

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18854-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F18854 MEMORY MAP, BANK 29 **TABLE 3-8:**

	516(L)F1885
	Bank 29
E8Ch	_
E8Dh	_
E8Eh	—
E8Fh	PPSLOCK
E90h	INTPPS
E91h	TOCKIPPS
E92h	T1CKIPPS
E93h	T1GPPS
E94h	T3CKIPPS
E95h	T3GPPS
E96h	T5CKIPPS
E97h	T5GPPS
E98h	_
E99h	_
E9Ah	_
E9Bh	_
E9Ch	T2AINPPS
E9Dh	T4AINPPS
E9Eh	T6AINPPS
E9Fh	_
EA0h	_
EA1h	CCP1PPS
EA2h	CCP2PPS
EA3h	CCP3PPS
EA4h	CCP4PPS
EA5h	CCP5PPS
EA6h	_
EA7h	_
EA8h	_
EA9h	SMT1WINPPS
EAAh	SMT1SIGPPS
EABh	SMT2WINPPS
EACh	SMT2SIGPPS
EADh	_
EAEh	_
EAFh	

AP, BANK 29									
	Bank 29								
EB1h	CWG1PPS								
EB2h	CWG2PPS								
EB3h	CWG3PPS								
EB4h	_								
EB5h	—								
EB6h	—								
EB7h	-								
EB8h	MDCARLPPS								
EB9h	MDCARHPPS								
EBAh	MDSRCPPS								
EBBh	CLCIN0PPS								
EBCh	CLCIN1PPS								
EBDh	CLCIN2PPS								
EBEh	CLCIN3PPS								
EBFh									
EC0h									
EC1h	_								
EC2h	_								
EC3h	ADCACTPPS								
EC4h	_								
EC5h	SSP1CLKPPS								
EC6h	SSP1DATPPS								
EC7h	SSP1SSPPS								
EC8h	SSP2CLKPPS								
EC9h	SSP2DATPPS								
ECAh	SSP2SSPPS								
ECBh	RXPPS								
ECCh	TXPPS								
ECDh									
EEFh	_								

Legend: ory locations,

Ρ
6(
)F1
88
54

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 4											
				c	PU CORE REGIS	TERS; see Table	3-2 for specifics				
20Ch											
20Dh	20Dh TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register										uuuu uuuu
20Eh	T1CON	-	-	CKP	S<1:0>	—	SYNC	RD16	ON	00 -000	uu -uuu
20Fh	T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	—	x0 0000	uuuu ux
210h	T1GATE	-	—	_			GSS<4:0>			0 0000	u uuuu
211h	T1CLK	-	_	_	—		0000	uuuu			
212h	212h TMR3L Holding Register for the Least Significant Byte of the 16-bit TMR3 Register										uuuu uuuu
213h	TMR3H	Holding Register for the Most Significant Byte of the 16-bit TMR3 Register									uuuu uuuu
214h	T3CON	-	—	CKP	S<1:0>	_	SYNC	RD16	ON	00 -000	uu -uuu
215h	T3GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	-	x0 0000	uuuu ux
216h	T3GATE	-	—	_			GSS<4:0>			0 0000	u uuuu
217h	T3CLK	-	—	_	—		CS<	3:0>		0000	uuuu
218h	TMR5L	Holding Regist	er for the Least	Significant Byte o	f the 16-bit TMR5 F	Register				0000 0000	uuuu uuuu
219h	TMR5H	Holding Regist	er for the Most S	Significant Byte of	the 16-bit TMR5 R	egister				0000 0000	uuuu uuuu
21Ah	T5CON	-	_	CKP	S<1:0>	_	SYNC	RD16	ON	00 -000	uu -uuu
21Bh	T5GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	-	x0 0000	uuuu ux
21Ch	T5GATE	—	_	—			GSS<4:0>	·	·	0 0000	u uuuu
21Dh	T5CLK	-	_	_	—		CS<3	3:0>		0000	uuuu
21Eh	CCPTMRS0	C4TSE	L<1:0>	C3TS	EL<1:0>	C2TS	SEL<1:0>	C1TSE	EL<1:0>	0101 0101	0101 0101
21Fh	CCPTMRS1	-	—	P7TS	EL<1:0>	P6TS	EL<1:0>	C5TSE	EL<1:0>	01 0101	01 0101

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18854 devices only.

2: Unimplemented, read as '1'.

IADLL	BLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
Bank 9		1										
				c	PU CORE REGIS	TERS; see Table	3-2 for specifics					
48Ch	SMT1TMRL					TMR<7:0>				0000 0000	0000 0000	
48Dh	SMT1TMRH		TMR<15:8>									
48Eh	SMT1TMRU		TMR<23:16>									
48Fh	SMT1CPRL		CPR<7:0>									
490h	SMT1CPRH	CPRH CPR<15:8>									uuuu uuuu	
491h	SMT1CPRU	PRU CPR<23:16>									uuuu uuuu	
492h	SMT1CPWL		CPW<7:0>								uuuu uuuu	
493h	SMT1CPWH		CPW<15:8>								uuuu uuuu	
494h	SMT1CPWU		CPW<23:16>								uuuu uuuu	
495h	SMT1PRL					PR<7:0>				1111 1111	1111 1111	
496h	SMT1PRH					PR<15:8>				1111 1111	1111 1111	
497h	SMT1PRU					PR<23:16>				1111 1111	1111 1111	
498h	SMT1CON0	EN	—	STP	WPOL	SPOL	CPOL	SMT1	PS<1:0>	0-00 0000	0-00 0000	
499h	SMT1CON1	SMT1GO	REPEAT	—	—		MODE	<3:0>		00 0000	00 0000	
49Ah	SMT1STAT	CPRUP	CPWUP	RST	-	-	TS	WS	AS	000000	000000	
49Bh	SMT1CLK	—	—	—	—	—	000	000				
49Ch	SMT1SIG	—	—	_			SSEL<4:0>			0 0000	0 0000	
49Dh	SMT1WIN	—	—	_			WSEL<4:0>			0 0000	0 0000	
49Eh	—				U	nimplemented				—	—	
49Fh	—				U	nimplemented				-	—	

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18854 devices only.

2: Unimplemented, read as '1'.

9.0 WINDOWED WATCHDOG TIMER (WWDT)

The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events. The Windowed Watchdog Timer (WDT) differs in that CLRWDT instructions are only accepted when they are performed within a specific window during the time-out period.

The WDT has the following features:

- Selectable clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (nominal)
- Configurable window size from 12.5 to 100 percent of the time-out period
- Multiple Reset conditions
- Operation during Sleep

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0				
NVMCON2<7:0>											
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'							
S = Bit can only b	be set	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other F			ther Resets				
'1' = Bit is set		'0' = Bit is clea	ared								

REGISTER 10-6: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER

bit 7-0 **NVMCON2<7:0>:** Flash Memory Unlock Pattern bits To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the NVMCON1 register. The value written to this register is used to unlock the writes.

TABLE 10-5: SUMMARY OF REGISTERS ASSOCIATED WITH NONVOLATILE MEMORY (NVM)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	—	—	—	—	INTEDG	114
PIE7	SCANIE	CRCIE	NVMIE	NCO1IE	—	CWG3IE	CWG2IE	CWG1IE	117
PIR7	SCANIF	CRCIF	NVMIF	NCO1IF	—	CWG3IF	CWG2IF	CWG1IF	126
NVMCON1	_	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	166
NVMCON2	NVMCON2<7:0>								
NVMADRL	NVMADR<7:0>								
NVMADRH	(1) NVMADR<14:8>								165
NVMDATL	NVMDAT<7:0>								165
NVMDATH	_	_			NVMDA	T<13:8>			165

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by NVM.

Note 1: Unimplemented, read as '1'.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0
bit 7							bit 0
l egend:							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRB<7:0>: PORTB Slew Rate Enable bits For RB<7:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

REGISTER 12-19: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLB7 | INLVLB6 | INLVLB5 | INLVLB4 | INLVLB3 | INLVLB2 | INLVLB1 | INLVLB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLB<7:0>: PORTB Input Level Select bits

For RB<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

REGISTER 12-30: CCDPC: CURRENT CONTROLLED DRIVE POSITIVE PORTC REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCDPC7 | CCDPC6 | CCDPC5 | CCDPC4 | CCDPC3 | CCDPC2 | CCDPC1 | CCDPC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

CCDPC<7:0>: RC<7:0> Current Controlled Drive Positive Control bits⁽¹⁾

- 1 = Current-controlled source enabled
- 0 = Current-controlled source disabled

Note 1: If CCDPCy is set, when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

REGISTER 12-31: CCDNC: CURRENT CONTROLLED DRIVE NEGATIVE PORTC REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCDNC7 | CCDNC6 | CCDNC5 | CCDNC4 | CCDNC3 | CCDNC2 | CCDNC1 | CCDNC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

CCDNC<7:0>: RC<7:0> Current Controlled Drive Negative Control bits⁽¹⁾

- 1 = Current-controlled source enabled
- 0 = Current-controlled source disabled

Note 1: If CCDNCy is set, when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

13.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 13-1.

		Default	Rema	emappable to Pins of PORTx			
Input Signal Name	Input Register Name	Location		PIC16F18854			
Humo		at POR	PORTA	PORTB	PORTC		
INT	INTPPS	RB0	•	•			
TOCKI	TOCKIPPS	RA4	•	•			
T1CKI	T1CKIPPS	RC0	•		•		
T1G	T1GPPS	RB5		•	•		
ТЗСКІ	T3CKIPPS	RC0		•	•		
T3G	T3GPPS	RC0	•		•		
T5CKI	T5CKIPPS	RC2	•		•		
T5G	T5GPPS	RB4		•	•		
T2IN	T2INPPS	RC3	٠		•		
T4IN	T4INPPS	RC5		•	•		
T6IN	T6INPPS	RB7		•	•		
CCP1	CCP1PPS	RC2		•	•		
CCP2	CCP2PPS	RC1		•	•		
CCP3	CCP3PPS	RB5		•	•		
CCP4	CCP4PPS	RB0		•	•		
CCP5	CCP5PPS	RA4	•		•		
SMTWIN1	SMTWIN1PPS	RC0		•	•		
SMTSIG1	SMTSIG1PPS	RC1		•	•		
SMTWIN2	SMTWIN2PPS	RB4		•	•		
SMTSIG2	SMTSIG2PPS	RB5		•	•		
CWG1IN	CWG1PPS	RB0		•	•		
CWG2IN	CWG2PPS	RB1		•	•		
CWG3IN	CWG3PPS	RB2		•	•		
MDCARL	MDCARLPPS	RA3	•		•		
MDCARH	MDCARHPPS	RA4	٠		•		
MDSRC	MDSRCPPS	RA5	•		•		
CLCIN0	CLCIN0PPS	RA0	•		•		
CLCIN1	CLCIN1PPS	RA1	•		•		
CLCIN2	CLCIN2PPS	RB6		•	•		

TABLE 13-1: PPS INPUT SIGNAL ROUTING OPT	IONS
--	------

14.0 PERIPHERAL MODULE DISABLE

The PIC16F18855/75 provides the ability to disable selected modules, placing them into the lowest possible Power mode.

For legacy reasons, all modules are ON by default following any Reset.

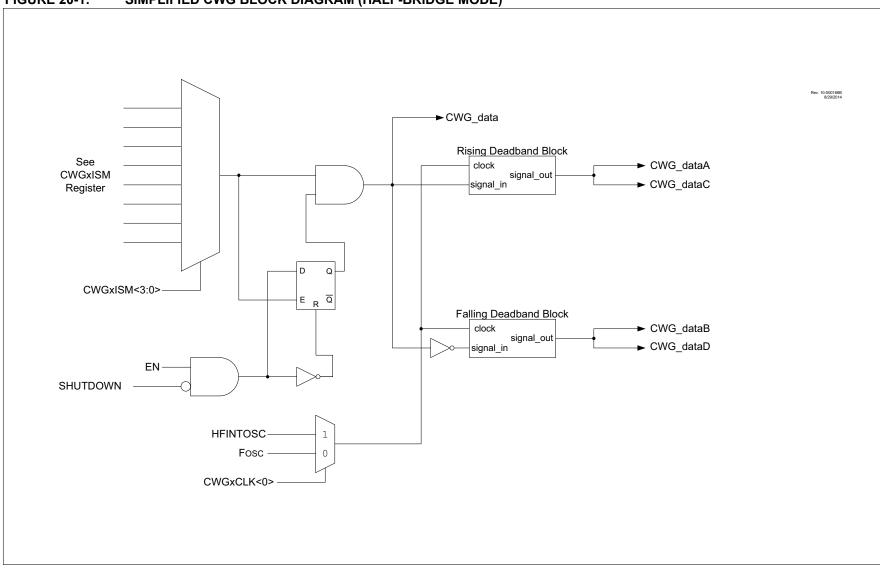
14.1 Disabling a Module

Disabling a module has the following effects:

- All clock and control inputs to the module are suspended; there are no logic transitions, and the module will not function.
- The module is held in Reset.
- · Any SFRs become "unimplemented"
 - Writing is disabled
 - Reading returns 00h
- Module outputs are disabled; I/O goes to the next module according to pin priority

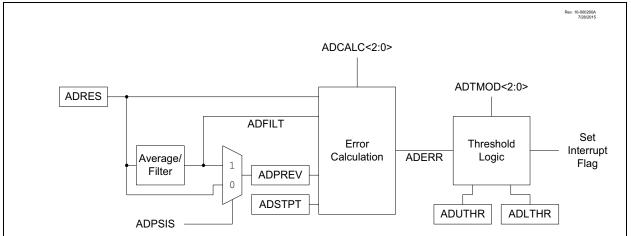
14.2 Enabling a module

When the register bit is cleared, the module is reenabled and will be in its Reset state; SFR data will reflect the POR Reset values.


Depending on the module, it may take up to one full instruction cycle for the module to become active. There should be no interaction with the module (e.g., writing to registers) for at least one instruction after it has been re-enabled.

14.3 Disabling a Module

When a module is disabled, any and all associated input selection registers (ISMs) are also disabled.


14.4 System Clock Disable

Setting SYSCMD (PMD0, Register 14-1) disables the system clock (Fosc) distribution network to the peripherals. Not all peripherals make use of SYSCLK, so not all peripherals are affected. Refer to the specific peripheral description to see if it will be affected by this bit.

FIGURE 20-1: SIMPLIFIED CWG BLOCK DIAGRAM (HALF-BRIDGE MODE)

FIGURE 23-11: COMPUTATIONAL FEATURES SIMPLIFIED BLOCK DIAGRAM

The operation of the ADC computational features is controlled by the ADMD <2:0> bits in the ADCON2 register.

The module can be operated in one of five modes:

• **Basic**: This is a legacy mode. In this mode, ADC conversion occurs on single (ADDSEN=0) or double (ADDSEN=1) samples. ADIF is set after each conversion completes.

• Accumulate: With each trigger, the ADC conversion result is added to accumulator and ADCNT increments. ADIF is set after each conversion. ADTIF is set according to the Calculation mode.

• Average: With each trigger, the ADC conversion result is added to the accumulator. When the ADRPT number of samples have been accumulated, a threshold test is performed. Upon the next trigger, the counter is reset to '1' and the accumulator is replaced with the first ADC conversion cleared. For the subsequent threshold tests, additional ADRPT samples are required to be accumulated.

• **Burst Average**: At the trigger, the accumulator and counter are cleared. The ADC conversion results are then collected repetitively until ADRPT samples are accumulated and finally the threshold is tested.

• Low-Pass Filter (LPF): With each trigger, the ADC conversion result is sent through a filter. When ADRPT samples have occurred, a threshold test is performed. Every trigger after that the ADC conversion result is sent through the filter and another threshold test is performed.

The five modes are summarized in Table 23-3 below.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
—	—	—			ADACT<4:0>				
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	n -n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cle	ared						

REGISTER 23-32: ADACT: ADC AUTO CONVERSION TRIGGER CONTROL REGISTER

bit 7-5 Unimplemented: Read as '0'

bit 4-0 ADACT<4:0>: Auto-Conversion Trigger Select Bits See Table 23-2.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
ADCON0	ADON	ADCONT	_	ADCS	_	ADFRM0	_	ADGO	322		
ADCON1	ADPPOL	ADIPEN	ADGPOL	—	_	—	_	ADDSEN	323		
ADCON2	ADPSIS ADCRS<2:0> ADACLR ADMD<2:0>										
ADCON3	_	ADCALC<2:0> ADSOI ADTMD<2:0>									
ADACT	— — — ADACT<4:0>										
ADACCH	ADACCH										
ADACCL	ADACCL										
ADPREVH	ADPREVH										
ADPREVL				ADP	REVL				334		
ADRESH				ADF	RESH				332		
ADRESL				ADF	RESL				332		
ADSTAT	ADAOV	ADUTHR	ADLTHR	ADMATH		A	ADSTAT<2:0	>	326		
ADCLK				I	ADCC	S<5:0>			327		
ADREF	_	—		ADNREF	_	—	ADPR	EF<1:0>	327		
ADCAP	_	_	_			ADCAP<4:0>			330		
ADPRE				ADPR	E<7:0>				329		
ADACQ	ADACQ<7:0>										
ADPCH	_	_			ADPC	H<5:0>			328		
ADCNT				ADCN	T<7:0>				331		
ADRPT				ADRP	T<7:0>				330		
ADLTHL				ADLT	H<7:0>				336		
ADLTHH				ADLTH	1<15:8>				336		
ADUTHL				ADUT	H<7:0>				337		
ADUTHH				ADUTI	H<15:8>				337		
ADSTPTL				ADST	PT<7:0>				335		
ADSTPTH				ADSTP	T<15:8>				335		
ADFLTRL				ADFLT	R<7:0>				331		
ADFLTRH				ADFLT	R<15:8>				331		
ADERRL				ADER	R<7:0>				336		
ADERRH				ADER	R<15:8>				335		
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	185		
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	193		
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	201		
DAC1CON1	_	—				DAC1R<4:0>			354		
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFV	R<1:0>	234		
INTCON	GIE	PEIE			—	—		INTEDG	114		
PIE1	OSFIE	CSWIE	_	—	_	—	ADTIE	ADIE	116		
PIR1	OSFIF	CSWIF	_	—	_	—	ADTIF	ADIF	125		
OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	104		

TABLE 23-6: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: -= unimplemented read as '0'. Shaded cells are not used for the ADC module.

Note 1: only.

28.11 Register Definitions: Timer1 Control start here with Memory chapter compare

Long bit name prefixes for the Timer1/3/5 are shown in Table 28-3. Refer to **Section 1.1 "Register and Bit naming conventions"** for more information TABLE 28-3:

PeripheralBit Name PrefixTimer1T1Timer3T3Timer5T5

REGISTER 28-1: TxCON: TIMER1/3/5 CONTROL REGISTER

U-0	U-0	R/W-0/u R/W-0/u		U-0	R/W-0/u	R/W-0/u	R/W-0/u
	—	CKPS<1:0>		_	SYNC	RD16	ON
bit 7							bit 0

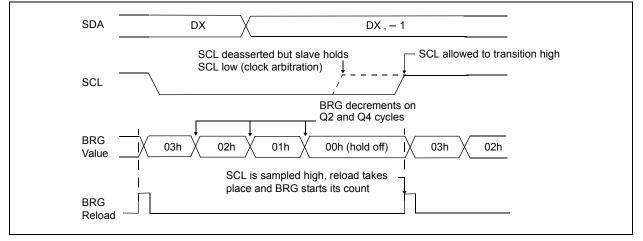
1							
Legend:							
R = Readab	le bit	W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is und	changed	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is se	et	'0' = Bit is cleared					
bit 7-6	Unimpleme	ented: Read as '0'					
bit 5-4	CKPS<1:0>	: Timer1 Input Clock Presc	ale Select bits				
		escale value					
		escale value					
		escale value escale value					
bit 3		ented: Read as '0'					
	<u> </u>		1 6 3				
bit 2		er1 Synchronization Contro	1 DIL				
		<u>1CLK = Fosc or Fosc/4</u>	internal clock and no additional synchronization is performed				
			ored. The timer uses the internal clock and no additional synchronization is performed. CS<1:0> = (any setting other than Fosc or Fosc/4)				
		synchronize external clock					
		onized external clock input	•				
bit 1	RD16: Time	er1 On bit					
	1 = Enable	s Timer1					
	0 = Stops T	imer1 and clears Timer1 ga	ate flip-flop				
bit 0	ON: Timer1	On bit					
	1 = Enable	s Timer1					
	0 = Stops T	imer1 and clears Timer1 ga	ate flip-flop				

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	114		
PIR1	OSFIF	CSWIF	_	—	_	—	ADTIF	ADIF	114		
PIE1	OSFIE	CSWIE	_	_	_	_	ADTIE	ADIE	116		
T1CON	—	_	CKPS	\$<5:4>	_	SYNC	RD16	ON	383		
T1GCON	GE	GPOL	GTM	GSPM	GGO/ DONE	GVAL	—	-	384		
T1GATE		_	_			GSS<4:0>			386		
T1CLK		_	_	_		CS	<3:0>		385		
TMR1L	Holding Regi	ister for the Le	east Significar	t Byte of the '	16-bit TMR1 F	Register			375*		
TMR1H											
T1CKIPPS	_	—	_		Т	- 1CKIPPS<4:	0>		214		
T1GPPS	_	_	_			T1GPPS<4:0	>		214		
T3CON	_	_	CKPS	i S<5:4>	_	SYNC	RD16	ON	383		
T3GCON	GE	GPOL	GTM	GSPM	GGO/ DONE	GVAL	_	—	384		
T3GATE	—	—	— GSS<4:0>								
T3CLK	_	_	_	—		CS	<3:0>		385		
TMR3L	Holding Regi	ister for the Le	east Significar	t Byte of the '	16-bit TMR3 F	legister			375*		
TMR3H	Holding Regi	ister for the M	ost Significan	t Byte of the 1	6-bit TMR3 R	egister			375*		
T3CKIPPS	—	—	—		Т	3CKIPPS<4:	0>		214		
T3GPPS	_	-	—			T3GPPS<4:0	>		214		
T5CON	—	-	CKPS	s<5:4>	—	SYNC	RD16	ON	383		
T5GCON	GE	GPOL	GTM	GSPM	GGO/ DONE	GVAL	_		384		
T5GATE	—	—	—		1	GSS<4:0>			386		
T5CLK	_	_	_	—		CS	<3:0>		385		
TMR5L	Holding Regi	ister for the Le	east Significar	nt Byte of the '	16-bit TMR5 R	Register			375*		
TMR5H	Holding Regi	ister for the M	ost Significan	t Byte of the 1	6-bit TMR5 R	egister			375*		
T5CKIPPS	—	_	_		Т	5CKIPPS<4:	0>		214		
T5GPPS	_	_	_			T5GPPS<4:0	>		214		
T0CON0	T0EN	_	TOOUT	T016BIT		TOOUT	PS<3:0>		372		
CMxCON0	CxON	CxOUT	—	CxPOL	—	CxSP	CxHYS	CxSYNC	245		
CCPTMRS0	C4TSE	L<1:0>	C3TSE	:L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	421		
CCPTMRS1	_		P7TSE	L<1:0>	P6TSE	L<1:0>	C5TSE	EL<1:0>	421		
CCPxCON	CCPxEN	_	CCPxOUT	CCPxFMT		CCPxM	DDE<3:0>		418		
CLCxSELy	—	_	_		1	LCxDyS<4:0	>		294		
ADACT	_	_	_			ADACT<4:0	>		324		

TABLE 28-4: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the Timer1 modules.

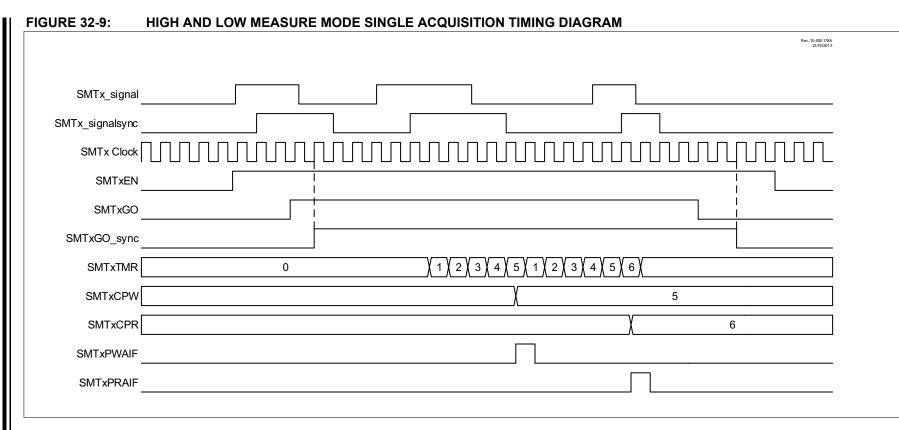
* Page with register information.


REGISTER 30-1: CCPxCON: CCPx CONTROL REGISTER (CONTINUED)

- bit 3-0
- MODE<3:0>: CCPx Mode Select bits⁽¹⁾ 1111 = PWM mode
- 1110 = Reserved
- 1101 = Reserved
- 1100 = Reserved
- 1011 = Compare mode: output will pulse 0-1-0; Clears TMR1
- 1010 = Compare mode: output will pulse 0-1-0
- 1001 = Compare mode: clear output on compare match
- 1000 = Compare mode: set output on compare match
- 0111 = Capture mode: every 16th rising edge of CCPx input
- 0110 = Capture mode: every 4th rising edge of CCPx input
- 0101 = Capture mode: every rising edge of CCPx input
- 0100 = Capture mode: every falling edge of CCPx input
- 0011 = Capture mode: every edge of CCPx input
- 0010 = Compare mode: toggle output on match
- 0001 = Compare mode: toggle output on match; clear TMR1
- 0000 = Capture/Compare/PWM off (resets CCPx module)
- **Note 1:** All modes will set the CCPxIF bit, and will trigger an ADC conversion if CCPx is selected as the ADC trigger source.

31.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 31-25).


FIGURE 31-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

31.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note: Because queuing of events is not allowed, writing to the lower five bits of SSPxCON2 is disabled until the Start condition is complete.

DS40001826A-page 488

Preliminary

36.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- · Byte Oriented
- Bit Oriented
- · Literal and Control

The literal and control category contains the most varied instruction word format.

Table 36-4 lists the instructions recognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

36.1 Read-Modify-Write Operations

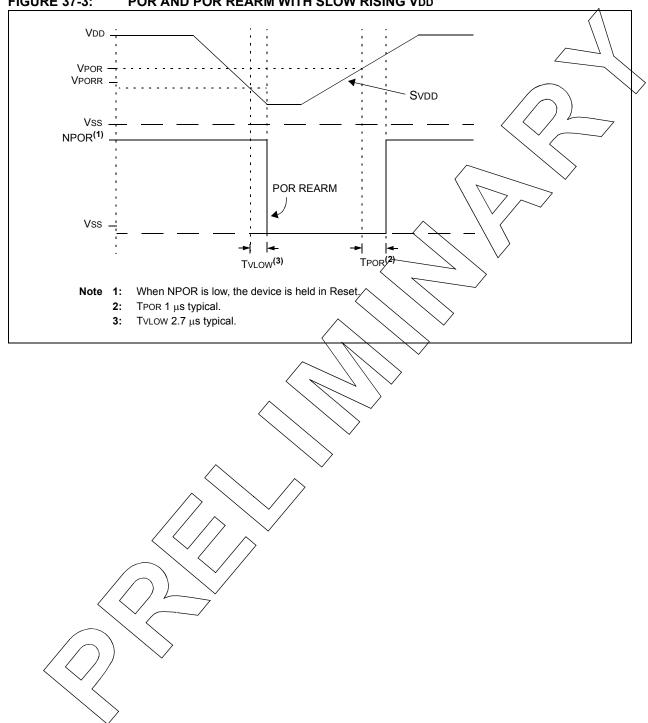

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 36-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Prepost increment-decrement mode selection

TABLE 36-2: ABBREVIATION DESCRIPTIONS

Field	Description
PC	Program Counter
TO	Time-Out bit
С	Carry bit
DC	Digit Carry bit
Z	Zero bit
PD	Power-Down bit

