

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuns	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18854-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description		
RB7/ANB7/DAC1OUT2/T6IN ⁽¹⁾ / CLCIN3 ⁽¹⁾ /IOCB7/ICSPDAT	RB7	TTL/ST	CMOS/OD	General purpose I/O.		
CLCIN3 ^{(*/} IUCB7/ICSPDAI	ANB7	AN	-	ADC Channel B7 input.		
	DAC1OUT2	—	AN	Digital-to-Analog Converter output.		
	T6IN ⁽¹⁾	TTL/ST	-	Timer6 external digital clock input.		
	CLCIN3 ⁽¹⁾	TTL/ST	-	Configurable Logic Cell source input.		
	IOCB7	TTL/ST	-	Interrupt-on-change input.		
	ICSPDAT	ST	CMOS	In-Circuit Serial Programming™ and debugging data input/out put.		
RC0/ANC0/T1CKI(1)/T3CKI ⁽¹⁾ /T3G ⁽¹⁾ / SMTWIN1 ⁽¹⁾ /IOCC0/SOSCO	RC0	TTL/ST	CMOS/OD	General purpose I/O.		
SMTWIN1 ^{**} /IOCC0/SOSCO	ANC0	AN	-	ADC Channel C0 input.		
	T1CKI ⁽¹⁾	TTL/ST	-	Timer1 external digital clock input.		
	T3CKI ⁽¹⁾	TTL/ST	-	Timer3 external digital clock input.		
	T3G ⁽¹⁾	TTL/ST	-	Timer3 gate input.		
	SMTWIN1 ⁽¹⁾	TTL/ST	-	Signal Measurement Timer1 (SMT1) input.		
	IOCC0	TTL/ST	-	Interrupt-on-change input.		
	SOSCO	—	AN	32.768 kHz secondary oscillator crystal driver output.		
RC1/ANC1/SMTSIG1 ⁽¹⁾ /CCP2 ⁽¹⁾ /	RC1	TTL/ST	CMOS/OD	General purpose I/O.		
IOCC1/SOSCI	ANC1	AN	-	ADC Channel C1 input.		
	SMTSIG1 ⁽¹⁾	TTL/ST	-	Signal Measurement Timer1 (SMT1) signal input.		
	CCP2 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM2 (default input location for capture function).		
	IOCC1	TTL/ST	-	Interrupt-on-change input.		
	SOSCI	AN	—	32.768 kHz secondary oscillator crystal driver input.		
RC2/ANC2/T5CKI ⁽¹⁾ /CCP1 ⁽¹⁾ /IOCC2	RC2	TTL/ST	CMOS/OD	General purpose I/O.		
	ANC2	AN	-	ADC Channel C2 input.		
	T5CKI ⁽¹⁾	TTL/ST	-	Timer5 external digital clock input.		
	CCP1 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM1 (default input location for capture function).		
	IOCC2	TTL/ST	—	Interrupt-on-change input.		
RC3/ANC3/SCL1 ^(3,4) /SCK1 ⁽¹⁾ /T2IN ⁽¹⁾ / IOCC3	RC3	TTL/ST	CMOS/OD	General purpose I/O.		
0003	ANC3	AN	_	ADC Channel C3 input.		
	SCL1 ^(3,4)	l ² C/ SMBus	OD	MSSP1 I ² C clock input/output.		
	SCK1 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP1 SPI clock input/output (default input location, SCK1 is PPS remappable input and output).		
	T2IN ⁽¹⁾	TTL/ST	_	Timer2 external input.		
	IOCC3	TTL/ST	_	Interrupt-on-change input.		

TABLE 1-2: PIC16F18854 PINOUT DESCRIPTION (CONTINUED)

CMOS = CMOS compatible input or output Legend: AN = Analog input or output TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels

OD I²C = Schmitt Trigger input with I²C

HV = High Voltage

XTAL = Crystal levels

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx Note 1: pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.

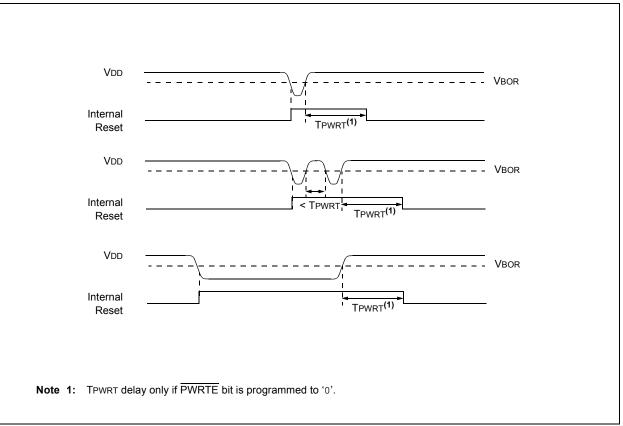
2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

5.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.


BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

FIGURE 5-2: BROWN-OUT SITUATIONS

5.2.4 BOR IS ALWAYS OFF

When the BOREN bits of the Configuration Words are programmed to '00', the BOR is off at all times. The device start-up is not delayed by the BOR ready condition or the VDD level.

6.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

6.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 6-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz-crystal resonators and ceramic resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 determine the type of oscillator that will be used when the device reset, including when it is first powered up.

The internal clock modes, LFINTOSC, HFINTOSC (set at 1 MHz), or HFINTOSC (set at 32 MHz) can be set through the RSTOSC bits.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used in conjunction with the RSTOSC bits to select the external clock mode.

The external oscillator module can be configured in one of the following clock modes, by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode (below 500 kHz)
- 2. ECM External Clock Medium Power mode (500 kHz to 8 MHz)
- 3. ECH External Clock High-Power mode (above 8 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 6-1). A wide selection of device clock frequencies may be derived from these clock sources.

R-q/q	R-0/q	R-0/q	R-0/q	R-q/q	R-q/q	U-0	R-q/q
EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR
bit 7							bit
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	ented bit, read as	'0'	
u = Bit is unch	anged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/Va	alue at all other	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7	1 = The osc	DSC (external) O illator is ready to illator is not enab	be used		d.		
bit 6	1 = The osc	OSC Oscillator R illator is ready to illator is not enab	be used	ready to be use	d.		
bit 5	1 = The oscil	FOSC Oscillator F lator is ready to b lator is not enable	e used	ready to be used			
bit 4	1 = The osc	OSC Oscillator Re illator is ready to llator is not enabl	be used	ready to be used	d.		
bit 3	1 = The osc	ary (Timer1) Osci illator is ready to llator is not enabl	be used	ready to be used	d.		
bit 2	ADOR: CRC Oscillator Ready bit 1 = The oscillator is ready to be used 0 = The oscillator is not enabled, or is not yet ready to be used						
bit 1	Unimplement	ed: Read as '0'	-	-			
bit 0	1 = The PLL						

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	
—	—	TMR0IE	IOCIE	—	—	—	INTE	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set			

REGISTER 7-2: PIE0: PERIPHERAL INTERRUPT ENABLE REGISTER 0

bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	 Enables the TMR0 interrupt
	0 = Disables the TMR0 interrupt
bit 4	IOCIE: Interrupt-on-Change Interrupt Enable bit
	 Enables the IOC change interrupt
	0 = Disables the IOC change interrupt
bit 3-1	Unimplemented: Read as '0'
bit 0	INTE: INT External Interrupt Flag bit ⁽¹⁾
	1 = Enables the INT external interrupt
	0 = Disables the INT external interrupt

Unimplemented: Read as '0'

bit 7-6

Note 1: The External Interrupt GPIO pin is selected by INTPPS (Register 13-1).

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt
	controlled by PIE1-PIE8. Interrupt sources
	controlled by the PIE0 register do not
	require PEIE to be set in order to allow
	interrupt vectoring (when GIE is set).

REGISTER 7-14: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3							
U-0	U-0	R-0	R-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
_	_	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set	t	'0' = Bit is cle	ared	HS = Hardwa	are clearable		
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5			1 0 (ead-only) bit ⁽¹⁾			
				npty (contains a	t least one byte)	
		ART receive bu		· · · · · · · · · (2)			
bit 4		RT Transmit Int					
					noccupied spac		rite to TXRE
				ilable in the trar			
bit 3	BCL2IF: MSS	SP2 Bus Collisi	on Interrupt F	lag bit			
			•	e cleared in soft	ware)		
		ollision was det					
bit 2	•		•	2) Interrupt Fla	•		
				ndition is compl on/Bus Condition	ete (must be cle	eared in softwa	re)
bit 1	•	SP1 Bus Collisi	•		on in progress		
				e cleared in soft	ware)		
		ollision was de	•		(Marc)		
bit 0	SSP1IF: Syno	chronous Seria	I Port (MSSP	1) Interrupt Fla	g bit		
					ete (must be cle	eared in softwa	re)
	0 = Waiting f	or the Transmi	ssion/Recepti	on/Bus Conditi	on in progress		
	ne RCIF flag is a				mware must re	ad from RCRE	G enough
	nes to remove al	•					
	2: The TXIF flag is a read-only bit, indicating if there is room in the transmit buffer. To clear the TXIF flag, the firmware must write enough data to TXREG to completely fill all available bytes in the buffer. The TXIF flag						
	bes not indicate t					s in the buller.	
			\				
Mater In	to much floor bits o		interrunt				

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Enable bit, GIE, of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear
	prior to enabling an interrupt.

R/W-0/0	R/W/HC-0/0	R-0	R-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
EN ⁽¹⁾	SCANGO ^(2, 3)	BUSY ⁽⁴⁾	INVALID	INTM	—	MODE	<1:0> ⁽⁵⁾
bit 7			•				bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	ented bit, rea	id as '0'	
u = Bit is und	changed	x = Bit is unk	nown	-n/n = Value at	t POR and B	OR/Value at all	other Resets
'1' = Bit is se	et	'0' = Bit is cle	eared	HC = Bit is cle	ared by hard	ware	
bit 7	EN: Scanner	Enable bit ⁽¹⁾					
	1 = Scanner i						
			ernal states ar	e reset			
bit 6	SCANGO: So					dias to MDv os	d data nasaa
		ent peripheral.		NVM will be acc	cessed accord	ang to MDx an	u data passe
	0 = Scanner o						
bit 5	BUSY: Scann	ner Busy Indic	ator bit ⁽⁴⁾				
	1 = Scanner o						
	0 = Scanner o	cycle is compl	ete (or never s	tarted)			
bit 4	INVALID: Scanner Abort signal bit						
				ontains an invali	d address ⁽⁶⁾		
L:1 0		-	to a valid addre		L 14		
bit 3			upt Manageme	ent Mode Select	DIT		
	If MODE = 10 This bit is igno	-					
	•		d until all data is	s transferred):			
				ig interrupt opera	tion: scanner	resumes after	returnina fror
	interrupt		(.g	,		
			d by interrupts	, the interrupt res	sponse will be	e affected	
	<u>If MODE = 00</u>						
	1 = SCANGO from inte		(to zero) during	g interrupt operat	ion; scan ope	rations resume	after returning
			nt NVM access	5			
bit 2	Unimplemen	-					
bit 1-0	•		ess Mode bits ^{(§}	5)			
	11 = Triggere						
	10 = Peek mo	ode					
	01 = Burst mo						
	00 = Concurr	ent mode					
	etting EN = 0 (SO			-	-	tent.	
	his bit is cleared		-	-			
	INTM = 1, this bi		-			-	
	USY = 1 when the $11 + 1$ for		-	or when the CRC	senos a read	ay signal.	
	ee Table 11-1 for			ngo of the DEM	ic coornod o	ad completed i	a daviaa
	n invalid address			after the last so			

REGISTER 11-11: SCANCONO: SCANNER ACCESS CONTROL REGISTER 0

address is invalid.

memory is 0x4000 and SCANHADR = 0x3FFF, after the last scan SCANLADR increments to 0x4000, the

14.0 PERIPHERAL MODULE DISABLE

The PIC16F18855/75 provides the ability to disable selected modules, placing them into the lowest possible Power mode.

For legacy reasons, all modules are ON by default following any Reset.

14.1 Disabling a Module

Disabling a module has the following effects:

- All clock and control inputs to the module are suspended; there are no logic transitions, and the module will not function.
- The module is held in Reset.
- · Any SFRs become "unimplemented"
 - Writing is disabled
 - Reading returns 00h
- Module outputs are disabled; I/O goes to the next module according to pin priority

14.2 Enabling a module

When the register bit is cleared, the module is reenabled and will be in its Reset state; SFR data will reflect the POR Reset values.

Depending on the module, it may take up to one full instruction cycle for the module to become active. There should be no interaction with the module (e.g., writing to registers) for at least one instruction after it has been re-enabled.

14.3 Disabling a Module

When a module is disabled, any and all associated input selection registers (ISMs) are also disabled.

14.4 System Clock Disable

Setting SYSCMD (PMD0, Register 14-1) disables the system clock (Fosc) distribution network to the peripherals. Not all peripherals make use of SYSCLK, so not all peripherals are affected. Refer to the specific peripheral description to see if it will be affected by this bit.

20.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces half-bridge, full-bridge, and steering of PWM waveforms. It is backwards compatible with previous ECCP functions.

The CWG has the following features:

- · Six operating modes:
 - Synchronous Steering mode
 - Asynchronous Steering mode
 - Full-Bridge mode, Forward
 - Full-Bridge mode, Reverse
 - Half-Bridge mode
 - Push-Pull mode
- Output polarity control
- · Output steering
 - Synchronized to rising event
 - Immediate effect
- Independent 6-bit rising and falling event deadband timers
 - Clocked dead band
 - Independent rising and falling dead-band enables
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart enable
 - Auto-shutdown pin override control

The CWG modules available are shown in Table 20-1.

TABLE 20-1: AVAILABLE CWG MODULES

Device	CWG1	CWG2	CWG2
PIC16(L)F18854	•	•	•

20.1 Fundamental Operation

The CWG module can operate in six different modes, as specified by MODE of the CWGxCON0 register:

- Half-Bridge mode (Figure 20-9)
- Push-Pull mode (Figure 20-2)
 - Full-Bridge mode, Forward (Figure 20-3)
 - Full-Bridge mode, Reverse (Figure 20-3)
- Steering mode (Figure 20-10)
- Synchronous Steering mode (Figure 20-11)

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. Thus, all output modes support auto-shutdown, which is covered in **20.10 "Auto-Shutdown"**.

20.1.1 HALF-BRIDGE MODE

In Half-Bridge mode, two output signals are generated as true and inverted versions of the input as illustrated in Figure 20-9. A non-overlap (dead-band) time is inserted between the two outputs to prevent shoot through current in various power supply applications. Dead-band control is described in **Section 20.5 "Dead-Band Control"**.

The unused outputs CWGxC and CWGxD drive similar signals, with polarity independently controlled by the POLC and POLD bits of the CWGxCON1 register, respectively.

REGISTER 20-8: CWGxCLK: CWGx CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—		—	—		CS
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1 Unimplemented: Read as '0'

bit 0

CS: CWGx Clock Selection bit

1 = HFINTOSC 16 MHz is selected

0 = Fosc is selected

REGISTER 20-9: CWGxISM: CWGx INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		IS<	3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-4	Unimplemented: Read as '0'
bit 3-0	IS<3:0>: CWGx Input Selection bits
	1111 = Reserved. No channel connected.
	•
	•
	•

1011 = Reserved. No channel connected. 1010 = PWM4_out 1001 = PWM3_out 1000 = Reserved. No channel connected. 0111 = Reserved. No channel connected. 0110 = LC2_out 0101 = LC1_out 0101 = LC1_out 0100 = CCP4_out 0011 = CCP3_out 0010 = CCP2_out 0001 = CCP1_out 0000 = CWGx1CLK

22.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- · Data selection
- · Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

22.1.1 DATA SELECTION

There are 32 signals available as inputs to the configurable logic. Four 32-input multiplexers are used to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated on the left side of Figure 22-2. Data inputs in the figure are identified by a generic numbered input name.

Table 22-2 correlates the generic input name to the actual signal for each CLC module. The column labeled 'LCxDyS<4:0> Value' indicates the MUX selection code for the selected data input. LCxDyS is an abbreviation for the MUX select input codes: LCxD1S<4:0> through LCxD4S<4:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 22-3 through Register 22-6).

TABLE 22-2: CLCx DATA INPUT SELECTION

LCxDyS<4:0> Value	CLCx Input Source
110000 to 111111 [48+]	Reserved
101111 [47]	CWG3B output
101110 [46]	CWG3A output
101101 [45]	CWG2B output
101100 [44]	CWG2A output
101011 [43]	CWG1B output
101010 [42]	CWG1A output
101001 [41]	MSSP2 SCK output
101000 [40]	MSSP2 SDO output
100111 [39]	MSSP1 SCK output
100110 [38]	MSSP1 SDO output
100101 [37]	EUSART (TX/CK) output
100100 [36]	EUSART (DT) output
100011 [35]	CLC4 output
100010 [34]	CLC3 output
100001 [33]	CLC2 output
100000 [32]	CLC1 output
011111 [31]	DSM output
011110 [30]	IOCIF
011101 [29]	ZCD output
011100 [28]	Comparator 2 output
011011 [27]	Comparator 1 output
011010 [26]	NCO1 output
011001 [25]	PWM7 output
011000 [24]	PWM6 output
010111 [23]	CCP5 output
010110 [22]	CCP4 output
010101 [21]	CCP3 output
010100 [20]	CCP2 output
010011 [19]	CCP1 output
010010 [18]	SMT2 output
010001 [17]	SMT1 output
010000 [16]	TMR6 to PR6 match
001111 [15]	TMR5 overflow
001110 [14]	TMR4 to PR4 match
001101 [13]	TMR3 overflow
001100 [12]	TMR2 to PR2 match
001011 [11]	TMR1 overflow
001010 [10]	TMR0 overflow
001001 [9]	CLKR output
001000 [8]	FRC
000111 [7]	SOSC
000110 [6]	LFINTOSC
000101 [5]	HFINTOSC
000100 [4]	Fosc
000011 [3]	CLCIN3PPS
	CLCIN2PPS
000010 [2] 000001 [1]	CLCIN1PPS

25.6 Register Definitions: DAC Control

REGISTER 25-1: DAC1CON0: VOLTAGE REFERENCE CONTROL REGISTER 0

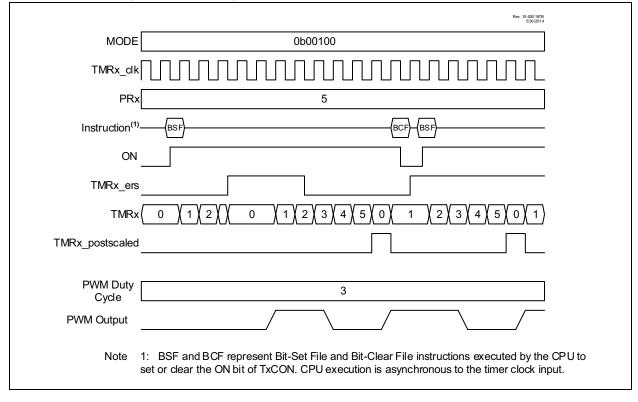
R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
DAC1EN	_	DAC10E1	DAC10E2		PSS<1:0>	_	DAC1NSS
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	27.00.2.0.27	C1 Enable bit					
	1 = DAC is e 0 = DAC is d						
bit 6	Unimplemen	ted: Read as '	D'				
bit 5	DAC1OE1: DAC1 Voltage Output 1 Enable bit 1 = DAC voltage level is also an output on the DAC1OUT1 pin 0 = DAC voltage level is disconnected from the DAC1OUT1 pin						
bit 4	 DAC1OE2: DAC1 Voltage Output 1 Enable bit 1 = DAC voltage level is also an output on the DAC1OUT2 pin 0 = DAC voltage level is disconnected from the DAC1OUT2 pin 						
bit 3-2			itive Source S	Select bits			
bit 1	Unimplemented: Read as '0'						
bit 0	DAC1NSS: DAC1 Negative Source Select bits 1 = VREF- pin 0 = Vss						

REGISTER 25-2: DAC1CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DAC1R<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5Unimplemented: Read as '0'bit 4-0DAC1R<4:0>: DAC1 Voltage Output Select bits

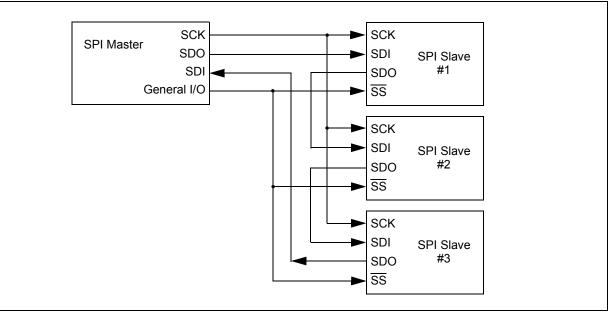

Vout = (Vsrc+ - Vsrc-)*(DAC1R<4:0>/32) + Vsrc

29.5.3 EDGE-TRIGGERED HARDWARE LIMIT MODE

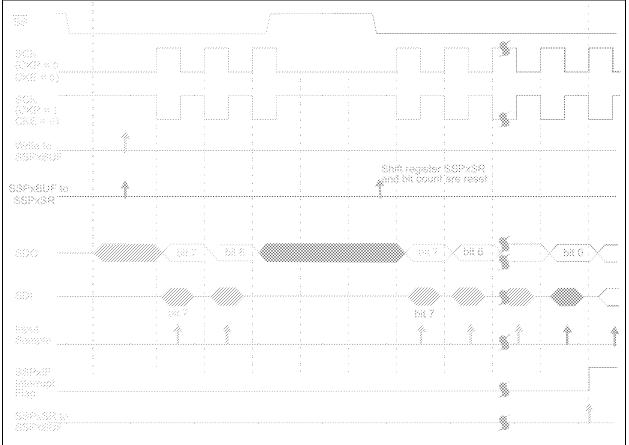
In Hardware Limit mode the timer can be reset by the TMRx_ers external signal before the timer reaches the period count. Three types of Resets are possible:

- Reset on rising or falling edge (MODE<4:0>= 00011)
- Reset on rising edge (MODE<4:0> = 00100)
- Reset on falling edge (MODE<4:0> = 00101)

FIGURE 29-6: EDGE-TRIGGERED HARDWARE LIMIT MODE TIMING DIAGRAM (MODE = 00100)


When the timer is used in conjunction with the CCP in PWM mode then an early Reset shortens the period and restarts the PWM pulse after a two clock delay. Refer to Figure 29-6.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CCP1CON	EN		OUT	FMT	FMT MODE<3:0>				418	
CCP2CON	EN	_	OUT	FMT		MODE	=<3:0>		418	
CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	421	
CCPTMRS1	_	—	P7TSE	L<1:0>	P6TSE	L<1:0>	C5TSE	:L<1:0>	421	
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	114	
PIE1	OSFIE	CSWIE	—	—	—	_	ADTIE	ADIE	116	
PIR1	OSFIF	CSWIF	—	_	—	_	ADTIF	ADIF	125	
PR2	Timer2 Mod	ule Period Re	le Period Register						389*	
TMR2	Holding Reg	ister for the 8	ter for the 8-bit TMR2 Register						389*	
T2CON	ON		CKPS<2:0>			407				
T2CLKCON	—		— — CS<3:0>						406	
T2RST	_	_	_			RSEL<4:0>			409	
T2HLT	PSYNC	CKPOL	CKSYNC	—		408				
PR4	Timer4 Mod	ule Period Re	le Period Register						389*	
TMR4	Holding Reg	g Register for the 8-bit TMR4 Register							389*	
T4CON	ON		CKPS<2:0>			407				
T4CLKCON	—	_	_	_	—		406			
T4RST	—	_	—			RSEL<4:0>			409	
T4HLT	PSYNC	CKPOL	CKSYNC	-		MODE	E<3:0>		408	
PR6	Timer6 Mod	lule Period Register						389*		
TMR6	Holding Reg	g Register for the 8-bit TMR6 Register								
T6CON	ON		CKPS<2:0>			OUTP	S<3:0>		407	
T6CLKCON	—	_	_	—	—		CS<2:0>		406	
T6RST	—		_			RSEL<4:0>			409	
T6HLT	PSYNC	CKPOL	CKSYNC	_		MODE	E<3:0>		408	


TABLE 29-3: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module. * Page provides register information.

FIGURE 31-7: SPI DAISY-CHAIN CONNECTION

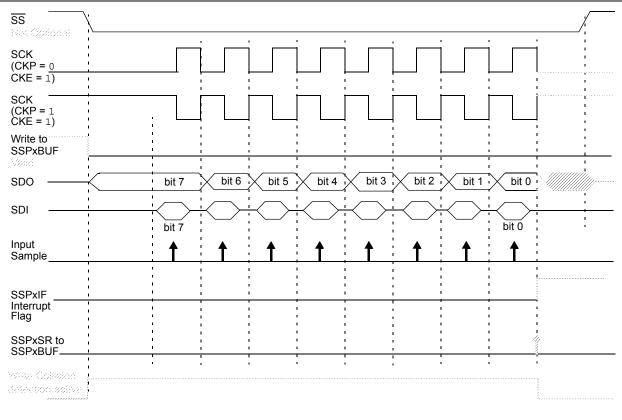


FIGURE 31-9:	SDI MODE WAVEFORM	(SLAVE MODE WITH CKE = 0)
FIGURE 31-9.	SPI WODE WAVEFORW	(SLAVE WIDDE WITH CRE - U)

										,	. j
											: : : :
- (KE = 0) - SOX - CXF = 1 - CXF = 0)	· · ·										: : : :
VVRE 0 SSP2817	· · · · · · · · · · · · · · · · · · ·			2	9 1 1 1 1	; ; ; ;		5	\$ c c s s		, , , ,
N384 8920		K 23.7	<u> 88 8</u>	X 88 8	X 337.4	K 888.8	X 398, Z	X 323			········ · · · · · · · · · · · · · · ·
903	· · · · · · · · · · · · · · · · · · ·										, ; ; ,
ingsti Sørrigiø	· · · · · · · · · · · · · · · · · · ·	14p.				. //s.		: 	s , ,	ų.	
SSPodi Internupt Flag	: : :		:	4 4 5	: : :	; , , ,	:		> . < . &		
939258 6 8997-8997	·	·		5	: :		2 2 2 2	> > 	\$;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		
Verite Codisson detection active											

32.6.9 COUNTER MODE

This mode increments the timer on each pulse of the SMTx_signal input. This mode is asynchronous to the SMT clock and uses the SMTx_signal as a time source. The SMTxCPW register will be updated with the current SMTxTMR value on the rising edge of the SMTxWIN input. See Figure 32-18.

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORLW	Exclusive OR literal with W					
Syntax:	[label] XORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

TRIS	Load TRIS Register with W				
Syntax:	[label] TRIS f				
Operands:	$5 \leq f \leq 7$				
Operation:	(W) \rightarrow TRIS register 'f'				
Status Affected:	None				
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.				

XORWF	Exclusive OR W with f					
Syntax:	[label] XORWF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	(W) .XOR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is ' 1 ', the result is stored back in register 'f'.					

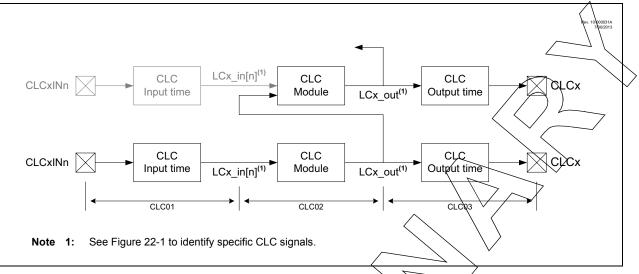
SUPPLY CURRENT (IDD)^(1,2,4) **TABLE 37-2**:

PIC16LF18854		Standard Operating Conditions (unless otherwise stated)						
PIC16F18854								
Param.		During Object visiting	Min	T 4	Max		Conditions	
No.	Symbol	Device Characteristics	Min.	Тур.†	Max.	Units	VDD	Note
D100	IDD _{XT4}	XT = 4 MHz	_	360	600	ζųΑ <	3.0V	7
D100	IDD _{XT4}	XT = 4 MHz	_	380	700	μA	3.0V	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	_	1.4	2.0	mA	3.0V	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	—	1.5	2.1	¶⊈/	3.0	
D102	IDD _{HFOPLL}	HFINTOSC = 32 MHz	_	2.6	3.6	/mA	3.0V	
D102	IDD _{HFOPLL}	HFINTOSC = 32 MHz	_	2.7	3.7	mA	3.0V	
D103	IDD _{HSPLL32}	HS+PLL = 32 MHz	\uparrow	2.6	3.6	(mA	3.0V	
D103	IDD _{HSPLL32}	HS+PLL = 32 MHz	_	2.7	3.7	mA	3.0V	
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	-	1.05		mA	3.0V	
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	X	1.15	\downarrow	mA	3.0V	
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	$\overline{\langle}$	1.1	_	mA	3.0V	
D105	IDD _{DOZE} ⁽³⁾	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 18		1.8	_	mA	3.0V	

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from Note 1:

rail-to-rail; all I/O pins are outputs driven low; MOLR - VDD, WDT disabled. The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switch-

2: ing rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. $IDD_{DOZE} = [IDD_{IDLE}^{*}(N-1)/N] + IDD_{HFO}^{-16/N}$ where N = DOZE Ratio (Register 8-2).


3:

PMD bits are all in the default state, no modules are disabled. 4:

© 2016 Microchip Technology Inc.

 \wedge

TABLE 37-20: CONFIGURABLE LOGIC CELL (CLC) CHARACTERISTICS

Param. No.	Sym.	Characteristic	Min.	Typt	Max.	Units	Conditions
CLC01*	TCLCIN	CLC input time		$\overline{}$	OS17	ns	(Note 1)
CLC02*	TCLC	CLC module input to output progagation time		24 12	_	ns ns	VDD = 1.8V VDD > 3.6V
CLC03*	TCLCOUT	CLC output time Rise Time		OS18	_	_	(Note 1)
		Pair IIBA	e —	OS19	_	_	(Note 1)
CLC04*	FCLCMAX	CLC maximum switching frequency	_	32	Fosc	MHz	

These parameters are characterized but not tested. Data in "Typ" column is at 3,0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: See Table 37-10 for OS17, OS18 and OS19 rise and fall times.