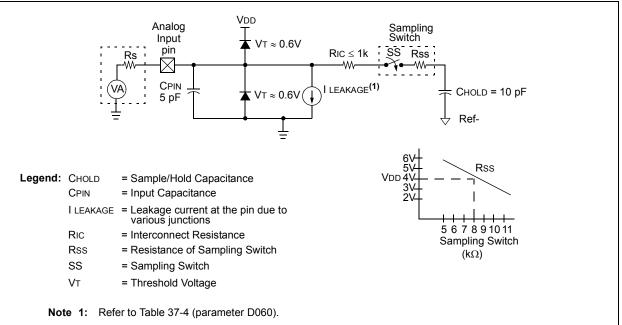
bit 7-0 LATA<7:0>: RA<7:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

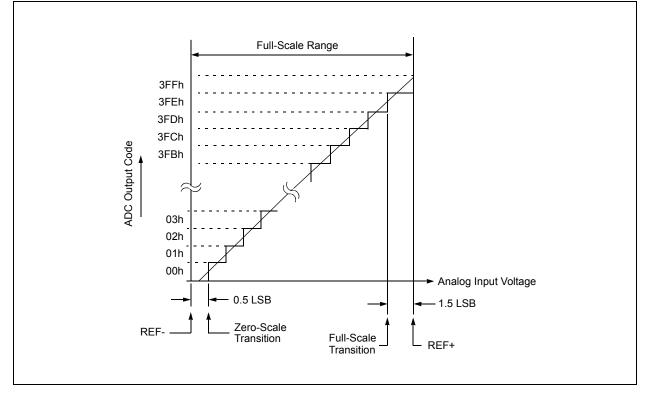
REGISTER 12-5: ANSELA: PORTA ANALOG SELECT REGISTER

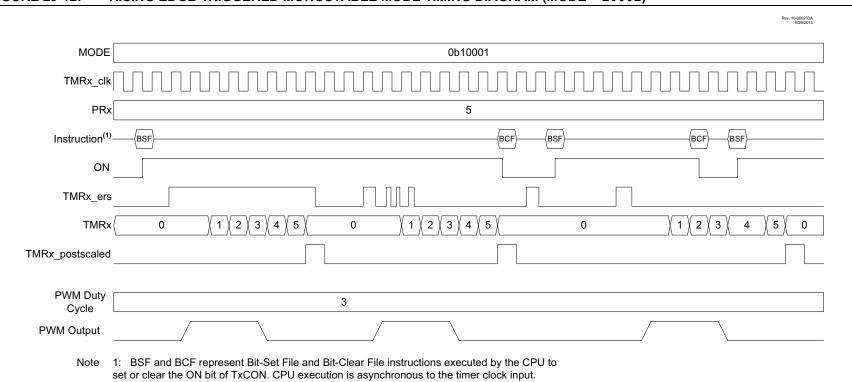
| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSA7 | ANSA6 | ANSA5 | ANSA4 | ANSA3 | ANSA2 | ANSA1 | ANSA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	


bit 7-0 ANSA<7:0>: Analog Select between Analog or Digital Function on pins RA<7:0>, respectively

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.


0 = Digital I/O. Pin is assigned to port or digital special function.


Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

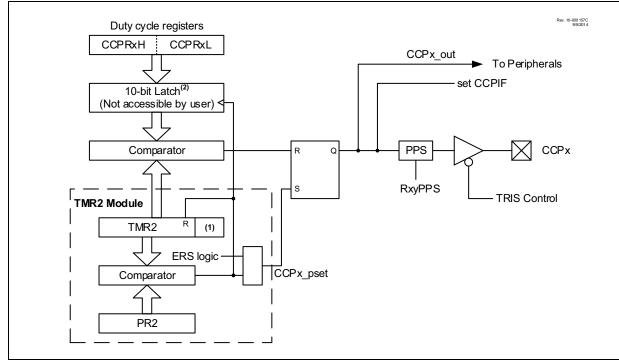


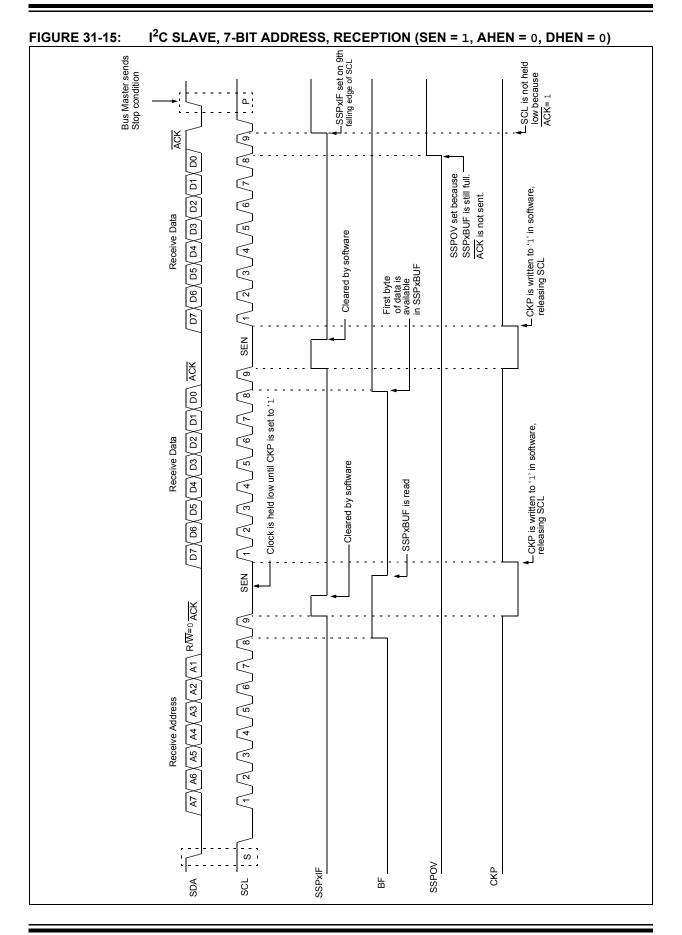
FIGURE 29-12:

29-12: RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

FIGURE 30-4: SIMPLIFIED PWM BLOCK DIAGRAM

30.3.2 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for standard PWM operation:


- Use the desired output pin RxyPPS control to select CCPx as the source and disable the CCPx pin output driver by setting the associated TRIS bit.
- 2. Load the PR2 register with the PWM period value.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- Load the CCPRxL register, and the CCPRxH register with the PWM duty cycle value and configure the CCPxFMT bit of the CCPxCON register to set the proper register alignment.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR4 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer prescale value.
 - Enable the Timer by setting the TMR2ON bit of the T2CON register.

- 6. Enable PWM output pin:
 - Wait until the Timer overflows and the TMR2IF bit of the PIR4 register is set. See Note below.
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.
- Note: In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

30.3.3 CCP/PWM CLOCK SELECTION

The PIC16F18855/75 allows each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

As there are up to three 8-bit timers with auto-reload (Timer2/4/6), PWM mode on the CCP and PWM modules can use any of these timers. The CCPTMRS0 and CCPTMRS1 registers is used to select which timer is used.

REGISTER 31-7: SSPxBUF: MSSPx BUFFER REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			SSPxB	UF<7:0>			
bit 7							bit 0
Legend:							
D - Doodoblo bit		M = Mritable bit		II – Unimplor	nonted hit read	oo 'O'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SSPxBUF<7:0>: MSSP Buffer bits

TABLE 31-3: SUMMARY OF REGISTERS ASSOCIATED WITH MSSPx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	114
PIR1	OSFIF	CSWIF	—	—	—	—	ADTIF	ADIF	125
PIE1	OSFIE	CSWIE	—	—	—	—	ADTIE	ADIE	116
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	469
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		470
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	471
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	469
SSP1MSK				SSPMS	K<7:0>				473
SSP1ADD				SSPAD	D<7:0>				473
SSP1BUF				SSPBUF<7:0>					474
SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	469
SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		470
SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	471
SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	469
SSP2MSK				SSPMS	K<7:0>				473
SSP2ADD				SSPAD	D<7:0>				473
SSP2BUF				SSPBU	F<7:0>				474
SSP1CLKPPS	_	—	—		SSF	P1CLKPPS<4	:0>		214
SSP1DATPPS	_	_	—		SSF	P1DATPPS<4	:0>		214
SSP1SSPPS	_	_	_		SS	P1SSPPS<4:	0>		214
SSP2CLKPPS		—	_		SSF	2CLKPPS<4	:0>		214
SSP2DATPPS		—	—		SSF	2DATPPS<4	:0>		214
SSP2SSPPS	_	—	—		SS	P2SSPPS<4:	0>		214
RxyPPS	—	—	—		F	RxyPPS<4:0>			215

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSPx module

Note 1: When using designated I^2C pins, the associated pin values in INLVLx will be ignored.

32.8 Register Definitions: SMT Control

Long bit name prefixes for the Signal Measurement Timer peripherals are shown in **Section 1.1** "**Register and Bit naming conventions**".

TABLE 32-2:LONG BIT NAMES PREFIXES
FOR SMT PERIPHERALS

Peripheral	Bit Name Prefix
SMT1	SMT1
SMT2	SMT2

REGISTER 32-1: SMTxCON0: SMT CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN ⁽¹⁾	—	STP	WPOL	SPOL	CPOL	SMTxPS<1:0>	
bit 7							bit 0

Legend:						
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is unch	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is cleared				
bit 7	EN: SMT Er 1 = SMT is 0 0 = SMT is 0	enabled	e reset, clock requests are disabled			
bit 6	Unimpleme	nted: Read as '0'				
bit 5	STP: SMT Counter Halt Enable bit When SMTxTMR = SMTxPR: 1 = Counter remains SMTxPR; period match interrupt occurs when clocked 0 = Counter resets to 24'h000000; period match interrupt occurs when clocked					
bit 4	WPOL: SMTxWIN Input Polarity Control bit 1 = SMTxWIN signal is active-low/falling edge enabled 0 = SMTxWIN signal is active-high/rising edge enabled					
bit 3	SPOL: SMTxSIG Input Polarity Control bit 1 = SMTx_signal is active-low/falling edge enabled 0 = SMTx_signal is active-high/rising edge enabled					
bit 2	CPOL: SMT Clock Input Polarity Control bit 1 = SMTxTMR increments on the falling edge of the selected clock signal 0 = SMTxTMR increments on the rising edge of the selected clock signal					
bit 1-0	SMTxPS<1 11 = Presca 10 = Presca 01 = Presca 00 = Presca	aler = 1:4 aler = 1:2	bits			

Note 1: Setting EN to '0' does not affect the register contents.

33.3.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUD1CON register starts the auto-baud calibration sequence. While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Figure 33-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 33-1. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 33.3.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at one. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 33-1: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

0000h XXXXh 001Ch **BRG** Value Edge #5 Edge #1 Edge #2 Edge #3 Edge #4 bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 RX pin Start Stop bit Auto Cleared Set by User ABDEN bit RCIDL RCIF bit (Interrupt) Read RCREG SPBRGL XXh 1Ch XXh 00h SPBRGH Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.

FIGURE 33-6: AUTOMATIC BAUD RATE CALIBRATION

33.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TX1STA register configures the device for synchronous operation. Clearing the CSRC bit of the TX1STA register configures the device as a slave. Clearing the SREN and CREN bits of the RC1STA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RC1STA register enables the EUSART.

33.4.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see **Section 33.4.1.3 "Synchronous Master Transmission")**, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 33.4.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 37-6: THERMAL CHARACTERISTICS

Standar	d Operating	Conditions (unless otherwise stated)			
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package
			80	°C/W	28-pin SOJC package
			90	°C/W	28-pin \$\$0P pa¢kage
			27.5	°C/W	28-pin UQFN 4x4 mm package
			27.5	°C/W	28-pin QFN 6x6mm package
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package
			24	°C/W	28-pin SOIC package
			24	°C/W	28-pin SSOP package
			24	°C/W	28 pin VQFN 4x4mm package
			24	∕_°C/W	28-pin QFN 6x6mm package
TH03	TJMAX	Maximum Junction Temperature	150	26	$\langle \rangle$
TH04	PD	Power Dissipation	7	W	PD YPINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation	Ę,	Ŵ	PINTERNAL = IDD x VDD ⁽¹⁾
TH06	Pi/o	I/O Power Dissipation		W	$P_{I}/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	Pder	Derated Power	$\langle \mathcal{F} \rangle$	W	РDER = PDмах (Тј - Та)/θја ⁽²⁾

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature, TJ = Junction Temperature

39.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

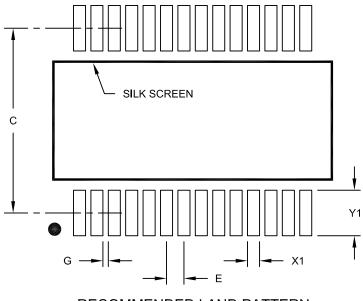
- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

39.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:


- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- · Built-in support for Bugzilla issue tracker

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S	
Dimension	Dimension Limits			MAX	
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A