

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18854-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Program Flash Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM
 - Data EEPROM Memory

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing
- NVMREG access

TABLE 3-1:DEVICE SIZES AND ADDRESSES

Device	Program Memory Size (Words)	Last Program Memory Address
PIC16(L)F18854	4096	0FFFh

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1).

	• • • • •						•••••==)				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 29	(Continued)										
EBAh	MDSRCPPS	—	—	—			MDSRCPPS<4:0>			0 0101	u uuuu
EBBh	CLCIN0PPS	—	—	—		CLCIN0PPS<4:0>					u uuuu
EBCh	CLCIN1PPS	—	—	—		CLCIN1PPS<4:0>					u uuuu
EBDh	CLCIN2PPS	—	—	—		CLCIN2PPS<4:0>				0 1110	u uuuu
EBEh	CLCIN3PPS	—	—	—		CLCIN3PPS<4:0>				0 1111	u uuuu
EBFh	—		Unimplemented						_	-	
EC0h	—		Unimplemented						—	_	
EC1h	—		Unimplemented						_	_	
EC2h	—		Unimplemented						_	_	
EC3h	ADCACTPPS	—	—	_		ADCACTPPS<4:0>				0 1100	u uuuu
EC4h	—		•	•	Unimplemented						_
EC5h	SSP1CLKPPS	—	—	_			SSP1CLKPPS<4:0>			1 0011	u uuuu
EC6h	SSP1DATPPS	—	—	—			SSP1DATPPS<4:0>			1 0100	u uuuu
EC7h	SSP1SSPPS	—	—	—			SSP1SSPPS<4:0>			0 0101	u uuuu
EC8h	SSP2CLKPPS	—	—	—			SSP2CLKPPS<4:0>	•		0 1001	u uuuu
EC9h	SSP2DATPPS	—	—	—			SSP2DATPPS<4:0>			0 0010	u uuuu
ECAh	SSP2SSPPS	—	—	—		SSP2SSPPS<4:0>			0 1000	u uuuu	
ECBh	RXPPS	—	—	—			RXPPS<4:0>			1 0111	u uuuu
ECCh	TXPPS	—	—	—			TXPPS<4:0>			1 0110	u uuuu
ECDh to EEFh	—				U	Inimplemented				—	-

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18854 devices only.

2: Unimplemented, read as '1'.

REGISTER	R 7-3: PIE1: I	PERIPHERAL		PT ENABLE	REGISTER 1		
R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
OSFIE	CSWIE		_	_	—	ADTIE	ADIE
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is un	nchanged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is s	et	'0' = Bit is clea	ared				
bit 7	OSFIE: Oscill	ator Fail Interru	pt Enable bit				
	1 = Enables t	he Oscillator Fa	ail Interrupt				
	0 = Disables	the Oscillator F	ail Interrupt				
bit 6	CSWIE: Cloc	k Switch Comp	lete Interrupt I	Enable bit			
	1 = The clock	switch module	interrupt is er	nabled			
	0 = The clock	switch module	interrupt is di	sabled			
bit 5-2	Unimplemen	ted: Read as 'o)'				
bit 1	ADTIE: Analo	og-to-Digital Co	nverter (ADC)) Threshold Co	mpare Interrupt	Enable bit	
	1 = Enables t	he ADC thresh	old compare i	nterrupt			
	0 = Disables	the ADC thresh	old compare i	interrupt			
bit 0	ADIE: Analog	J-to-Digital Con	verter (ADC) I	nterrupt Enabl	le bit		
	1 = Enables t	he ADC interru	pt				
	0 = Disables	the ADC interru	ipt				
Note 1: E	Bit PEIE of the INT PIE1-PIE8.	CON register r	nust be set to	enable any pe	eripheral interru	pt controlled by	registers

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is	set	'0' = Bit is cle	ared	HS = Hardwa	are set		
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	TMR6IE: TM	R6 to PR6 Mate	ch Interrupt Er	nable bit			
	1 = Enables	the Timer6 to	PR6 match in	terrupt			
	0 = Disable	s the Timer6 to	PR6 match ir	nterrupt			
bit 4	TMR5IE: Tim	er5 Overflow Ir	nterrupt Enabl	e bit			
	1 = Enables	s the Timer5 ov	erflow interrup	ot			
1.11.0			eniow interru	pt			
DIT 3		R4 to PR4 Mate	CN Interrupt EI	nable bit			
	1 = Disables 0 = Disables	s the Timer4 to	PR4 match in	nterrupt			
bit 2	TMR3IE: TM	R3 Overflow In	terrupt Enable	bit			
	1 = Enables	the Timer3 ov	erflow interrup	ot			
	0 = Enables	the Timer3 ov	erflow interrup	ot			
bit 1	TMR2IE: TM	R2 to PR2 Mate	ch Interrupt Er	nable bit			
	1 = Enables	the Timer2 to	PR2 match in	terrupt			
	0 = Disables	s the Timer2 to	PR2 match in	terrupt			
bit 0	TMR1IE: Tim	er1 Overflow Ir	terrupt Enabl	e bit			
	1 = Enables	the Timer1 ov	erflow interrup	ot			
			ernow interrup	л			
Nata			much ha				
Note:	set to enable a	n CON register	interrunt				
	controlled by regis	sters PIE1-PIE8	B.				
	, 0						

REGISTER 7-6: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

INE OID I EIN				INEQUEU	I KEOIOTEK	0	
R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
CLC4IF	CLC3IF	CLC2IF	CLC1IF	—	TMR5GIF	TMR3GIF	TMR1GIF
bit 7		•	•				bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set	I	'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7	CLC4IF: CLC	4 Interrupt Flag	g bit				
	1 = A CLC4O	UT interrupt co	ondition has oc	curred (must	be cleared in so	oftware)	
	0 = No CLC4	interrupt event	has occurred				
bit 6	CLC3IF: CLC	3 Interrupt Flag	g bit				
	1 = A CLC4O	UT interrupt co	ndition has oc	curred (must	be cleared in so	ftware)	
L:1 F		Interrupt event					
DIL 5			y Dit malitiana la ana an			(1 ,)	
	1 = A CLC4O 0 = No CLC4O	interrupt co	has occurred	currea (must	be cleared in so	mware)	
hit 4		1 Interrunt Flag	n hit				
	1 = A C C C 4 O	UT interrupt co	ondition has or	curred (must	be cleared in so	oftware)	
	0 = No CLC4	interrupt event	has occurred				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	TMR5GIF: Tir	mer5 Gate Inte	rrupt Flag bit				
	1 = The Time	r5 Gate has go	ne inactive (th	e gate is close	ed)		
	0 = The Time	r5 Gate has no	t gone inactive	e			
bit 1	TMR3GIF: Tir	mer3 Gate Inte	rrupt Flag bit				
	1 = The Time	r5 Gate has go	ne inactive (th	e gate is close	ed)		
	0 = The Time	r5 Gate has no	t gone inactive	e			
bit 0	TMR1GIF: Tir	mer1 Gate Inte	rrupt Flag bit				
	1 = The Time	r1 Gate has go r1 Gate has no	ne inactive (th	e gate is close	ed)		
		i i Gale nas no	t gone mactive	5			
Note: Int	terrupt flag bits a	re set when an	interrupt				
CO	ndition occurs, r	egardless of the	e state of				
its	corresponding	enable bit or th	e Global				
Er	IADIE DIT. GIE. O	n the INTCON	realster.				

REGISTER 7-16: PIR5: PERIPHERAL INTERRUPT REQUEST REGISTER 5

User software should ensure the appropriate interrupt flag bits are clear

prior to enabling an interrupt.

15.6 Register Definitions: Interrupt-on-Change Control

REGISTER 15-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCAP7 | IOCAP6 | IOCAP5 | IOCAP4 | IOCAP3 | IOCAP2 | IOCAP1 | IOCAP0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCAP<7:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 15-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCAN7 | IOCAN6 | IOCAN5 | IOCAN4 | IOCAN3 | IOCAN2 | IOCAN1 | IOCAN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

bit 7-0

IOCAN<7:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 15-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCAF7 | IOCAF6 | IOCAF5 | IOCAF4 | IOCAF3 | IOCAF2 | IOCAF1 | IOCAF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

IOCAF<7:0>: Interrupt-on-Change PORTA Flag bits

- 1 = An enabled change was detected on the associated pin.
 - Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.
- 0 = No change was detected, or the user cleared the detected change.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	114
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	TMR5GIF	TMR3GIF	TMR1GIF	129
PIE5	CLC4IE	CLC4IE	CLC2IE	CLC1IE	_	TMR5GIE	TMR3GIE	TMR1GIE	120
CLC1CON	LC1EN	_	LC10UT	LC1INTP	LC1INTN		LC1MODE<2:0	>	292
CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	293
CLC1SEL0	_	_			LC1D	1S<5:0>			294
CLC1SEL1	_	_			LC1D	2S<5:0>			294
CLC1SEL2	_	_			LC1D	3S<5:0>			294
CLC1SEL3	_	_			LC1D	4S<5:0>			294
CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	295
CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	296
CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	297
CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	298
CLC2CON	LC2EN	_	LC2OUT	LC2INTP	LC2INTN	LC2MODE<2:0>			292
CLC2POL	LC2POL	_	_	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	293
CLC2SEL0	_	_			LC2D	1S<5:0>			294
CLC2SEL1	_	—			LC2D	2S<5:0>			294
CLC2SEL2	_	_			LC2D	3S<5:0>			294
CLC2SEL3	_	_			LC2D	4S<5:0>			294
CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	295
CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	296
CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	297
CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	298
CLC3CON	LC3EN	_	LC3OUT	LC3INTP	LC3INTN		LC3MODE<2:0	>	292
CLC3POL	LC3POL	_	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	293
CLC3SEL0	_	_			LC3D	1S<5:0>			294
CLC3SEL1	_	_			LC3D	2S<5:0>			294
CLC3SEL2	_	_			LC3D	3S<5:0>			294
CLC3SEL3	_	_			LC3D	4S<5:0>			294
CLC3GLS0	LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	295
CLC3GLS1	LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	296
CLC3GLS2	LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	297
CLC3GLS3	LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	298
CLC4CON	LC4EN	_	LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:0	>	292
CLC4POL	LC4POL	_	_	_	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	293
CLC4SEL0	_	_			LC4D	1S<5:0>			294
CLC4SEL1		_			LC4D	2S<5:0>			294
CLC4SEL2					LC4D	3S<5:0>			294
CLC4SEL3	_	_			LC4D	4S<5:0>			294
CLC4GLS0	LC4G1D4T	LC4G1D4N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	295

TABLE 22-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

23.5.1 DIGITAL FILTER/AVERAGE

The digital filter/average module consists of an accumulator with data feedback options, and control logic to determine when threshold tests need to be applied. The accumulator is a 16-bit wide signed register (15 bits + 1 sign bit), which can be accessed through the ADACCH:ADACCL register pair.

Upon each trigger event (the ADGO bit set or external event trigger), the ADC conversion result is added to the accumulator. If the value exceeds '1111111111111111111, then the overflow bit ADAOV in the ADSTAT register is set.

The number of samples to be accumulated is determined by the ADRPT (A/D Repeat Setting) register. Each time a sample is added to the accumulator, the ADCNT register is incremented. In Average and Burst Average modes the ADCNT and ADACC registers are cleared automatically when a trigger causes the ADCNT value to exceed the ADRPT value to '1' and replace the ADACC contents with the conversion result.

The ADAOV (accumulator overflow) bit in the ADSTAT register, ADACC, and ADCNT registers will be cleared any time the ADACLR bit in the ADCON2 register is set.

Note: When ADC is operating from FRC, 5 FRC clock cycles are required to execute the ADACC clearing operation.

The ADCRS <2:0> bits in the ADCON2 register control the data shift on the accumulator result, which effectively divides the value in the accumulator (ADACCH:ADACCL) register pair. For the Accumulate mode of the digital filter, the shift provides a simple scaling operation. For the Average/Burst Average mode, the shift bits are used to determine number of samples for averaging. For the Lowpass Filter mode, the shift is an integral part of the filter, and determines the cut-off frequency of the filter. Table 23-4 shows the -3 dB cut-off frequency in ω T (radians) and the highest signal attenuation obtained by this filter at nyquist frequency (ω T = π).

TABLE 23-4: LOWPASS FILTER -3 dB CUT-OFF FREQUENCY

ADCRS	ωT (radians) @ -3 dB Frequency	dB @ F _{nyquist} =1/(2T)
1	0.72	-9.5
2	0.284	-16.9
3	0.134	-23.5
4	0.065	-29.8
5	0.032	-36.0

23.5.2 BASIC MODE

Basic mode (ADMD= '000') disables all additional computation features. In this mode, no accumulation occurs and no threshold error comparison is performed. Double sampling, continuous mode, and all CVD features are still available, but no features involving the digital filter/average features are used.

23.5.3 ACCUMULATE MODE:

In Accumulate mode (ADMD = '001'), the ADC conversion result is right shifted by the value of the ADCRS bits in the ADCON2 register and added to the ADACC registers. The Formatting mode does not affect the right-justification of the ADACC value. Upon each sample, ADCNT is incremented, indicating the number of samples accumulated. After each sample and accumulation, the ADACC value has a threshold comparison performed on it (see Section 23.5.7 "Threshold Comparison") and the ADTIF interrupt may trigger.

23.5.4 AVERAGE MODE

In Average Mode (ADMD = '010'), the ADACC registers accumulate with each ADC sample, much as in Accumulate mode, and the ADCNT register increments with each sample. However, in Average mode, the threshold comparison is performed upon ADCNT being greater than or equal to a user-defined ADRPT value. The ADCRS bits still right-shift the final result, but in this mode when ADCRS= log(ADRPT)/log(2) then the final accumulated value will be divided by number of samples, allowing for a threshold comparison operation on the average of all gathered samples.

REGISTER 23-24: ADSTP1	H: ADC THRESHOLD SE	ETPOINT REGISTER HIGH
------------------------	---------------------	-----------------------

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
			ADSTF	PT<15:8>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 **ADSTPT<15:8>**: ADC Threshold Setpoint MSB. Most Significant Byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ADERR, see Register 21-1 for more details.

REGISTER 23-25: ADSTPTL: ADC THRESHOLD SETPOINT REGISTER LOW

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x		
ADSTPT<7:0>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADSTPT<7:0>**: ADC Threshold Setpoint LSB. Least Significant Byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ADERR, see Register 21-1 for more details.

REGISTER 23-26: ADERRH: ADC CALCULATION ERROR REGISTER HIGH

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x		
ADERR<15:8>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADERR<15:8>**: ADC Calculation Error MSB. Most Significant Byte of ADC Calculation Error. Calculation is determined by ADCALC bits of ADCON3, see Register 21-1 for more details.

© 2016 Microchip Technology Inc.

[\]

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC1CON0	DAC1EN	—	DAC10E1	DAC10E2	DAC1PSS<1:0> —		_	DAC1NSS	354
DAC1CON1	_	_	—	— DAC1R<4:0>					354
CM1PSEL	_	-	_	_	PCH<2:0>				
CM2PSEL	—	_	—	_	_	247			
ADPCH	_	_		ADPCH<5:0>					322

TABLE 25-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC1 MODULE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

31.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 31-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 31-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 31-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

EQUATION 31-1:

$$FCLOCK = \frac{FOSC}{(SSP1ADD + 1)(4)}$$

FIGURE 31-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 31-2: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FcLock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note: Refer to the I/O port electrical specifications in Table 37-4 to ensure the system is designed to support IOL requirements.

REGISTER 31-2: SSPxCON1: SSPx CONTROL REGISTER 1

B/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP		SSPN	/<3:0>	1411 0/0			
bit 7	00.01	00. 2.1	0.4				bit 0			
Legend:										
R = Readable b	it	W = Writable bit		U = Unimplement	ed bit, read as '0'					
u = Bit is uncha	nged	x = Bit is unknown	l	-n/n = Value at PO	OR and BOR/Value	at all other Resets				
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by hardware C = User cleared						
bit 7	 t 7 WCOL: Write Collision Detect bit (Transmit mode only) 1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision 									
bit 6	SSPOV: Receive <u>In SPI mode:</u> 1 = Anew byte i Overflow ca setting overf SSPxBUF rr 0 = No overflow <u>In I²C mode:</u> 1 = A byte is re (must be cle 0 = No overflow	Overflow Indicator s received while the in n only occur in Slave low. In Master mode egister (must be clear ceived while the SS eared in software).	bit ⁽¹⁾ SSPxBUF registe e mode. In Slave the overflow bit i red in software). SPxBUF register	er is still holding the pr mode, the user must is not set since each n is still holding the p	evious data. In case read the SSPxBUF, lew reception (and tr revious byte. SSP0	of overflow, the data even if only transmit ansmission) is initiate DV is a "don't care"	in SSPxSR is lost. ting data, to avoid ed by writing to the in Transmit mode			
bit 5	SSPEN: Synchro In both modes, w 1 = Enables ser 0 = Disables se <u>In I²C mode</u> : 1 = Enables the 0 = Disables se	SSPEN: Synchronous Serial Port Enable bit In both modes, when enabled, the following pins must be properly configured as input or output In <u>SPI mode:</u> 1 = Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins ⁽²⁾ 0 = Disables serial port and configures these pins as I/O port pins In <u>I²C mode:</u> 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins ⁽³⁾ 0 = Disables serial port and configures these pins as I/O port pins								
bit 4	CKP: Clock Polarity Select bit In <u>SPI mode:</u> 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In <u>1²C Slave mode:</u> SCL release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) In <u>1²C Master mode:</u> University of the mode									
bit 3-0	SSPM<3:0>: Syn 1111 = l^2C Slave 1101 = l^2C Slave 1101 = Reserved 1001 = Reserved 1001 = SPI Mast 1001 = SPI Mast 1000 = l^2C Maste 0111 = l^2C Slave 0101 = SPI Slave 0101 = SPI Slave 0100 = SPI Mast 0010 = SPI Mast 0001 = SPI Mast 0000 = SPI Mast	chronous Serial Po mode, 10-bit addres mode, 7-bit addres are controlled Mast er mode, clock = Fo mode, clock = Fo mode, clock = Fo mode, clock = SC er mode, clock = SC er mode, clock = SC er mode, clock = SC er mode, clock = Fo er mode, clock = Fo er mode, clock = Fo er mode, clock = Fo er mode, clock = Fo	rt Mode Select b ess with Start and s with Start and er mode (slave i bsc/(4 * (SSPxAl ss	bits d Stop bit interrupts e Stop bit interrupts en dle) DD+1)) ⁽⁵⁾ ADD+1)) ⁽⁴⁾ ntrol disabled, SS ca ntrol enabled	enabled nabled n be used as I/O pi	in				
Note 1: In 2: W R	Master mode, the over /hen enabled, these pi xyPPS to select the pi	erflow bit is not set s ns must be properly ns.	since each new i v configured as i	reception (and transmother nput or output. Use \$	nission) is initiated SSPxSSPPS, SSP	by writing to the SS CLKPPS, SSPxDA	PxBUF register. TPPS, and			

3: When enabled, the SDA and SCL pins must be configured as inputs. Use SSPxCLKPPS, SSPxDATPPS, and RxyPPS to select the pins.
4: SSPxADD values of 0, 1 or 2 are not supported for I²C mode.
5: SSPxADD value of '0' is not supported. Use SSPM = 0000 instead.

REGISTER 32-2: SMTxCON1: SMT CONTROL REGISTER 1	
---	--

R/W/HC-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SMTxGO	REPEAT	—	—		MODE	<3:0>	
bit 7	·	-		-			bit 0
Legend:							
HC = Bit is clea	ared by hardwa	are		HS = Bit is se	t by hardware		
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condit	tion	
bit 7	SMTxGO: SM	/IT GO Data Ac	quisition bit				
	1 = Increment	ting, acquiring (data is enable data is disable	d d			
bit 6		T Reneat Accu	isition Enable	hit			
bit 0	1 = Repeat Da	ata Acquisition	mode is enab	led			
	0 = Single Ac	, quisition mode	is enabled				
bit 5-4	Unimplemen	ted: Read as ')'				
bit 3-0	MODE<3:0> 3	SMT Operation	Mode Select	bits			
	1111 = Rese r	rved					
	•						
	•						
	1011 = Rese r	rved					
	1010 = Windo	owed counter					
	1001 = Gatec						
	0111 = Captu	ire					
	0110 = Time	of flight					
	0101 = Gated windowed measure						
	0100 = Windowed measure						
	0011 = High and low time measurement						
	0010 = Period	d Timer	He Acquisition				
	0000 = Timer						

REGISTER 32-7: SMTxTMRL: SMT TIMER REGISTER – LOW BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			SMTxTN	/IR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	able bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other Rese				
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 SMTxTMR<7:0>: Significant bits of the SMT Counter – Low Byte

REGISTER 32-8: SMTxTMRH: SMT TIMER REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SMTxTMR<15:8>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxTMR<15:8>: Significant bits of the SMT Counter – High Byte

REGISTER 32-9: SMTxTMRU: SMT TIMER REGISTER – UPPER BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SMTxTMR<23:16>							
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxTMR<23:16>: Significant bits of the SMT Counter – Upper Byte

REGISTER 32-10: SMTxCPRL: SMT CAPTURED PERIOD REGISTER – LOW BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMTx0	CPR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read		d as '0'	
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all othe		other Resets	
'1' = Bit is set		'0' = Bit is cleare	ed				

bit 7-0 SMTxCPR<7:0>: Significant bits of the SMT Period Latch – Low Byte

REGISTER 32-11: SMTxCPRH: SMT CAPTURED PERIOD REGISTER – HIGH BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMTxCP	R<15:8>			
bit 7							bit 0
Legend:							

=ogona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxCPR<15:8>: Significant bits of the SMT Period Latch – High Byte

REGISTER 32-12: SMTxCPRU: SMT CAPTURED PERIOD REGISTER – UPPER BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	
			SMTxC	PR<23:16>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	d as '0'		
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other				

bit 7-0 SMTxCPR<23:16>: Significant bits of the SMT Period Latch – Upper Byte

'0' = Bit is cleared

'1' = Bit is set

PIE8 — — SMT2PWAIE SMT2PRAIE SMT2IE SMT1PWAIE SMT1PRAIE SMT1IE 123 PIR8 — — SMT2PWAIF SMT2PRAIF SMT2IF SMT1PWAIF SMT1PRAIF SMT1IF 133 SMT1TMRL SMT1PWAIF SMT1PWAIF SMT1PWAIF SMT1PRAIF SMT1IF 133 SMT1TMRL SMT1TMR<7:0> 515 515 SMT1TMRH SMT1TMR<15:8> 515 SMT1CPRL SMT1CPR< 5115 516 SMT1CPRH SMT1CPR SMT1CPR 516 SMT1CPRU SMT1CPR<33:16> 516	
PIR8 — _ SMT2PWAIF SMT2PRAIF SMT2IF SMT1PWAIF SMT1PRAIF SMT1IF 133 SMT1TMRL	23
SMT1TMRL SMT1TMR<7:0> 515 SMT1TMRH SMT1TMR<15:8> 515 SMT1TMRU SMT1TMR<23:16> 515 SMT1CPRL SMT1CPR<7:0> 516 SMT1CPRH SMT1CPR<15:8> 516 SMT1CPRU SMT1CPR<23:16> 516	33
SMT1TMRH SMT1TMR<15:8> 515 SMT1TMRU SMT1TMR<23:16> 515 SMT1CPRL SMT1CPR<7:0> 516 SMT1CPRH SMT1CPR<15:8> 516 SMT1CPRU SMT1CPR<23:16> 516	15
SMT1TMRU SMT1TMR<23:16> 515 SMT1CPRL SMT1CPR<7:0> 516 SMT1CPRH SMT1CPR<15:8> 516 SMT1CPRU SMT1CPR<23:16> 516	15
SMT1CPRL SMT1CPR<7:0> 516 SMT1CPRH SMT1CPR<15:8> 516 SMT1CPRU SMT1CPR<23:16> 516	15
SMT1CPRH SMT1CPR<15:8> 516 SMT1CPRU SMT1CPR<23:16> 516	16
SMT1CPRU SMT1CPR<23:16> 516	16
	16
SMT1CPWL SMT1CPW<7:0> 517	17
SMT1CPWH SMT1CPW<15:8> 517	17
SMT1CPWU SMT1CPW<23:16> 517	17
SMT1PRL SMT1PR<7:0> 518	18
SMT1PRH SMT1PR<15:8> 518	18
SMT1PRU SMT1PR<23:16> 518	518
SMT1CON0 EN - STP WPOL SPOL CPOL SMT1PS<1:0> 509	09
SMT1CON1 SMT1GO REPEAT MODE<3:0> 510	510
SMT1STAT CPRUP CPWUP RST TS WS AS 511	511
SMT1CLK – – – – CSEL<2:0> 512	512
SMT1SIG — — — SSEL<4:0> 514	i14
SMT1WIN — — — WSEL<4:0> 513	13
SMT2TMRL SMT2TMR<7:0> 515	515
SMT2TMRH SMT2TMR<15:8> 515	15
SMT2TMRU SMT2TMR<23:16> 515	515
SMT2CPRL SMT2CPR<7:0> 516	16
SMT2CPRH SMT2CPR<15:8> 516	i16
SMT2CPRU SMT2CPR<23:16> 516	516
SMT2CPWL SMT2CPW<7:0> 517	j 17
SMT2CPWH SMT2CPW<15:8> 517	17
SMT2CPWU SMT2CPW<23:16> 517	j 17
SMT2PRL SMT2PR<7:0> 518	518
SMT2PRH SMT2PR<15:8> 518	518
SMT2PRU SMT2PR<23:16> 518	518
SMT2CON0 EN - STP WPOL SPOL CPOL SMT2PS<1:0> 509	09
SMT2CON1 SMT2GO REPEAT MODE<3:0> 510	510
SMT2STAT CPRUP CPWUP RST TS WS AS 511	511
SMT2CLK – – – – CSEL<2:0> 512	12
SMT2SIG — — — SSEL<4:0> 514	i14
SMT2WIN — — — WSEL<4:0> 513	13

TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH SMTx

Legend: - = unimplemented read as '0'. Shaded cells are not used for SMTx module.

36.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label]ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

ANDLW	AND literal with W			
Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	(W) .AND. (k) \rightarrow (W)			
Status Affected:	Z			
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.			

ADDLW	Add literal and W		
Syntax:	[<i>label</i>] ADDLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	$(W) + k \to (W)$		
Status Affected:	C, DC, Z		
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.		

wrap-around.

ANDWF	AND W with f		
Syntax:	[<i>label</i>] ANDWF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(W) .AND. (f) \rightarrow (destination)		
Status Affected:	Z		
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.		

ADDWF	Add W and f			
Syntax:	[label] ADDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) + (f) \rightarrow (destination)			
Status Affected:	C, DC, Z			
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

ASRF	Arithmetic Right Shift				
Syntax:	[label]ASRF f{,d}				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \ \in \ [0,1] \end{array}$				
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,				
Status Affected:	C, Z				
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.				

ADDWFC ADD W and CARRY bit to f

Syntax:	[<i>label</i>] ADDWFC f {,d}			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(W) + (f) + (C) \rightarrow dest$			
Status Affected:	C, DC, Z			
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.			

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Optional Center Pad Width	W2			2.35
Optional Center Pad Length	T2			2.35
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A